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Wi-Fitness: Improving Wi-Fi Sensing With
Video Perception for Smart Fitness
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Abstract—With advancements in AI, smart home gyms are
becoming increasingly popular for providing fitness assistance
in indoor environments. In this research, we propose a layer-
by-layer framework, called Wi-Fitness, which bridges video
perception with Wi-Fi sensing for smart fitness. At the data pre-
processing layer, the singular value decomposition-based channel
state information denoising mechanism is leveraged to do the Wi-
Fi data calibration. Diverse and high-quality training samples are
generated by a random quantization-based data augmentation
method. At the bimodal fusion layer, the heterogeneity between
the Wi-Fi and video is mitigated by the local attention mechanism

Received 6 August 2024; revised 14 September 2024; accepted 1 October
2024. Date of publication 15 October 2024; date of current version
24 January 2025. This work was supported in part by the Natural Science
Foundation of Tianjin under Grant 22JCYBJC00120; in part by the Key
Laboratory of Embedded System and Service Computing (Tongji University),
Ministry of Education under Grant ESSCKF 2024-04; in part by Key
Laboratory of Computing Power Network and Information Security, Ministry
of Education, Qilu University of Technology Shandong Academy of Sciences
under Grant 2023ZD036; in part by the Fundamental Research Funds for
the Central Universities, JLU under Grant 93K172022K09; and in part by
the Open Project of Tianjin Key Laboratory of Optoelectronic Detection
Technology and System under Grant 2024LODTS108. (Daguo Zhao and
Mengli Wei are co-first authors.) (Corresponding authors: Yaping Zhong;
Shiwen Mao.)

This work involved human subjects or animals in its research. Approval
of all ethical and experimental procedures and protocols was granted by the
Medical Ethics Committee of Wuhan Sports University under Application No.
2023029, and performed in line with the Declaration of Helsinki.

Mengli Wei is with the Sports Big-Data Research Center, Wuhan Sports
University, Wuhan 430079, China (e-mail: weimengli@whsu.edu.cn).

Daguo Zhao is with the College of Intelligence and Computing and the
Tianjin Key Laboratory of Advanced Network Technology and Application,
Tianjin University, Tianjin 300050, China (e-mail: iethan@tju.edu.cn).

Lei Zhang is with the College of Intelligence and Computing and the
Tianjin Key Laboratory of Advanced Network Technology and Application,
Tianjin University, Tianjin 300050, China, and also with Key Laboratory of
Computing Power Network and Information Security, Ministry of Education,
Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
(e-mail: lzhang@tju.edu.cn).

Cheng Wang is with the Key Laboratory of Embedded System and Service
Computing, Ministry of Education, Tongji University, Shanghai 200092, China
(e-mail: cwang@tongji.edu.cn).

Yonggang Zhang is with the Key Laboratory of Symbolic Computation
and Knowledge Engineer, Ministry of Education, Jilin University, Changchun
130012, China (e-mail: zhangyg@jlu.edu.cn).

Qi Wang is with the School of Electronic and Information Engineering and
Tianjin Key Laboratory of Optoelectronic Detection Technology and System,
Tiangong University, Tianjin 300387, China (e-mail: wangqitju@163.com).

Xiaochen Fan is with the Institute for Electronics and Information
Technology, Tsinghua University, Tianjin 300467, China, and also with the
Department of Electronic Engineering, Tsinghua University, Beijing 100084,
China (e-mail: fanxiaochen33@gmail.com).

Yaping Zhong is with the Sports Big-Data Research Center, Wuhan Sports
University, Wuhan 430079, China (e-mail: zhongyaping@whsu.edu.cn).

Shiwen Mao is with the Department of Electrical and Computer
Engineering, Auburn University, Auburn, AL 36849 USA (e-mail:
smao@ieee.org).

Digital Object Identifier 10.1109/JIOT.2024.3476291

and the bimodal feature integration mechanism. For the video
modality, the attention-based spatio-temporal graph convolu-
tional network (AST-GCN Net) is proposed to refine spatial
information. The spatio-temporal semantic alignment module is
proposed to transfer spatial information from video to Wi-Fi
and maintain temporal consistency across modalities. The fitness
assessment layer provides exercise visualization. The generaliza-
tion of Wi-Fitness is enhanced by layer-by-layer collaboration.
Wi-Fitness demonstrates its effectiveness by achieving an average
F1-Score of 92.68% in three typical indoor environments.

Index Terms—Action recognition, channel state information
(CSI), multimodal, skeleton, Wi-Fi.

I. INTRODUCTION

F ITNESS activities can be conducted in gyms, or sports
fields, with the help of the coaches. However, lots of

people do not have time to go to the gyms. Therefore, they
seek more convenient alternatives to do the exercise [1].
The online tutorials can provide the guidance for the fitness.
Though “home gym” offers convenience and flexibility, when-
ever the standard guidance can be followed, the health can be
improved. However, without a coach, whether the exerciser
really follows the standard baselines and whether the health
can be improved as well as the possible physical injuries can
be prevented are the questions. With the quick advances of AI,
smart fitness assistants [2], [3], [4], which can guarantee the
standardization, effectiveness, and security of fitness become
increasingly popular.

With the advancement of sensing technology, there are a
variety of smart fitness assistants, such as exercising monitoring
BikeNet [5], accelerometer sensors for motion detection [6],
wearable devices for fitness coach FitCoach [7], and smartwatch
for workout tracking MiLift [8]. The various devices can help
users engage in effective fitness. However, these sensing devices
may restrict user comfort and freedom due to their needs to
be carried on the body. Therefore, video-based smart fitness
assistantshavebecomepopular, suchasPhyCoVIS[9].However,
these kinds of methods still have issues with sensitivity to
lighting, obstacles, and privacy concerns.

Wi-Fi has widely evolved from just a communication
tool. It is now used as an integrated sensing method. This
highlights its potential to become a qualified technical sup-
port of smart fitness assistants. When applied to a smart
fitness assistant, WiFi sensing faces challenges of environ-
mental dependence and generalization. Due to Wi-Fi signals’
low-spatial resolution, models trained in specific environ-
ments suffer significant performance degradation even with
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minor changes like furniture relocation or subject orientation
variations. Mitigating this dependency is crucial for enhancing
model generalization across real-world scenarios.

In this study, a smart fitness assistant called Wi-Fitness
is proposed. By automatically logging fine-grained fitness
data and evaluating exercise performance, Wi-Fitness offers
personalized fitness assistance. The workouts are analyzed by
both short-duration and long-duration exercise execution and
the corresponding feedback is offered. The video is introduced
to help Wi-Fi improve the generalization through layer-by-
layer collaboration. However, the bimodal fusion still faces the
following key challenges.

1) There is a significant difference and high heterogeneity
between video perception and Wi-Fi sensing. Even for
the same signal, there is a predominant heterogeneity
between the temporal and frequency domain features.
To effectively enrich Wi-Fi spatial information with
video, it is necessary to maintain the consistency of
spatio-temporal information through semantic align-
ment. Current research [10], [11] lacks a comprehensive
understanding of the adaptation between the physical
mechanisms of radio signals and the existing classifica-
tion models, resulting in suboptimal performance.

2) High-level semantic information provides a concise body
layout that illustrates the relationships between limbs,
facilitating the understanding of the exercise. Local
behavior information reveals subtle behavioral details,
enabling a precise grasp of human dynamics. However,
the coarse-grained behavior of Wi-Fi poses challenges
for accurately capturing geometric features and local
information. Current Wi-Fi-based behavior recognition
studies lack the exploration of spatial information connec-
tions between keypoints. Thus, establishing correlations
between keypoints remains challenging [12], [13].

In the beginning, the professionals perform a series of fitness
movements to make a personalized movement profile. This
profile acts as a baseline for subsequent exercise assessment.
There are six predefined fitness movements, including push-
ups, sit-ups, lateral raises, squats, bench presses, and leg raises.
During the exercise, a user can pick up any one or more
fitness movement combinations from the six predefined ones
and do them continuously. When a user does an exercise,
Wi-Fitness continuously monitors a user’s movements and
makes comparisons against the established profile to detect the
activity deviations from the corresponding professionals’. To
our knowledge, Wi-Fitness is the first cross-layer framework
to achieve the personal fitness assessment with both Wi-Fi and
video bimodal for training and only Wi-Fi for testing. The key
contributions of this work can be outlined as follows.

1) A random quantization-based data augmentation method
is proposed to generate diverse and high-quality training
data for both Wi-Fi and video.

2) A local attention mechanism is proposed to capture local
features, achieving a comprehensive understanding of
movement states. The combination of cross-modal and
local attention allows for a more thorough comprehen-
sion of both global and local information.

3) For the two modalities, a bimodal feature integration
mechanism is proposed. The features from different

scales are integrated. This enables the fused features to
capture both high-level semantic information as well as
local detailed information.

4) An attention-based spatio-temporal graph convolutional
network (AST-GCN Net) is proposed. This network
extracts spatial information between key points by estab-
lishing correlations between key points. The network
enhances its ability to perceive important key points.

5) A spatio-temporal semantic alignment module that
minimizes the temporal alignment loss between the
two modalities is proposed. The spatial information
is transferred effectively from the video to the Wi-
Fi while maintaining temporal consistency between the
modalities.

6) Extensive experiments have validated Wi-Fitness’s
exceptional performance, effectiveness, and robustness.

The following sections are arranged as follows. Section II
surveys related work. In Section III, the preliminary is
demonstrated. In Section IV, the Wi-Fi signal processing
mechanism is described. Then, a detailed framework layer
by layer is provided. In Section V, experimental evaluations
are presented. Section VI discusses the practicability and
limitations of Wi-Fitness. Finally, in Section VII, conclusions
are drawn.

II. RELATED WORK

We discuss the recent progress in fitness assistant systems
and their supporting technology through the types in this
section.

A. Vision-Based

The key task in vision-based fitness assistants is learning
the spatial and temporal information contained in consec-
utive video frames. Spatial and temporal information can
be extracted in LSTM-based approach [14]. Spatial features
are initially extracted using a 2-D CNN, and subsequently,
LSTM is used for long-range time-dependent modeling based
on high-dimensional abstracted features. However, a lot of
low-dimensional information is lost in this way. Spatial and
temporal features are extracted in 3-D convolutional structures
to obtain the motion details encoded in adjacent frames [15],
[16], [17], [18], [19]. Originally coming from computer vision,
the skeleton sequence is structured as a time series of coordi-
nates of human body joints in 3-D space constituting a time
series, encoding the motion information of human body joints.
It contains a high volume of information and is not easily
affected by noise. Skeleton sequences are modeled as spatio-
temporal graph structures and graph convolution is used in
skeleton-based human behavior recognition studies [20], [21],
[22], [23], [24], achieving superior performance. However, in
some scenarios, the camera can violate user privacy. Therefore,
fitness assistants based on video data are increasingly unable
to meet the user’s needs for recognition speed and privacy
protection in real-world application scenarios.

B. Inertial Sensor-Based

Exercise activities are monitored by attaching sensors to
the human body or fitness equipment in inertial sensor-based
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systems [7], [25]. These systems exhibit greater robustness
to environmental changes than vision-based systems, but the
sensors are troublesome and inconvenient to carry during the
exercise.

C. Wireless-Based

Wireless-based fitness assistants use various signals, such
as ultrasonic signals [26], radio frequency identification
(RFID) [27], and Wi-Fi for workout sensing. As one of
the most common indoor wireless signals [12], Wi-Fi has
several advantages, such as nonvisual, contactless, low cost,
easy to deploy, not influenced by lighting conditions, and
privacy protection. Channel state information (CSI) is mainly
used for human behavior recognition tasks in existing Wi-
Fi-based approaches [28], [29]. The behavior recognition
task can be accomplished based on the connection between
CSI amplitude changes and human movement state changes
[29], [30]. Doppler shift features are extracted from CSI
signals [31], and the relationship between Doppler shift and
motion direction is modeled. The accuracy of human motion
recognition is effectively improved. The correlation between
CSI signal fluctuations, motion speed, and specific actions is
quantified [28] to achieve finer grained human activity recog-
nition. BVP is extracted in the human coordinate system [32],
and an environment-independent gesture recognition system is
implemented. Due to the bandwidth constraint and low-spatial
resolution of Wi-Fi, Wi-Fi-based fitness assistants struggle
with environmental dependency and generalization issues.

III. PRELIMINARY

A. Channel State Information

Wi-Fi signal is essentially an electromagnetic wave that
selectively fades when transmitted over a wireless channel,
causing a change in signal strength. The multipath effect is a
propagation phenomenon in which a radio signal travels from
the transmitter through multiple paths to reach the receiver.
CSI data can be obtained in packets received using wireless
cards compatible with the IEEE 802.11a/g/n protocol [33],
[34], [35], presented as follows:

H(fi) = ‖H(fi)‖ej∠H(fi) (1)

where H(fi) denotes the CSI value for the ith subcarrier,
and ∠H(fi) and ‖H(fi)‖ represent its phase and amplitude,
respectively. According to the different effects of different
propagation paths on the channel frequency response, the clas-
sification of signal propagation paths includes both dynamic
paths (human reflection paths) and static paths (including
LOS paths and static object reflection paths), and the cor-
responding channel frequency response can also be divided
into dynamic channel frequency response and static channel
frequency response. In the multipath environment, the channel
frequency response is given by adding the dynamic channel
frequency response to the static

H(fi, ti) = e−jθoffset(HS(fi, ti) + HD(fi, ti))

= e−jθoffset
(

HS(fi, ti) + A(fi, ti)e
−j2π

d(ti)
λ

)
(2)

where HD(fi, ti) is the dynamic component and HS(fi, ti) is
the static component. The phase shift e−jθoffset is caused by
the difference in carrier frequencies between the transmitter
and receiver. The complex attenuation, phase shift, and path
length of the dynamic component are represented by A(fi, ti),
e−j2π([d(ti)]/λ) and d(ti), respectively. Since the position of the
transmitter, receiver, and object is always fixed, the signal
propagation path remains constant on the static path, and
the static channel frequency response HS(fi, ti) is effectively
constant. The dynamic channel frequency response is caused
by the signal changes due to human movements.

B. CSI Ratio Model

In practical fine-grained human motion sensing, commer-
cial WiFi devices suffer from asynchronous transmitter and
receiver timing. Consequently, each CSI sample contains a ran-
dom phase shift e−jθoffset . The CSI-ratio model [36] describes
the association between the target’s motion. Most of the noise
and time-varying phase offset in the raw CSI amplitude can
be eliminated by performing.

For commercial wireless network cards, the time-varying
phase offset on different antennas of the wireless network
card is the same because they share the same radio frequency
oscillator. For a small movement, the difference in the change
of the reflection path lengths between the two nearby antennas,
denoted as �di, is represented by d2(ti)−d1(ti). The CSI ratio
is expressed as the following equation:

H1(fi, ti)

H2(fi, ti)
=

e−jθoffset

(
A1e−j2π

d1(ti)
λ + HS,1

)

e−jθoffset

(
A2e−j2π

d2(ti)
λ + HS,2

)

= A1e−j2π
d1(ti)

λ + HS,1

A2e−j2π
�di
λ e−j2π

d1(ti)
λ + HS,2

(3)

where H1(fi, ti), A1, and HS,1 represent the CSI, complex
attenuation, and static component of the first antenna, respec-
tively. H2(fi, ti), A2, and HS,2 represent the CSI, complex
attenuation, and static component of the second antenna,
respectively. Let α = A1, β = HS,1, γ = A2e−j2π(�di/λ),
η = HS,2, and μ = e−j2π([d1(ti)]/λ). μ signifies a unit circle
rotating clockwise with an increase in d1(ti). The CSI ratio
can be simplified as

H1(fi, ti)

H2(fi, ti)
= αμ + β

γμ + η
(4)

the expression is in the form of a Mobius transformation [37],
given that βγ − αη �= 0. The CSI Ratio model ingeniously
combines complementary amplitude and phase in a more fine-
grained manner for human motion sensing, further enhancing
sensing accuracy and precision.

IV. METHOD

A. Overview

The framework consists of four layers: data collection
layer, data preprocessing layer, bimodal fusion layer, and
the fitness assessment layer, as depicted in Fig. 1. Through
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Fig. 1. Wi-Fitness framework.

layer-by-layer collaboration, the generalization of Wi-Fitness
is improved. At the data collection layer, Wi-Fi and video
data are acquired simultaneously. At the data preprocessing
layer, singular value decomposition (SVD)-based denoising
is conducted. The double sliding windows are proposed to
segment the exercise. The Wi-Fi and Video data are augmented
by a random quantization-based data augmentation method.
At the bimodal fusion layer, Wi-Fi and video are effectively
integrated. At the fitness assessment layer, users are provided
with visualized exercise performance evaluations.

B. Data Preprocessing Layer

1) Spectrogram Generation From CSI Signals (Initial
Filtering): Since the sampling frequencies of the transmitter
and receiver are not perfectly synchronized during transmis-
sion, there are random phase errors in the original CSI, such
as sampling frequency offset (SFO), carrier frequency offset
(CFO), etc. In FarSense [36], CSI Ratio model is utilized to
eliminate random phase offset errors. In addition, the CSI data
measured by commercial Wi-Fi devices contain low-frequency
interference and impulse noise, etc. [38], [39]. To filter out
both high and low-frequency noise, a Butterworth bandpass
filter is employed, with the cutoff frequencies configured to
10 and 80 Hz, respectively. Values of the CSI amplitude are
mapped to a range between −1 and 1.

CSI Denoising Based on SVD [40]: The denoising technique
based on SVD belongs to a class of subspace algorithms.
We aim to decompose the vector space of the signals into
two subspaces, one dominated by the activity-induced signals
and the other by the noise signals. Then, by removing the
components of the noisy signal vectors lying in the “noise
space,” the movements-induced signals can be deduced. The
values in the diagonal matrix of singular values represent the
significant components of the signals, which can be used to
determine the main structure and noise components of the
signals. Assuming the CSI matrix Y contains noisy signals,
which can be expressed as Y = X + D. X is the matrix
containing the movement-induced signal data, and D is the
matrix containing the noise data. The objective is to recover the
signals contained in X from the given noisy signal matrix Y .
Applying SVD to the reduced-dimensional CSI signal results
in decomposing the signal matrix into three parts: 1) a matrix
of left singular vectors; 2) a matrix of right singular vectors;
and 3) a diagonal matrix containing singular values. As shown
in the following:

X = Ux
xVx = [Ux1Ux2]

[

x1 0

0 0

][
Vx1
Vx2

]
(5)

where Ux1 and Ux2 are matrices with dimensions N × r and
N × (N − r), respectively. 
x1 is an r × r matrix, Vx1 is an
r × m matrix, Vx2 is an (N − r) × m matrix.

The space spanned by Ux1 corresponds to the column space
of X, referred to as the signal subspace. Using the properties
of the matrices Vx1 and Vx2, as well as Vx1VH

x1 + Vx2VH
x2 = I,

which is the unitary matrix, we can rewrite the noisy signal
matrix Y as follows:

Y = X + D

= X + D
(
Vx1VH

x1 + Vx2VH
x2

)

= (XVx1 + DVx1)V
H
x1 + (DVx2)V

H
x2

= (
P1S1QH

1

)
VH

x1 + (
P2S2QH

2

)
VH

x2

= (P1P2)

(
S1 0
0 S2

)(
QH

1 VH
x1

QH
2 VH

x2

)
(6)

where P1S1QH
1 and P2S2QH

2 represent the SVD of the matrices
within the parentheses in (6), namely, XVx1 + DVx1 = P1S1QH

1
and DVx2 = P2S2QH

2 . If PH
1 P2 = 0, the column spaces of

matrices P1 and P2, are orthogonal, then the above equation
represents an effective SVD. As seen from (6), due to
P1 �= Ux1, we cannot directly recover the signal subspace of X.
Hence, we employ a low-rank model-based method, which
is a least squares method to estimate the signal matrix X.
Specifically, the method seeks the best rank r(r < rank(X))

matrix in the least squares sense, and minimizes the following
squared error:

min
X

‖X̂ − X‖2
F (7)

where ‖ • ‖2
F represents the Frobenius norm. The solution for

X̂ can be expressed as follows:

X̂LS =
r∑

k=1

σkukvH
k (8)

where uk and vk represent the left and right singular vectors
of the noisy matrix Y , respectively. σk represents the r largest
singular values of Y (i.e., σ1 > σ2 > . . . > σr). Here, we
assume the effective rank of matrix X is r and r < rank(X).

Performing an inverse transformation on the processed
signal matrix is to restore it to the original CSI signal space.
The original signal is restored with some noise removed.

Exercise Partition: In order to effectively interpret an exer-
cise, a dynamic dual sliding window algorithm is introduced
to enable an exercise partition. The purpose is to determine
the beginning and end points of effective movements within
a continuous exercise. In this section, local and global dual
sliding windows are used to locate the duration. The variance
of the amplitude is chosen as the indicator to monitor state
changes.

There is a global sliding window X1 and a local sliding
window X2. The sampling frequency is f packets/s, and the
size of X1 is set to 5 times f . There is a 2-s overlap between
two adjacent global windows. Meanwhile, the local window
size is set to (1/2)f , with a sliding frequency of (1/4)f .

At the ith slide of X1, the variance σ 2
i (Xn

2)(n represents
the nth slide of X2 in X1) of time series in each X2 is
calculated, and get its average variance μi(σ )2

i (X
n
2) and its
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Fig. 2. Spatio-temporal graph of the skeleton sequence.

standard deviation of variance σi(σ )2
i (X

n
2). The segmentation

threshold φi is set to be α ∗ μi((σ )2
i (X

n
2)) + β ∗ σi((σ )2

i (X
n
2)),

here the weight values are set to be α = 2/3 and β = 1/3
according to the experience. When σ 2

i (Xn
2) > φi, the lower

bound of the current interval in the local sliding window C1
is recorded. On the contrary, σ 2

i (Xn
2) < φi the upper bound of

the local sliding window C2 is recorded.
Doppler Spectrograms: Doppler frequency shift (DFS)

is a common feature that can characterize human activity
and behavior because the movement of a target leads to
changes in the reflected path length of signals, as well as in
frequency [41].

Usually, the Doppler shift of the reflected signal caused by
human movements can be expressed in (9) as

fD = −1

λ

d

dt
d(t). (9)

The short-time Fourier transform (STFT) enables time-
frequency analysis of CSI by converting the waveform into a
spectrogram.

2) Construction of Spatio-Temporal Skeleton Graph:
MediaPose [42] human pose estimation algorithm is used
for human joint point extraction, obtaining 3-D coordinates
(x, y, and z), and using z-score to normalize the coordinate
values of each joint point between 0 and 1. On this basis,
the skeleton sequence is constructed as the undirected spatio-
temporal graph G = (V, E) shown in Fig. 2, with the node
set V = {vti|t = 1, . . . , T, i = 1, . . . , N} and the edge set E
made up of ES and EF : ES = {vtivtj|(i, j) ∈ H} is the first
class of edges, which represents the connection relationship
between each joint point in the same time frame, H is the
natural connection of the human skeletal structure; EF =
{vtiv(t+1)i} is the second class of edges, which represents
the connection relationship between the same joint point in
adjacent frames, called interframe edges. For a joint node i,
the edges in EF represent its motion trajectory over time.
This spatio-temporal skeleton diagram contains the physical
structure between human body joints in the spatial dimension
and the motion information in consecutive time frames in the
temporal dimension.

3) Data Augmentation: Insufficient training data leads to
poor model performance. Thus, a data augmentation method
based on quantized representation learning is employed. This
method uses calibrated data to augment the Doppler spectro-
grams and the corresponding skeleton diagrams, thereby the
quality of the generated data is improved.

A collection of nonoverlapping intervals R = {Ri =
[xi, xi+1)}, i = 0, 1, . . . , n − 1, are used to construct a
quantized. n represents the total number of these intervals. All

values in [xi, xi+1) are mapped to a scalar yi by the quantized
for the input signal s. For s ∈ Ri, the quantized is defined as
Q(s) = yi. As shown by the following equation:

Q(s) =
∑

i

yi · Ri(s) (10)

where Ri(s) is the indicator function, which is 1 if s ∈ Ri and
0 otherwise. The quantized representation uses a finite number
of bits for the original signal, which introduces errors in sig-
nal recovery. Quantization includes uniform and nonuniform
types. Uniform quantization involves equally spaced intervals
and values, whereas nonuniform quantization features intervals
or values that are not evenly spaced. The essential issue of
data augmentation is to find a better tradeoff between data
transmission capacity and replication errors.

The quantization is utilized as a tool for data preservation.
Information is preserved within each quantization bin and
across bins. By randomizing intervals, complex quantization
augmentation is generated. Specifically, given Ri = [xi, xi+1),
xi is generated by

x0, x1, . . . , xn−1 = sort
(
x′

0, x′
1, . . . , x′

n−1

)
(11)

x′
i = U(min(s), max(s)), i = 0, 1, . . . , n − 1 (12)

where U represents random sampling uniformly distributed
within the interval and min(s)/max(s) denotes the mini-
mum/maximum value of each channel s. The replication value
yi is randomly sampled within the corresponding interval

yi = U(xi, xi+1). (13)

The resulting random quantized is nonuniform. The number
of quantization bins n is an augmentation hyperparameter.

Applying the aforementioned random quantization aug-
mentation method to both modalities aims to enhance the
model’s generalization. By performing random quantization on
Doppler spectrograms of Wi-Fi signals and skeleton maps of
video data, diverse data samples are generated. The model’s
adaptability to noise and variations is improved and the risk
of overfitting is effectively reduced.

Specifically, the random quantization augmentation method
creates multiple data variants by performing uniformly dis-
tributed random sampling within the signal intervals and
adjusting the replication values within each quantization
bin. These variants preserve the main information of the
original data but introduce randomness. Thus, the diversity
and coverage of the data expanded. For Wi-Fi data, adjust-
ing the quantization bins and replication values of Doppler
spectrograms can simulate different wireless signal strengths
and interference conditions. For video data, modifying the
quantization parameters of skeleton maps can simulate various
shooting angles and lighting conditions.

The t-SNE [43] method is used to analyze the distribution
of synthesized data. Fig. 3 shows the data visualization results
after the dimensionality reduction of processed Wi-Fi Doppler
and video skeleton data. The experiment involves six basic
activities, with points in different colors representing different
activities. For each activity, the real and synthetic data are
well integrated, ensuring that the virtual data distribution is
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Fig. 3. (a) t-SNE visualization of doppler spectrograms (original data).
(b) t-SNE visualization of doppler spectrograms (augmented data). (c) t-SNE
visualization of video frames (original data). (d) t-SNE visualization of video
frames (augmented data).

Fig. 4. Bimodal collaborative training framework.

consistent with the real data distribution, thereby enhancing
data diversity.

C. Bimodal Fusion Layer

In the framework, as depicted in Fig. 4, the bimodal data are
for the training phase, and Wi-Fi sensing data for the testing.

Input: The spectrograms generated from CSI signals and
spatiotemporal skeleton maps constructed from the video
skeleton are the input for the model training.

Training: The model includes two parts: 1) local
information extraction and 2) global information fusion. Local
information extraction includes a local self-attention (LSA)
feature extraction module for both Wi-Fi and video modalities.
The global information fusion part comprises four modules:
1) Wi-Fi feature extraction network; 2) skeleton feature
extraction network; 3) bimodal feature integration module;
and 4) spatiotemporal semantic alignment module. ResNet is
selected as the feature extraction network for Wi-Fi modality
and AST-GCN Net is the feature extraction network for
video modality. The features are extracted and multilevel
feature integration is performed. The high-dimensional shared
semantic information in the skeleton sequence is derived
through spatiotemporal semantic alignment to accomplish the
knowledge migration.

Testing: The testing is conducted with only Wi-Fi sensing
data. In the following, the details of the system is provided.

1) Local Self-Attention Feature Extraction Networks: To
accurately capture fine-grained pose information and facilitate

Fig. 5. LSA layer.

Fig. 6. ResNet34 as Wi-Fi modal feature extraction network. Input:
Spectrogram.

multimodal global information sharing and fusion, preliminary
feature extraction is performed on the skeletal time series
and Doppler spectrogram. Since the accuracy of key point
localization primarily depends on the extraction of local
information, a LSA module with relative positional embedding
is introduced for more precise feature extraction. For a pixel
xi,j located at the i-th row and j-th column of the sequence
graph, a 3 × 3 window N3(i, j) centered at xi,j is selected. The
pixels xp,q within this window carry row offsets p-i and column
offsets q-j, respectively, which are associated with embedding
rp-i and rq-j. Therefore, the spatial relative attention can be
represented as

yi,j =
∑

p,q∈N3(i,j)

softmaxp,q

(
q�

i,jkp,q + q�
i,jrp−i,q−j

)
vp,q (14)

where the queries qi,j = WQxi,j, keys kp,q = WKxp,q, values
va,b = Wνxa,b represent linear transformation applied to the
point(i, j) and its neighbors, WQ, WK, and Wv are the learning
transformation matrices, and Softmaxp,q denotes the Softmax
operation performed at all positions in the neighborhood
N3(i, j), as depicted in Fig. 5. In the system, the pixel features
of the sequences are divided into four different groups, each
processed separately through a single-head attention mecha-
nism. The results from each head are concatenated, and a fully
connected layer then reconstructs this concatenated output to
produce the final result.

2) Wi-Fi Modal Feature Extraction Network: 34-layer
residual network (ResNet-34) [44] shown in Fig. 6 is utilized
as the CSI feature extractor. The extractor consists of five
stages, where Stage 0 uses a 7 × 7 convolution for image
transformation, which can be regarded as the initial feature
extraction after local information extraction from the input
image, and Stage 1 through Stage 4 are composed of 3, 4, 6,
and 3 BasicBlocks, respectively.

3) Skeleton Modal Feature Extraction Network: To further
extract the motion-related temporal and spatial information
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Fig. 7. Skeleton feature extraction network. (a) ASE module: Adjacency
matrix attention module, (b) TSE module: Temporal attention module.

in the skeleton graph, the attentional spatiotemporal graph
convolutional network (AST-GCN Net) based on ST-GCN is
proposed and implemented. The network structure is shown
in Fig. 7. In the process of deep feature extraction, taking the
spatio-temporal skeleton sequence after feature preextraction
as input, the high-level semantic features are extracted by
five attention spatio-temporal graph convolutional blocks with
AGCN block, the core modules of AGCN block are the
adjacency matrix attention (ASE) module and the tempo-
ral attention (TSE) module. The adaptive adjacency matrix
module parameterizes the adjacency matrix and captures the
connection relationships between the nodes to make the topol-
ogy of the network adaptive. The temporal attention module
captures the importance of different time frames during the
change of motion states. Temporal attention combined with
an adaptive adjacency matrix allows the network to gather
information across both temporal and spatial dimensions and
learn the mapping relationships between different nodes and
consecutive time frames.

a) Adjacency matrix attention module: Inspired by the
attention mechanism [45], the adaptive adjacency matrix
attention (ASE) module is proposed. It uses the embedding
function to map the input features into an adaptive matrix and
combines it with the original adjacency matrix. In this way, an
adaptive adjacency matrix is generated to capture the potential
connection relationship between the global joint points, so
that the topology of the network is adaptive and flexible. It
is optimized continuously during the network training. As
depicted in Fig. 7(a), the spatiotemporal skeleton diagram after
initial feature extraction G is first taken as the input feature
fininRC×T×N . Then the inputs are mapped to different feature
spaces by two embedding functions θ(�) and ϕ(�), which are
converted to RN×CT and RCT×N feature matrix. Then they
multiply each other. The matrix elements are normalized to
the values between 0 ∼ 1 by the Softmax operation. The
correlation matrix B is obtained. bij represents the correlation
between vertices vi and vertices vj, as follows:

B = Softmax
(
f T
inWT

θ Wϕ fin
)

(15)

where the embedding functions θ(�) and ϕ(�) are implemented
using two 1 × 1 convolutional layers, respectively, and Wθ and
Wϕ are arguments to the functions θ(�) and ϕ(�), respectively.

To improve the model’s flexibility without degrading its
performance, a new adaptive adjacency matrix is formed by
combining the correlation matrix B with the original adjacency

Fig. 8. TSE module.

matrix A. The resulting matrix is multiplied with the input
feature fin and weight W. The final output is as follows:

fout = Wfin(A + B) (16)

where W represents the parameters of 1 × 1 convolutional
layer. It can be implied from the above that the ASE module
aggregates local information as well as context information
and explores the spatial information between joint points. This
not only indicates whether there is a connection between each
joint point but also indicates the strength of the connection.
This constructs the correlation and dependence between the
joint points. It plays the same role as the attention mechanism
and enhances the perception ability of the key joint points in
the network.

b) Temporal attention module: The contribution of the
human motion state to activity recognition in different time
frames is different. The channel attention is improved by
adopting a time attention TSE module. This module applies
channel direction attention to time direction. Inspired by the
idea of compression and excitation in SE block [45], the global
features are obtained through the compression operation. Then
the weight of each timeframe in the feature map is obtained
through the excitation operation. The different timeframes are
weighted to assess the significance of features across different
timeframes. Therefore, attention has been concentrated on
the long-distance time dependence and the change of human
movement state between successive time frames. As shown in
Fig. 8, there are three steps.

The first step is the compression operation Fsq(�), which
compresses the time dimension of the input feature with size
C×T×N to 1 through global average pooling. The feature
vector U ∈ R1×1×T is obtained as following:

U = Fsq(fin) = 1

C × N

C∑
i=1

N∑
j=1

f (i, j). (17)

The second step is to execute the operation Fex(�, W),
using the fully connected layer. And the feature map with
dimensions 1×1×C, and obtain the corresponding weight of
each time frame. The weight represents the importance of
each time frame. By fully deriving the dependencies between
timeframes, the nonlinear relationship between timeframes can
be learned, and all the time frame characters can be ensured.
Specifically, two fully connected layers are constructed, with
the first layer used to perform dimensionality reduction.
Through the ReLU function and the second fully connected
layer, the dimension is restored to the original time dimension,
and the weight vector S of each timeframe is obtained

S = Fex(U, W) = σ(W2δ(W1)U) (18)
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Fig. 9. Bimodal feature integration module.

where σ(∗) is the Sigmoid activation function, δ(∗) indicates
the ReLU function, and W1 and W2 represent the weights for
the two fully connected layers, respectively.

Finally, in the weighting operation Fscale(∗, ∗), as can be
seen from (19), the weight takes the value range of 0 ∼ 1, and
the weight is used to scale the input feature as the contribution
of each timeframe to generate the weighted output feature, as
shown in

Fscale(U, S) =
T∑

t=1

utst (19)

fout = Fscale(U, S)fin. (20)

4) Bimodal Feature Integration Module: A bimodal fea-
ture integration module is proposed to enhance the model’s
capacity for capturing both low-level and high-level semantic
information, as shown in Fig. 9. The Wi-Fi features from
Stages 2 and 4 of ResNet are extracted as shallow features
Fs_csi and deep features Fd_csi, respectively. The video features
from the second AGCN block and the last AGCN block of
the AST-GCN network are derived as shallow features Fs_ske

and deep features Fd_ske, respectively. They are mapped to
the same dimension using four independent fully connected
layers. Following the fully connected layers are bimodal
feature integration with the 1×1 convolutional layer and
nonlinear activation with the ReLU activation function. The
fused features can be expressed as follows:

Ffusion_csi = δ
(
Wconv1cancat(Wfc1Fs_csi, Wfc2Fd_csi)

)
(21)

Ffusion_ske = δ
(
Wconv2cancat(Wfc3Fs_ske, Wfc4Fd_ske)

)
(22)

the weight parameters of the four fully connected layers are
denoted by Wfc1, Wfc2, Wfc3, and Wfc4. WConv1 and WConv2
denote the weight parameters of the two 1 × 1 convolu-
tional layers. Low-level features and high-level complementary
semantic features are aggregated by the multiscale feature
integration module.

5) Spatio-Temporal Semantic Alignment Module: Ffusion_csi
and Ffusion_ske are multilevel semantic features of Wi-Fi
modality and video modality, respectively. It is assumed
that the features in Ffusion_csi have corresponding features
in Ffusion_ske with the same semantic meaning. Therefore,
the correlation between all features can be expressed in the
following correlation matrix:

corr(Fcsi) = F̂fusion_csiF̂
T
fusion_csi ∈ d × d (23)

corr(Fske) = F̂fusion_skeF̂T
fusion_ske ∈ d × d (24)

where F̂fusion_csi, F̂fusion_ske denote the normalized matrices
and d denotes the matrix dimension.

Although the features of different modalities are differ-
ent, their high-dimensional features have similar semantic
information. Therefore, the similarity between the high-
dimensional features of two modalities can be presented
by the difference between the feature correlation matrices.
For example, the larger the difference between the feature
correlation matrices, the lower the similarity between the
two high-dimensional features. On the contrary, the smaller
the difference between the correlation matrices, the higher
the semantic similarity between the features. Therefore, to
learn the cross-modal shared knowledge, the network needs
to maximize learning as the similarity increases and minimize
the difference between the correlation matrices. The temporal
alignment loss can be used to portray the difference between
different modalities and minimize the temporal alignment
loss during the training process to learn the shared knowl-
edge [46]. LSSA is used to represent the temporal alignment
loss. Specifically, the process is to calculate the difference of
the feature correlation matrices and take the square of the
Frobenius norm of the result, multiplied by ρ, as shown in

LSSA = ρ‖corr(Fcsi) − corr(Fske)‖2
F (25)

where ρ is a regularization parameter to prevent negative
migration.

Too much variation between modalities can sometimes have
a negative effect on one of the modalities. This leads to
performance degradation and negative migration on network
performance. Classification loss can be used to measure
the accuracy of the content learned by the network. When
the classification loss is smaller, the network learns more
accurately. We use the difference �L = Lcsi

cls − Lske
cls between

the classification loss Lcsi
cls, Lske

cls of two modalities to measure
the network performance difference. When the difference
�L is positive, it means that the current skeleton feature
extraction network learns more information than the Wi-Fi
feature extraction network. It can be added to the shared
network. Therefore, the regularization parameter ρ is adjusted
to e�L−1. When the difference is negative, it means that the
current skeleton feature extraction network learns less than
the current Wi-Fi feature extraction network. If the knowledge
migration is performed, there will be negative migration on the
Wi-Fi feature extraction network performance. Therefore, the
regularization parameter ρ is adjusted to 0. The regularization
parameter ρ is adjusted based on the classification loss
difference to control the contribution of shared knowledge
from two modalities, as shown in

ρ = S
(

e�L−1
)

=
{

e�L−1, �L > 0

0, �L ≤ 0
(26)

where S(·) is the zero threshold function.
6) Joint Loss Function: The function is composed of two

components, classification loss Lcsi
cls and spatio-temporal align-

ment loss LSSA. The classification loss is used to measure
the accuracy of the network for the classification so that
the learning result of the network gradually approximates the
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Fig. 10. RIR.

true label. The spatio-temporal alignment loss is employed to
ensure the network learns multimodal complementary knowl-
edge during the training process. It is also used to transfer
knowledge between feature extraction networks of different
modalities. At the training phase, the total loss function is
obtained by summing the classification loss and the spatio-
temporal alignment loss

L = Lcsi
cls + λ

M∑
n=1

LSSA (27)

where M is a constant value of 2, representing the total number
of modalities and λ is the hyperparameter.

D. Fitness Assessment Layer

This layer aims to provide users with workout assessment
and analysis. Wi-Fitness analyzes and evaluates the user’s
exercise regularity and intensity. Specifically, based on the
frequency, intensity, time, and type (FITT) principle [47], a
new metric is adopted to portray the effects of the user’s
exercise.

The repetition intensity ratio (RIR) refers to the intensity
(or speed) at which the user performs repeated exercise
movements. Wi-Fitness provides each user with exercise trends
based on the metric, allowing a user to adjust his exercise
forms accordingly. The RIR is denoted as follows:

RIR = Tk
if

Tk
fi

(28)

where Tk
if is the duration for the kth repeated exercise

movement from the initial position to the final position and
Tk

fi is the duration to move from the final position back to the
initial position for the kth repeated exercise movement. Wi-
Fitness provides each user with exercise trends based on this
metric as well as the actual duration, allowing a user to adjust
his exercise accordingly.

The basic idea behind exercise evaluation is to compare and
assess the exercise results for a regular user and professionals
based on the metric above. Based on the evaluation results,
Wi-Fitness then provides effective exercise suggestions to help
a user. Specifically, Wi-Fitness not only shows the trend of
the RIR metric across all repeated exercise actions but also
displays the upper and lower bounds of the metric. This allows
a user to see a visual representation of his exercise evaluation
and get to know if his exercise actions are effective. According
to the visual feedback, the user can adjust subsequent exercise
activities.

Fig. 10 shows the RIR trend line chart of a user after
performing ten consecutive sit-ups. It is obvious that the 7th

Fig. 11. Layouts. (a) Empty room. (b) Office. (c) Meeting room.

and 8th actions exceeded the upper bound. This indicates that
the user needs to increase the movement intensity from the
initial to the final position. Conversely, if the intensity falls
below the lower bound, the intensity of the movement from
the initial to the final position needs to be reduced.

V. EXPERIMENTS AND EVALUATION

A. Experiment Setup

1) Devices: Lenovo E73S desktop with Intel AX210
network interface cards (NICs), running PicoScense CSI Tool
on Ubuntu 20.04, are used for data capture. One computer with
two antennas works as the transmitter and the other computer
with two antennas works as the receiver. The antennas are
placed in a horizontal line. The devices are positioned 2.5-
m apart at a height of 1.6 m. The system operates on a
5-GHz Wi-Fi channel (Channel 165) with a bandwidth of
20 MHz. Each receiving antenna has 57 subcarrier, a total of
114 for the data stream. The default packet transmission rate
is 2000 packets/s. It transmits packets at 900 Hz, and both the
transmitter and receiver are configured to a power level of 15
dBm. A Kinect V2 camera, centrally positioned between two
antennas, records video at 600 × 480 pixels resolution and 30
frames/s.

To address the varying number of CSI samples due to ran-
dom access protocol and packet loss, 30 CSI measurements per
video frame are resampled using first-order linear interpolation
to align with the timestamps. Network time protocol (NTP)
is employed to synchronize all devices, achieving an average
synchronization error of 5 ms.

2) Data Collection: Most Wi-Fi-based human activity
recognition data sets do not include the corresponding video
data. In this study, the data are collected during the experiment.
Wi-Fi sensing data are collected from ten gender-balanced
volunteers with diverse physical characteristics (aged 20–45
years old, weights 43–80 kg, and heights 155–185 cm). Six
predefined activities are conducted, including push-ups, sit-
ups, lateral raises, squats, bench presses, and leg raises.
Each volunteer selects one or more activities from the six
activities and conducts them. Each group of chosen activities
is conducted 3 times. These activities are conducted in three
distinct environments as shown in Fig. 11: an empty room [5.0
m × 4.0 m, Fig. 11(a)], an office [5.8 m × 4.3 m, Fig. 11(b)]
and a conference room [6.0 m × 5.6 m, Fig. 11(c)]. The
experimental setup is shown in Fig. 12.

3) Training Details: Wi-Fitness is trained and evaluated
on an NVIDIA GeForce RTX 3090 GPU, utilizing Python
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3.10.8 and PyTorch 1.13.1. The training process starts with an
initial learning rate of 0.001, halved every ten epochs using
a multistep decay strategy. After training for 80 epochs, the
model with the minimum loss is selected as the best model.
The computational complexity of the model is 27.7 GFLOPs,
comprising 24.5 million parameters. Both training and testing
are performed using the NVIDIA GeForce RTX 3090 GPU.
The Adam optimizer is employed with a batch size set to 128.
λ is initially set to 10 in the loss function. The data is divided
into two sets: 1) 80% for training and 2) the remaining 20%
for testing.

4) Evaluation Metric: The model’s performance is
evaluated using the following metrics.

The following parameters are introduced, TP, true positives,
represents positive cases that are predicted as true (predicted
as positive and actually positive). FP, false positives, represents
negative cases that are predicted as true. FN, false negatives,
represents positive cases that are predicted as false. TN,
true negatives, represents negative cases that are predicted as
false. Accuracy is used to evaluate the proportion of correctly
predicted samples (including correctly predicted positives and
negatives, i.e., TP and TN) to the total number of samples.
Although accuracy can indicate overall correctness, it may
not be a good metric in cases of imbalanced samples. High
accuracy in such cases might be meaningless, rendering accu-
racy ineffective. Therefore, additional performance metrics are
introduced.

Precision represents the ratio of TP to the sum of TP and FP.
It indicates the proportion of true positives out of all predicted
positives.

True Positive Rate (TPR, Recall) is defined as the ratio of TP
to the total number of actual positive samples, which includes
TP plus FN. It indicates the proportion of TP out of all actual
positives

TPR = TP

TP + FN
. (29)

False Positive Rate (FPR) represents the proportion of actual
negative cases that are falsely identified as positive

FPR = FP

TN + FP
. (30)

F1-Score Precision and recall influence each other, and the
F1-score takes both into account. The F1-score represents
their harmonic mean, with higher values indicating better
classification performance. By substituting the formulas for
precision and recall, it is evident that when the F1-score is
low, true positives increase relative to false positives and false
negatives, thereby increasing both precision and recall. As
shown in

F1 − Score = 2TP

2TP + FP + FN
. (31)

B. Models Comparison

To validate the performance of Wi-Fitness, it is compared
with methods, such as HuAc [48], WiPose [49], InFit [4], and
FitAssist [3]. The results indicate that Wi-Fitness consistently
achieves the highest accuracy compared to the other four, as

TABLE I
METHODS COMPARISON

Fig. 12. Experiment setup.

Fig. 13. Comparison in different lighting conditions.

Fig. 14. Wooden screen occlusion.

indicated in Table I. These results benefit from the proposed
layer-by-layer framework.

This advantage stems from the enhanced data collection
device (AX210) and the more efficient modality fusion tech-
niques employed by Wi-Fitness. In the subsequent comparative
experiments, we further compared Wi-Fitness with previous
methods.

1) Impact of Lighting Conditions: To test the impact of
lighting changes, Wi-Fitness initially trained in a well-lit
environment is tested under different lighting conditions. There
are three different lighting levels: 1) strong; 2) moderate; and
3) low. The results are illustrated in Fig. 13, video-enhanced
systems like Wi-Fitness, WiPose, and HuAc exhibit superior
robustness to lighting changes when compared to FitAssist and
InFit.

2) Impact of the Occlusion: To evaluate the performance
of Wi-Fitness under occlusion, a wooden screen is placed
between the subject and the receiver, as shown in Fig. 14.
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Fig. 15. Comparison under occlusion scenarios.

Fig. 16. Impact of subject position.

Fig. 17. Comparison at different distances.

Wi-Fitness is trained in an unobscured environment and
tested in both unobscured and occluded conditions. As shown
in Fig. 15, Wi-Fitness is most robust to occlusion. Despite the
screen reduces the strength of the Wi-Fi signal, the majority
of the fitness-related information can still be preserved. Even
though obstacles cause increasing errors compared to the
cases without them, Wi-Fitness can still maintain pretty good
performance, highlighting its resilience.

3) Impact of Subject’s Position: As shown in Fig. 16, the
subject faces the Kinect and moves along the perpendicular
bisecting line of the LOS path. The distance from the subject
to the LOS path varies from 1 to 6 m. The model is trained
in conditions where the subject is 1-m away from the LOS
and tested in 1–6-m environments. The experimental result in
Fig. 17 indicates that Wi-Fitness can achieve high accuracy
within the 5-m × 5-m range. Introducing the video makes
Wi-Fitness less sensitive to distance variations.

C. Ablation Study

Each component’s impact is evaluated by the ablation study.
The findings are summarized in Table II.

1) Impact of the Doppler: The Doppler feature signifi-
cantly impacts the system’s ability to capture fine motion
details. The Doppler feature is crucial for identifying subtle
movements and enhances the overall performance. If the DFS

TABLE II
ABLATION STUDY ON NOVEL COMPONENTS

derived from the STFT is adopted, the F1-Score can reach as
high as 0.9268. Without DFS, the F1-Score is 0.7282. Thus,
it is necessary to keep it.

2) Impact of the Local Self-Attention Module: The LSA
module enhances the extracted key features by employing
a local attention mechanism. This module focuses on spe-
cific regions within the heatmaps and video data. It assigns
appropriate weights to different parts and refines the feature
extraction process. The F1-Score decreases from 0.9268 to
0.741 with and without the LSA module. This indicates
the crucial role of this model. It improves the accuracy by
emphasizing pertinent regions.

3) Imapact of the Adjacency Matrix Attention (ASE)
Module and Temporal Attention (TSE) Module: The adjacency
matrix attention (ASE) module captures potential connections
between global nodes by generating an adaptive adjacency
matrix, making the network topology adaptive and flexible.
The ASE module aggregates not only local information but
also contextual information, uncovering spatial information
between connected nodes.

The temporal attention (TSE) module enhances channel
attention by applying channel-wise attention in the temporal
direction. This module integrates WiFi-based features with
video-based features. It creates a multimodal feature learning
environment. The module obtains global features through a
compression operation and then derives the weights of each
time frame in the feature map through an excitation operation.
Different time frames are weighted to catch the importance of
features over different temporal ranges.

When the corresponding module is removed, and only
ST-GCN is used as the classification network, the F1-Score
decreases to 0.6926. This indicates that without this module,
the cohesive integration of video and Wi-Fi cannot be ensured.

4) Impact of the Bimodal Feature Integration Module: The
interaction between features extracted from Wi-Fi and video
is enhanced by the bimodal feature integration module. This
module captures the complex details of human motion by
effectively combining Doppler features with skeletal action
features. The bimodal feature integration module can effec-
tively learn cross-modal shared knowledge. When this module
is removed, the F1-Score decreases by 0.372. This indicates
the importance of this module in achieving global feature
integration and improving accuracy.

D. Robust Evaluation

1) Impact of Different Environments: The experiments are
conducted in three different environments: 1) an empty room;
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Fig. 18. Impact of different environments.

Fig. 19. Impact of different frequencies.

Fig. 20. User orientations.

2) an office; and 3) a conference room. Fig. 18 shows the
results. Among them, the F1 scores trained with samples from
the empty room and tested with samples from the office and
conference room are 0.856 and 0.839, respectively. When
the environment changes, the performance gets a little bit
worse. But F1 scores remain above 0.8. This indicates that the
framework can mitigate environmental dependencies.

2) Impact of the Transmission Rate: The system is initially
configured to transmit CSI packets at a default rate of 900 Hz.
The CSI packet transmission rate changes from 450 to 225
Hz in order to assess the influence of the rate. It is necessary
to adjust the CNN architecture, particularly the convolutional
kernel sizes, to accommodate the altered input dimensions.
Fig. 19 shows that higher packet transmission rates improve
system accuracy by better capturing rapid body motions.
Additionally, increasing the number of packets per second
can enhance the accuracy. Notably, even with reduced packet
rates, Wi-Fitness maintains robust performance, highlighting
its adaptability and effectiveness across various scenarios.

3) Impact of Different Subject’s Orientations: We investi-
gate the impact of user orientation. User orientation is the
direction in which a user faces during exercise. As depicted
in Fig. 20, the user orientation angle is the angle between the
direction the user is facing and the Tx-Rx.

When a user faces the Kinect during the exercise, the user
orientation angle is 0◦. When a user faces LOS during the
exercise, the user orientation angle is 90◦. When facing the
receiver, the user orientation angle is 180◦. The experiment

Fig. 21. Impact of different orientations.

tests the impact of user orientation. The model is trained in
the 0◦ user orientation angle and tested in others (0◦, 30◦, 45◦,
90◦, and 180◦ orientations). As shown in Fig. 21, Wi-Fitness
performs best when the user faces Kinect. Generally, the
model performs similarly across various orientations. There is
hardly a big difference, even in the user orientation angle of
180◦. Benefiting from the proposed framework, the orientation
impact is mitigated effectively. This verifies that the model is
robust against variations in user orientation.

VI. PRACTICABILITY AND LIMITATIONS

Wi-Fitness can be integrated into applications, such as smart
homes and art buildings. An exerciser can do the predefined
activities and get feedback from Wi-Fitness which helps him
to improve his fitness effectively. Although Wi-Fitness demon-
strates its effectiveness in a wide range of applications, it still
possesses some limitations. First, Wi-Fitness cannot achieve
satisfactory performance when there are multiple exercisers
within the sensing area and do the exercise together. Second,
Wi-Fitness still confronts security issues. The private personal
fitness information might be captured by an attacker since
its plaintext transmission. Man-in-the-Middle Attack might
happen as well. These issues deserve future work.

VII. CONCLUSION

In this article, Wi-Fitness, an advanced fitness assistant is
proposed. Wi-Fitness leverages the complementary bimodal
sensing of Wi-Fi and video to provide comprehensive fitness
assessments and personalized workout suggestions. Through
the proposed framework, the heterogeneity issue between
video perception as well as wireless sensing is tackled and
the generalization is improved. This is the first smart fitness
assistant using both Wi-Fi and video bimodal for training and
single Wi-Fi for testing.

Extensive experiments validate the effectiveness, robustness,
and superior performance of Wi-Fitness. This work sets the
stage for further investigation on multimodal sensing and
enhances the potential of smart fitness assistants in providing
safe, effective, and standardized exercise guidance.
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