
IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 7, 1 APRIL 2024 12203

Deep-Reinforcement-Learning-Based Joint Caching
and Resources Allocation for Cooperative MEC

Wenqian Zhang, Guanglin Zhang , Member, IEEE, and Shiwen Mao , Fellow, IEEE

Abstract—The emergence of new applications has led to a
high demand for mobile-edge computing (MEC), which is a
promising paradigm with a cloud-like architecture deployed at
the network edge to provide computation and storage services to
mobile users (MUs). Since MEC servers have limited resources
compared to the remote cloud, it is crucial to optimize resource
allocation in MEC systems and balance the load among coop-
erating MEC servers. Caching application data for different
types of computing services (CSs) at MEC servers can also be
highly beneficial. In this article, we investigate the problem of
hierarchical joint caching and resource allocation in a cooperative
MEC system, which is formulated as an infinite-horizon cost
minimization Markov decision process (MDP). To deal with the
large state and action spaces, we decompose the problem into two
coupled subproblems and develop a hierarchical reinforcement
learning (HRL)-based solution. The lower layer uses the deep
Q network (DQN) to obtain service caching and workload
offloading decisions, while the upper layer leverages DQN to
obtain load balancing decisions among cooperative MEC servers.
The feasibility and effectiveness of our proposed schemes are
validated by our evaluation results.

Index Terms—Cooperative MEC servers, deep reinforcement
learning (DRL), hierarchical reinforcement learning (HRL), joint
caching and resources allocation, mobile-edge computing (MEC).

I. INTRODUCTION

THE RAPID development of mobile devices with per-
ception and communication capabilities leads to the

exponential growth of computing-intensive and delay-sensitive
applications, which may bring unprecedented challenges to
mobile devices due to their limited computation ability and
storage resources [1], [2]. Furthermore, the workload of

Manuscript received 25 April 2023; revised 29 August 2023 and 24 October
2023; accepted 8 November 2023. Date of publication 16 November 2023;
date of current version 26 March 2024. This work was supported in part by
the National Natural Science Foundation of China under Grant 62301307 and
Grant 62072096; in part by the International S&T Cooperation Program of
Shanghai Science and Technology Commission under Grant 20220713000; in
part by the Program for Professor of Special Appointment (Eastern Scholar) at
Shanghai Institutions of Higher Learning; in part by the “Shuguang Program”
of Shanghai Education Development Foundation and Shanghai Municipal
Education Commission; and in part by the Young Top-Notch Talent Program
in Shanghai. (Corresponding author: Wenqian Zhang.)

Wenqian Zhang is with the College of Information Engineering,
Shanghai Maritime University, Shanghai 201306, China (e-mail: zhangwq@
shmtu.edu.cn).

Guanglin Zhang is with the College of Information Science and Technology,
Donghua University, Shanghai 201620, China (e-mail: glzhang@dhu.edu.cn).

Shiwen Mao is with the Department of Electrical and Computer
Engineering, Auburn University, Auburn, AL 36849 USA (e-mail: smao@
ieee.org).

Digital Object Identifier 10.1109/JIOT.2023.3333826

computing services (CSs) generated by mobile devices usually
suffers long and variable delays for workload transmission if
it is executed at a centralized remote cloud server [3]. To
this end, the edge intelligence (EI) and the sixth-generation
(6G) wireless networks are expected to pave the way for
high-quality service performance [4]. Although mobile-edge
computing (MEC) technology is deployed at the proximity of
mobile users (MUs) and has been envisioned as an extension
of cloud computing to provide computing and storage services
for MUs within its coverage area [5], [6], [7], the MEC
servers usually can hardly withstand numerous offloading
requests from MUs due to their limited service capabilities.
Therefore, how to design intelligent workload offloading under
the premise of considering the reasonable resource allocation
is worthwhile to be investigated [8].

A unique benefit of MEC is that MEC servers can prestore
the popular application data, which can reduce the service
delay and improve the Quality of Service (QoS) of MUs [9].
Service caching provides a feasible way for constructing a
MEC system with low latency and high throughput [10], which
is consistent with the development requirements of the fifth-
generation (5G) and beyond wireless networks [11]. MEC
servers shall cache reasonable application data for different
types of CSs to enable fast service execution. It is crucial to
implement dynamic service caching for the MEC system to
adapt to real-time service requests [12].

MEC systems with service caching offer great advantages in
executing the computation intensive and time-critical service
requests of MUs. However, the MEC also has many constraints
for executing the different types of CSs due to limited
computing and storage resources [13]. Specifically, MEC can
only cache a limited amount of application data and serve
a limited number of MUs in the coverage area [14]. And
a potential bottleneck exists in MEC intelligence networks,
where the geographically distributed MEC servers may not be
able to cooperate to handle the different types of CSs [15].
To tackle this issue, geographical load balancing (GLB) has
been considered a promising technique to effectively balance
the computing resources among cooperative MEC servers and
improve the service performance [16].

The joint optimization of multilayer, multientity, and
multidimensional heterogeneous resources of the remote
cloud, MEC servers, and MUs’ devices is an NP-hard problem,
facing the dimensional curse [17]. First, the load balancing in
a MEC system with multiple cooperative MEC servers and
different types of CSs has become a challenging problem,
especially for time-critical CSs. Second, since the service

2327-4662 c© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Auburn University. Downloaded on January 13,2025 at 20:55:06 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-4095-6843
https://orcid.org/0000-0002-7052-0007

12204 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 7, 1 APRIL 2024

caching and load balancing decisions are tightly coupled, the
main challenge is to jointly optimize the service caching and
load balancing [18]. Last but not least, the uncoordinated
resource allocation among remote clouds, MEC servers, and
MUs’ devices leads to a serious waste of network resources.
Thus, how to jointly optimize service caching and load balanc-
ing for cooperative MEC system to maximize the utilization
of system resources is a relevant problem.

Motivated by these challenges, we investigate a hierarchical
caching and resources allocation architecture based on deep
reinforcement learning (DRL) for the MEC system with
multiple cooperative MEC servers. In the service area of
each MEC server (i.e., the lower layer), we focus on service
caching for different types of CSs and workload offloading
for workload transmission in the uplink among MEC servers
and MUs. In the global cooperative MEC system (i.e., the
upper layer), we consider computation resource allocation
and optimize the load balancing among MEC servers. Note
that the optimization of the lower layer and the upper layer
are tightly coupled. We consider the service caching and
resource allocation cost minimization problem over a long-
term time horizon given the delay constraints associated with
each type of CS. The main contributions made in this article
are summarized as follows.

1) We consider service caching, workload offloading, and
load balancing in the MEC system with multiple coop-
erative MEC servers and different types of CSs. We
formulate an infinite-horizon cost minimization Markov
decision process (MDP). Our goal is to achieve high
utilization of system resources and serve more work-
loads on the premise of meeting the requirements
of CSs.

2) We decompose the joint caching and resources allocation
optimization problem into two subproblems: a) a lower
layer policy optimization and b) an upper layer policy
optimization, and design a hierarchical reinforcement
learning (HRL)-based caching and resources allocation
algorithm (HRL-CRAA) to obtain the optimal policy.
To address the coupling of lower layer policy and upper
layer policy, we first obtain the caching and offloading
decisions from the lower layer optimization and then
obtain the load balancing decisions from the upper layer
optimization.

3) The feasibility and effectiveness of our proposed HRL-
CRAA optimization policy are rigorously analyzed
with extensive simulations. The results show that the
proposed approach is effective for achieving near opti-
mality in small network sizes and improving the load
balancing degree among MEC servers compared with
the three baselines: a) HRL-no load balancing (NLB)
scheme; b) myopic optimization scheme; and c) random-
ized offloading scheme.

We organize the remainder of this article as follows. We
review related work in Section II and describe the system
model in Section III. In Sections IV and V, we present
the problem formulation and the proposed DRL framework,
respectively. In Section VI, we develop an HRL-based joint
caching and resource allocation policy. In Section VII, we

present the performance evaluation results and discussions.
Finally, we conclude this article in Section VIII.

II. RELATED WORK

With the rapid growth of computation-intensive and
time-critical service requests, mobile devices with limited
computing and storage resources are facing great challenges.
MEC servers can be deployed to enable a variety of applica-
tions by offering service execution of different types of CSs.
Due to limited MEC resources, only some MU requests from
a MEC server’s service area can be executed at the MEC
server. To make full use of resources and improve the service
capabilities of the MEC system, resource allocation and load
balancing among cooperative MEC servers have become the
focus of many recent works.

MEC was introduced to provide computation and stor-
age capabilities at the edge of the network to improve the
QoS of MUs [19], especially for applications with stringent
latency requirements [20]. Execution delay is one of the
important metrics of MEC design [21], Sun et al. [22]
studied the computation task offloading problem in a vehicular
edge computing network to reduce the offloading delay.
You et al. [23] proposed an energy-efficient resource allocation
policy under the execution delay constraint. Yu et al. designed
a two-timescale DRL approach for real-time and low-cost
computation offloading in [24]. In [25] and [26], offloading
and computing resource management schemes were developed
to support Internet of Things devices with energy harvesting
capability.

MEC brings about several benefits compared to traditional
remote cloud-based computing [27]. In addition, MEC can
cache popular application data in advance to further reduce
the execution delay. Service requests from MUs are usually
diverse and change dynamically over time, leading to het-
erogeneity in both required resources and the popularity of
content [28]. To make better use of MEC’s limited resources
and execute more workloads, collaboration among MEC
servers was recently studied in [29], and the load balancing
among cooperative MEC servers was studied in [16] and [30].
Wu et al. [16] proposed a Lyapunov optimization-based
scheme to investigate the GLB for minimizing the cost of
the MEC network. Chen et al. [30] studied computation load
balancing to optimize the long-term system performance of
the MEC network.

The DRL technology and EI technology have attracted more
and more attention to address the problem of network resource
allocation [31], [32], [33]. For example, Shen et al. [34]
proposed to leverage deep learning-based techniques to
predict users’ behavior to improve the system’s performance.
Zhou et al. [35] designed a deep risk-sensitive reinforcement
learning policy to minimize the computation and offloading
delay. Qian et al. [10] applied DRL to learn MUs’ habits and
content popularity to optimize the caching and pushing policy.
Wang et al. [36] investigated edge caching optimization in a
long-term-based federated DRL. Different from these afore-
mentioned works, we consider developing a DRL algorithm
to learn the service caching and load balancing features to

Authorized licensed use limited to: Auburn University. Downloaded on January 13,2025 at 20:55:06 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: DEEP-REINFORCEMENT-LEARNING-BASED JOINT CACHING AND RESOURCES ALLOCATION 12205

Fig. 1. Architecture of a MEC system with multiple cooperative MEC servers serving MUs.

maximize the utilization of system resources and avoid invalid
transmission of workloads.

Through the related work on MEC, we find that only
considering the computation delay and energy consumption in
MEC networks to schedule workload and allocate resources
will cause a waste of network resources. To solve this problem,
this work focuses on the joint workload offloading, service
caching, and full utilization of network resources optimization.
Different from most existing work, optimal scheduling is
realized without knowing the energy consumption and delay
costs in the process of workload execution. Thus, this work
did not pay much attention to consider the process of workload
execution in detail in the system model construction.

III. SYSTEM MODEL

A. Cooperative MEC System

As illustrated in Fig. 1, we consider a cooperative MEC
system consisting of one remote cloud, a set of N MEC servers
N , and a set of U MUs U . We denote Un as a set of MUs
located in the coverage area of MEC server n, where Un ⊆
U . The MEC system operates over an infinite period, which
is divided into discretized time denoted by T � {0, 1, . . . , }
and each time slot t ∈ T , the duration of each time slot t is
denoted as τ . The MEC system offers a library K of K types
of CSs to MUs, indicated as K = {1, 2, . . . , K}. Without loss
of generality, we assume that the MU u (u ∈ U) generates
one service request for one of the K types of CSs in each
time slot. The remote cloud has a high service capability and
can execute all types of CSs, while the MEC server n has a
finite service capability and can only process one or several
types of CSs for MUs (in Un) located in its coverage area. We
assume that the MUs are subscribers of the MEC operator,
which are distributed arbitrarily over the coverage areas of the
MEC servers and the coverage areas of the MEC servers could
overlap. We denote Nu ⊆ N as the set of MEC servers that
cover MU u.

The MEC servers have finite storage, communication, and
computation capabilities, which can precache the applications
data related to one or several types of CSs for MUs and provide

CSs for MUs located in its coverage area. The MEC server n
has a storage capacity Cn, an overall uplink offloading band-
width Wn for the data transmission among MEC server n and
MUs (in Un) it serves, and a maximum service computation
capability Fn (in CPU cycles). In addition, we consider that the
MEC system consists of multiple cooperative MEC servers.
The MEC servers that have cached the application data related
to CS k can exchange their workloads of CS k. The MEC
server n with high workloads can switch some workloads to
its neighbor MEC servers that have low workloads (which is
termed load balancing in this article). We denote Mn ⊆ N
as the set of neighboring MEC servers of MEC server n.

In an effort to enable the joint caching and resource
allocation optimization and load balancing among cooperative
MEC servers, we introduce a small cell cloud manager (SCM)
in the cooperative MEC system, which is a computation
control entity. And we deploy the SCM on a MEC server [23],
which has the function of collecting global information of
the system state and making optimal decisions for MEC
servers and MUs at each time slot. Specifically, in each
time slot t, the SCM first collects global information on the
system state (service requirements of each type of CS, service
capability, and service caching state of each MEC server) at the
beginning of each time slot. Then, the SCM makes the service
caching and workload offloading decisions, and obtaining the
optimal occupied storage space and bandwidth allocation for
each MU. Next, the SCM derives the optimal load balancing
decisions based on the known service caching and workload
offloading decisions and computes the optimal computational
capability allocation for each type of CS. Finally, the optimal
decisions are delivered to MEC servers and MUs. Moreover,
the communication traffic among MUs and MEC servers
(e.g., service requests and results downloading) are through
the wireless channel, while the load balancing among MEC
servers is through a wireline local area network (LAN). Note
that the transmission scheme among the MEC server and MUs
it served is based on orthogonal frequency-division multiple
access (OFDMA), and the allocated bandwidth resources of
each MEC server are orthogonal and without interference with
each other at time slot t [37].

Authorized licensed use limited to: Auburn University. Downloaded on January 13,2025 at 20:55:06 UTC from IEEE Xplore. Restrictions apply.

12206 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 7, 1 APRIL 2024

B. Computing Services Request Model

In each time slot, each MU submits its CS request to MEC
servers that it can reach. We denote the request of the MU u
in the coverage area of MEC server n as Qu,n(t) = k ∈ K̄,
u ∈ Un, n ∈ N , in which K̄ = K ∪ {0}. If no requests for
CS k is submitted to MEC server n at time t, we have Qu,n(t)
= 0. Assume the request of each MU follows a Markov chain
model [38], i.e., Qu,n(t + 1) = ρ

u,n
i,j · Qu,n(t), where ρ

u,n
i,j is

the transition probability from i type of workload to j type of
workload for the MU u in the coverage area of MEC server n.
In addition, each type of CS has different service requirements
related to storage, uplink bandwidth, and execution delay. The
required demand of the k type of workload is denoted as
Ik
u,n(t) � {Ak

u,n(t), ck, wk, Dmax
k }, where Ak

u,n(t) is the data size
of k type of workload generated by MU u in the coverage area
of MEC server n at time slot t, and ck is the occupied storage
space of CS k. wk indicates the required uplink offloading
bandwidth of CS k, and Dmax

k be the maximum deadline of
execution delay of CS k.

C. Service Model

The workloads of CS k within the coverage area of MEC
server n can be offloaded to MEC server n where the
application data of CS k is cached, and which has sufficient
computational capability and bandwidth. In addition, a stressed
MEC server n with high workloads can delegate part of its
workloads to other MEC servers with low workloads in Mn,
where the application data of CS k is cached. If MEC server n
and its neighboring MEC servers cannot serve the workloads,
the workloads will be further offloaded from MEC server n
to the remote cloud to be processed there. We assume that
each type of CS is delay sensitive (i.e., the maximum deadline
of execution delay of each CS is less than the length of
each time slot t), which must be served by a MEC server
through the shared LAN or the remote cloud before the
end of each time slot [10]. To efficiently utilize the limited
communication and computation resources, and to improve the
service capability of the cooperative MEC system, the SCM
needs to make optimal service caching, workload offloading,
and load balancing decisions for each MEC server.

1) Service Caching: At the beginning of each time slot, the
MEC server n receives requests for the CS k from the MUs in
its coverage area. Then, the MEC server n confirms the service
caching state of the applications data associated with the CS k.
We use Xn(t) = {xk

n(t) ∈ {0, 1}|k ∈ K} to indicate whether the
application data associated with the CS k is cached at MEC
server n (when xk

n(t) = 1) or not (when xk
n(t) = 0) at time slot

t. In addition, the service caching decisions are subject to the
MEC server’s storage space constraint, given by

∑

k∈K
ckxk

n(t) ≤ Cn ∀t ∀n ∈ N . (1)

Depending on the service capability and the current service
caching state of the MEC server, the type of CS request, the
SCM makes service caching update decisions for each MEC
server. We define �Xn(t) = {�xk

n(t) ∈ {−1, 0, 1}|k ∈ K}
as the set for service caching update decisions of the MEC

server n related to CS k at time slot t, where −1 means
deleting the applications data, 0 means maintaining and 1
means inserting applications data of the CS k. Note that the
new service caching state of MEC server n for the CS k at
time slot t must belongs to {0, 1}, i.e., 1) if xk

n(t) = 0, and
�xk

n(t) �= −1 and 2) if xk
n(t) = 1, and �xk

n(t) �= 1, which
needs to satisfy the constraint

xk
n(t) + �xk

n(t) ∈ {0, 1}. (2)

Furthermore, the service caching states of all types of CSs
must satisfy the MEC server’s storage space constraint at each
time slot t. Then, we have the following constraint:

∑

k∈K
ck

(
xk

n(t) + �xk
n(t)

)
≤ Cn ∀t ∀n ∈ N . (3)

2) Workload Offloading: According to the service caching
decisions of each MEC server related to CS k, the SCM can
make workload offloading decisions for workloads of the CS
k generated by MUs in the coverage area of each MEC server.
We use Yk

n(t) = {yk
u,n(t) ∈ {0, 1}|n ∈ Nu ∪ {l}, u ∈ U} to

indicate whether the workloads of the CS k generated by MU
u (in Un) are offloaded to MEC server n (when yk

u,n(t) = 1)

or not (when yk
u,n(t) = 0) at time slot t. And the workload

offloading decisions for the MEC server n at the time slot t
are denoted as Yn(t) = {Yk

n(t)|k ∈ K}. Similarly, we denote
yk

u,l(t) as the offloading decision for offloading workloads to
the remote cloud. This happens if the workloads of the CS k
generated by the MU u (in Un) cannot be served by the MEC
server n and its neighboring MEC servers (in Mn), then the
workloads will be further offloaded to the remote cloud by the
MEC server n. Note that the workloads of the CS k generated
by the MU u need to be offloaded to one of the MEC servers
in Nu, or to the remote cloud. Then, we have

∑

n∈Nu∪{l}
yk

u,n(t) = 1 ∀t ∀k ∈ K. (4)

For the workloads of CS k of the MU u to be offloaded to
a MEC server n, as in [39], the service caching decisions and
workload offloading decisions need to satisfy

yk
u,n(t) ≤ xk

n(t) + �xk
n(t) ∀n ∈ N , k ∈ K. (5)

The communication traffic transmission of workloads
offloading and results downloading among MEC server n and
MUs it served is based on the OFDMA. The MEC server n will
allocate the bandwidth resource Wn into S nonoverlapping sub-
carriers for communication traffic transmission among MEC
server n and MUs, it served in time slot t, which is denoted
as S � {0, 1, s, . . . , S}. And we denote

∑
k∈K wk,syk

u,n(t) as
the allocated bandwidth resource of the sth subcarrier for the
data transmission between the MEC server n and the MU u in
time slot t, which is related to the required uplink offloading
bandwidth of each type of CS and the workload offloading
decisions of the MU u for different type of CS. wk,s is defined
as the uplink offloading bandwidth required by the CS to
transmit data over the sth subcarrier. Thus, the sum of occupied
offloading bandwidth of all types of CSs generated by MUs

Authorized licensed use limited to: Auburn University. Downloaded on January 13,2025 at 20:55:06 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: DEEP-REINFORCEMENT-LEARNING-BASED JOINT CACHING AND RESOURCES ALLOCATION 12207

in the coverage area of the MEC server n should not exceed
the MEC server’s bandwidth capacity, i.e.,

∑

u∈Un

∑

k∈K
wk,sy

k
u,n(t) ≤ Wn ∀t ∀n ∈ N . (6)

We model the CS k to workloads to be transmit-
ted to the MEC server n as Ak

n(t) = yk
u,n(t)1{n ∈

Nu}(∑u∈Un
Ak

u,n(t))/(|ηk
u,n(t)|) [30], which is the workloads

input of the MEC server n at the time slot t, where |ηk
u,n(t)|

is the number of MEC servers (in Nu) that have cached the
application data of the CS k in time slot t.

3) Load Balancing: To efficiently utilize the limited com-
munication of MEC servers, we focus on load balancing
among MEC servers and ignore the workloads execution by
MUs in this work. In each time slot t, the workloads of the
CS k offloaded to the MEC server n will be processed at the
server locally, or further delegated to one of the neighboring
MEC servers in Mn. Let βk

n·(t) = {βk
nm(t)}m∈N denote the

load balancing decisions for the CS k of MEC server n in
time slot t, where βk

nn(t) means that the workloads are retained
and processed at the MEC server n, and βk

nm(t) indicates the
delegated workloads from the MEC server n to the MEC
server m (m ∈ Mn). Therefore, we obtain the workload
output of the MEC server n at time slot t as

∑
m∈N βk

nm(t) =
[
∑

m∈Mn
βk

nm(t)] + βk
nn(t). Denote βn(t) = {βk

n·(t)}k∈K as the
set of overall load balancing decisions of the MEC server n for
all types of CSs, and β(t) = {βn(t)}n∈N is the set of overall
load balancing decisions in our MEC system.

Furthermore, denote βk·n(t) = {βk
mn(t)}m∈Mn as the work-

load that the MEC server n receives from its neighboring MEC
servers in Mn. The total workloads of the CS k processed
by the MEC server n at time slot t are given by αk

n(t) �
[
∑

m∈Mn
βk

mn(t)] + βk
nn(t). In addition, the load balancing

decisions need to satisfy the following constraints.
1) The workloads for load balancing among MEC server n

and its neighboring MEC servers must be nonnegative,
i.e., βk

nm(t) ≥ 0, for all k, n, mn, and t.
2) To avoid transmission loops among MEC servers, the

workloads input for the CS k to MEC server n should
be equal to its output [30], i.e.,

Ak
n(t) =

∑

m∈N
βk

nm(t) ∀n ∀k ∀t. (7)

3) The workloads processed by the MEC server n can-
not exceed its computational capability, i.e., the stable
condition of the M/M/1 queueing model [40], which is
given by

{
αk

n(t) = f k
n − 1/Dk

max∑
k∈K f k

n ≤ Fn ∀t ∀n ∈ N (8)

where f k
n is the computational resources allocated by

MEC server n for processing CS k workloads.
The main parameters used in this article are summarized in
Table I.

TABLE I
NOTATION

IV. PROBLEM FORMULATION

A. Communication Resource Allocation

From the system model described in the previous section,
the service caching and workload offloading decisions have
a big influence on the communication resource allocation of
the MEC system. Similar to [10], in an effort to maximize
the communication resource utilization, we introduce a cost
function φ(·) to indicate the fluctuation of the communication
resource, which is a convex function, and “·” represents the
related fluctuation parameter. Specifically, let φ(C) = C2 be
the cost of storage usage, where C is the state of storage
space for service data caching at time slot t, i.e., C represents
the remaining storage space in the system at time slot t.
Similarly, denote φ(W) = W2 as the cost of bandwidth
usage, where W is the state of uplink offloading bandwidth for
data transmission, i.e., W represents the remaining bandwidth
resource in the system at time slot t.

Without loss of generality, the service caching and workload
offloading decisions affect the fluctuation of storage space, and
change of uplink offloading bandwidth usages, respectively.
Based on the definition of the φ(C) = C2 and φ(W) = W2,
we analyze that when the minimum value of the function is

Authorized licensed use limited to: Auburn University. Downloaded on January 13,2025 at 20:55:06 UTC from IEEE Xplore. Restrictions apply.

12208 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 7, 1 APRIL 2024

obtained, the system residual resource is the least. Thus, to
make full use of the communication resource (space storage
and bandwidth), we must obtain the minimum values of the
cost functions. Furthermore, based on the cost function φ(·),
when the fluctuation parameter is small, the value of φ(·)
is going to be small. In other words, a small fluctuation of
the parameter results in a high utilization of communication
resources. Moreover, we define the average sum cost of service
caching and workload offloading of the MEC server n at time
slot t as φ(CXn(t)) + φ(WYn(t)), where φ(CXn(t)) = [Cn −∑

k∈K ckxk
n(t)]

2 and φ(WYn(t)) = [Wn − ∑
k∈K wkyk

u,n(t)]
2.

B. Computation Resource Allocation

Each MEC server will process different types of workloads
of CSs. Load balancing among cooperative MEC servers will
help to better utilize MEC system’s computational resources
and mitigate the congestion of workload processing. We use
the variance var(αk

n(t)) of the overall workloads of the CS k
processed by the MEC server n at time slot t to represent
the workload differences and performance of the service
capabilities among MEC servers [13], which is given by

var
(
αk

n(t)
)

= 1

|N|
∑

n∈N

(
αk

n(t) − 1

|N|
∑

n∈N
αk

n(t)

)2

. (9)

For load balancing among MEC servers, the key is to minimize
the variance var(αk

n(t)) of computation resource allocation
concerning each type of CS.

C. Problem Formulation

To efficiently utilize the communication and computation
resources of the MEC system, the MEC system operator needs
to make optimal service caching, workload offloading, and
load balancing decisions in each time slot. Denote the control
vectors set of our cooperative MEC system for the MEC server
n at time slot t as a policy π(t) � {�Xn(t),Yn(t),βn(t)].
We aim to find the optimal service caching update decisions
�Xn(t) = {�x1

n(t),�x2
n(t), . . . ,�xK

n (t)}, workload offloading
decisions Yn(t) = {Yk

1,n(t),Yk
2,n(t), . . . ,Yk

Un,n
(t)}, and load

balancing decisions βn(t) = {β1
n·(t),β2

n·(t), . . . ,βK
n·(t)}.

We formulate the joint caching and resource allocation
problem as a cost minimization optimization problem over
a long-term time horizon. The objective function is defined
as the weighted, time-averaged sum of service caching and
workload offloading costs, as well as the balancing degree
of computational resources allocation among MEC servers,
which is given by

ϕ(π(t)) = lim
T→∞

1

T

T−1∑

t=0

N∑

n=1

E

{
ξ1φ(CXn(t))

+ ξ2φ(WYn(t)) + ξ3 · bn
}

(10)

where E{·} is the expectation over MEC servers, and ξλ,
λ ∈ {1, 2, 3}, represent the weights of parameters in the
objective function. Similar to the variance of computational
resource allocation for each type of CS on each MEC
server in (9), we define bn = (1/|N|)∑

n∈N ([
∑

k∈K αk
n(t)] −

(1/|N|)∑
n∈N

∑
k∈K αk

n(t))
2 as the load balancing degree

among MEC servers on the MEC server n for all types of CS.
The optimization problem is formulated as

ϕ∗ = min
π(t)

ϕ(π(t))

s.t. (1)∼(8) (11)

where ϕ∗ is the optimal averaged system cost in the long-term
time horizon; (1) and (2) are the storage space and service
caching state constraints of each MEC server n, respectively.
Constraint (3) represents the storage space constraint of MEC
server n after service caching state update. Constraint (4)
ensures that the workloads of the CS k in the coverage area
of MEC server n should be offloaded to exactly a connected
MEC server or the remote cloud. Constraint (5) describes the
relationship between service caching and workload offloading
decisions. Constraint (6) enforces the limit of MEC server
uplink offloading bandwidth capacity. Constraint (7) ensures
that the workload input and output of the MEC server n are
equal. Constraint (8) indicates the workloads executed by the
MEC server n cannot exceed its service capability.

The formulated joint caching and resource allocation
problem is considered as an infinite-horizon cost minimization
MDP. Without knowledge of the transition probabilities of
MU’s CSs requests, it is a challenging problem to solve.
Fortunately, based on the centralized framework, the SCM can
make accurate instructions after grasping global information
with fast calculation speed. By using SCM, the load balancing
among multiple MEC servers can be better implemented and
resource allocation can be managed. However, the computa-
tional complexity of the centralized framework will increase
with the number of MEC servers and the number of MUs
they serve. Since the workload offloading decisions are based
on service caching decisions, and load balancing decisions
influence the workload offloading decisions, we will develop
an HRL-based caching and resource allocation policy in
Section VI to deal with the coupling of three decisions.
Therefore, we propose to develop a reinforcement learning-
based algorithm to learn the MU’s request models and derive
the optimal policy π∗ [10]. We will define the three key
elements (i.e., state, action, and reward) of the proposed
reinforcement learning algorithm in the next section.

V. DEEP REINFORCEMENT LEARNING FRAMEWORK

A. State

With the proposed algorithm, the states consist of the CS
request state and service caching state of the MEC servers
at each time slot. The request state of CS k contains the
workloads, the service requirements, the MUs’ locations that
generate the workloads, and the corresponding servers Nu of
the MUs. For the convenience of analysis, we use the MEC
server n as an example below. Let An(t) = {Ak

n(t)|k ∈ K} be
the CS request state, and Xn(t) = {xk

n(t)|k ∈ K} the service
caching state. Furthermore, we denote S(t) = {An(t),Xn(t)}
as the current state of MEC server n. Since Ak

n(t) ∈ Āk
n and

|Āk
n| = Ak

n+1, we obtain the dimension of the CS request state
as |An(t)| = (Ak

n + 1)K . Moreover, since xk
n(t) ∈ {0, 1}, we

Authorized licensed use limited to: Auburn University. Downloaded on January 13,2025 at 20:55:06 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: DEEP-REINFORCEMENT-LEARNING-BASED JOINT CACHING AND RESOURCES ALLOCATION 12209

obtain the dimension of the service caching state as |Xn| = 2K .
Therefore, the dimension of the entire system state of MEC
server n is |S| = (Ak

n + 1)K × 2K .

B. Action

In the cooperative MEC system, we define three types
of actions, including 1) service caching update; 2) work-
load offloading; and 3) load balancing. We denote A(t) =
{βn(t),�Xn(t),Yn(t)} as the action of MEC server n at
time slot t. We use βn(t) = {βk

n·(t)|k ∈ K} to denote
the load balancing action for the MEC server n, where
βk

n·(t) = {βk,1
n· , . . . , βk,i

n· , . . . , βk,I−1
n· }, and βk,i

n· = 1 represents
that the data size for load balancing of the ith discretized
grade according to the available maximization of workloads
transmission βk,max

n· between MEC server n and its neighboring
MEC servers [37]. Since the workload input of the k type
of CS to MEC server n is equal to its output, we set |Ak

n(t)|
as the maximum workloads for load balancing at time slot
t. According to Ak

n(t) ∈ Āk
n and |Āk

n| = Ak
n + 1, we derive

the load balancing action dimension as |β| = [(1/I)(Ak
n +

1)]NK . In addition, with the service caching decisions �xk
n ∈

{−1, 0, 1} and the workload offloading decisions yk
n ∈ {0, 1},

the corresponding dimensions are 3K and 2K , respectively.
Thus, the dimension of the overall system action space of MEC
server n at time slot t is |A| = [(1/I)(Ak

n + 1)]NK × 3K × 2K .

C. Reward

The reward function needs to reflect the objective of our
proposed joint caching and resource allocation optimization
problem, i.e., maximizing the communication and computation
resources utilization. We consider the objective as the environ-
ment feedback in the DRL system. Denote the reward function
as follows:

r � −
{
ξ1φ(CXn(t)) + ξ2φ(WYn(t)) + ξ3 · bn

}
. (12)

With the formulated reinforcement learning framework and
state–action value function (Q value), we obtain the Bellman
equation as

Q(s(t), a(t)) = E

[
r + γ Q′(s(t + 1), a(t + 1)

)
|s(t), a(t)

]
(13)

where γ is the discount rate that indicates the impact of future
reward on current cumulative reward. s(t) = {An(t),Xn(t)} is
the current MEC system state, r is defined as reward in (12),
and s(t + 1) = {An(t + 1),Xn(t + 1) + �Xn(t + 1)} is the
system state in the next time slot. The corresponding optimal
policy π∗ can be derived as follows:

π∗(s(t), a(t)) = arg max
βn,�Xn,Yn

Q(s(t), a(t)). (14)

VI. HRL-BASED JOINT CACHING AND RESOURCES

ALLOCATION POLICY

As mentioned, due to the large dimensions of the state and
action spaces, it is difficult to search the state–action in the
large space for the optimal policy. Applying reinforcement
learning directly will incur slow convergence. Furthermore,
because the workload offloading decisions are based on service

caching decisions, and load balancing decisions influence the
workload offloading decisions. To address the slow conver-
gence in large space and decisions coupled problem, we
decompose the joint caching and resource allocation problem
into two subproblems, i.e., Subproblem 1 and Subproblem 2,
and then present HRL based on deep Q networks (DQNs) to
solve these subproblems.

Substitute (12) into (13), and according to (14), we can
decompose the joint caching and resource allocation problem
into two subproblems.

1) Subproblem 1 (Lower Layer Policy Optimization): For
given β, Subproblem 1 is given by

ϕ∗
Low = max

�Xn,Yn

{
γ Q′

Low(sLow(t + 1), aLow(t + 1))

−
[
ξ1φ(CXn(t)) + ξ2φ(WYn(t)) + ξ3 · bn

]}

s.t. (1)∼(6). (15)

2) Subproblem 2 (Upper Layer Policy Optimization): For
given X , Y , and �X , Subproblem 2 is given by

ϕ∗
Up = max

βn

{
γ Q′

Up

(
sUp(t + 1), aUp(t + 1)

)

−
[
ξ1φ(CXn(t)) + ξ2φ(WYn(t)) + ξ3 · bn

]}

s.t. (8). (16)

Since the decisions of the lower layer optimization affect
the upper layer optimization decisions, the two subproblems
are coupled. Hence, we first obtain the service caching and
workload offloading decisions from Subproblem 1 by using
DQN of the first layer (DQN1). Then, we take the known
decision of the lower layer into consideration to obtain the load
balancing decisions from Subproblem 2 based on the DQN of
the second layer (DQN2). We next present an HRL-CRAA for
solving the two subproblems.

A. Deep Q Network

DQN combines deep learning with reinforcement learning
and uses a deep neural network (DNN) with parameter ω to
generate action values and approximate the Q value. Fig. 2
shows the detailed DQN architecture. For given state s(t),
action a(t), and reward r(t), we set P as the capacity of
the experience memory D, as well as the target network and
evaluation network with parameters ω− and ω, respectively.

In each step t, the input to the evaluation network is
the current system state s(t), and the output is the Q value
Q(s(t), a(t);ω) of each action. The action a(t) can be selected
based on Q value Q(s(t), a(t);ω) of the evaluation network
with the ε-greedy strategy, i.e., choosing a random action a(t)
with probability ε, or choosing the optimal policy given by
a(t) = arg maxa(t)

Q(s(t), a(t);ω), where the Q value is in the
evaluation network.

After choosing the action a(t), we obtain the corresponding
reward r(t) and the next state s(t+1). All of these are put into
an experience memory as training samples. During the training
stage, random batches of data are sampled from the experience
memory to train the DNN. After the DNN is well trained, the
approximated Q value Q(s(t), a(t);ω) will approach the target

Authorized licensed use limited to: Auburn University. Downloaded on January 13,2025 at 20:55:06 UTC from IEEE Xplore. Restrictions apply.

12210 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 7, 1 APRIL 2024

Fig. 2. Framework of the DQN model.

Q value Q∗(s(t), a(t)) in the target network. To minimize the
discrepancy between the Q values from the evaluation network
and the target network, we adopt the following loss function
for modeling training:

Li(ω) = E

[(
r + γ max

a(t+1)
Q′(s(t + 1), a(t + 1);ω−)

−Q(s(t), a(t);ω))2
]

(17)

where r +γ maxa(t+1) Q′(s(t +1), a(t +1);ω−) is the Q value
calculated by the target network with parameter ω− in iteration
i. In order to train the DNN, we use the gradient descent
algorithm by differentiating the loss function (17) with respect
to the weights as follows:

∇ωLi(ω) = E

[(
r + γ max

a(t+1)
Q′(s(t + 1), a(t + 1);ω−)

−Q(s(t), a(t);ω))∇ωQ(s(t), a(t);ω)

]
. (18)

Note that the initial parameters of the evaluation network
and the target network take the same values. The parameters
ω of the evaluation network are updated in each step, but
the parameters ω− of the target network are updated for
every fixed J steps. We introduce the DQN algorithm to solve
Subproblem 1 and Subproblem 2 in Sections VI-B and VI-C,
respectively.

B. Service Caching and Workload Offloading Policy

We first examine the optimization of the service caching
and workload offloading policy by using DQN for the
lower layer policy optimization in Subproblem 1. Due to the
large dimensions of the state and action spaces, we use MEC
server n as an example below to facilitate the analysis. We
redefine the state of DQN1 as sLow(t) = {Ak

n(t)|k ∈ K}. In
addition, we obtain the reduced version of actions for DQN1
as aLow(t) = {yk

n(t) ∈ {0, 1},�xk
n(t) ∈ {−1, 0, 1}|k ∈ K}.

Since the given load balancing decisions do not affect the low
layer optimization in Subproblem 1, we redefine the reward
of the lower layer optimization as rLow � −[ξ1φ(CXn(t)) +

ξ2φ(WYn(t))]. Substituting the redefined state, action, and
reward into the Bellman equation (13), we derive the corre-
sponding optimal policy π∗

Low for Subproblem 1 as follows:

π∗
Low(sLow(t), aLow(t))

= arg max
�Xn,Yn

{
Q′

Low(sLow(t + 1), aLow(t + 1))

− [
ξ1φ(CXn(t)) + ξ2φ(WYn(t))

]}

s.t. (1) ∼ (6). (19)

The procedure is shown in Algorithm 1. Given the three
key elements (i.e., state, action, and reward), we first initialize
the corresponding parameters DLow, PLow, ωLow, and ω−

Low.
According to the process introduced in Section VI-A, in
each step t, action aLow(t) is chosen based on the evaluation
network’s output with the ε-greedy strategy. Then, the obtained
new sample (sLow(t), aLow(t), rLow(t), sLow(t +1)) is stored in
the experience reply memory DLow. Procedure 1 is executed to
update the evaluation network. After the DQN1 is well trained,
we execute Procedure 2 to call the trained DQN1 network
to obtain service caching and workload offloading decisions.
Note that Procedures 1 and 2 are the common procedures used
in both DQN1 and DQN2 for updating the evaluation network
and calling the trained network, respectively.

C. Load Balancing Policy Among MEC Servers

Next, we examine the optimization of load balancing pol-
icy among MEC servers by using the DQN algorithm to
solve Subproblem 2. The optimization of the lower layer
affects the upper layer’s decisions, which leads to a com-
plex and dynamic MEC environment. In the upper layer
optimization, the caching and offloading decisions from the
lower layer optimization become the state for load balancing
optimization. Thus, the state for DQN2 is given by sUp(t) =
{Ak

n(t), yk
n(t),�xk

n(t)|k ∈ K}, and the action is redefined as
aUp(t) = {βk

n·(t)|k ∈ K}. In addition, the reward rUp = r,
which is defined in (12). Similarly, substituting the redefined
state, action, and reward into the Bellman equation (13), we

Authorized licensed use limited to: Auburn University. Downloaded on January 13,2025 at 20:55:06 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: DEEP-REINFORCEMENT-LEARNING-BASED JOINT CACHING AND RESOURCES ALLOCATION 12211

Algorithm 1: Lower Layer Policy Optimization by Using
DQN

Require: Discount γLow, exploration rate εLow, replay
memory capacity PLow;
Initialize the replay memory DLow to capacity PLow;
Initialize the evaluation network with parameters ωLow;
Initialize the target network with parameters ω−

Low;
for each episode i do

Initialize state sLow,1;
for each step t do

With probability εLow choose a random action
aLow(t);
Otherwise select action aLow(t) by evaluation
network with parameter ωLow based on (19);
Execute action aLow(t) in emulator, obtain reward
rLow and new state sLow(t + 1);
Store the following transition in DLow:
(sLow(t), aLow(t), rLow(t), sLow(t + 1)) ;
Execute Procedure 1 ;
Each JLow steps reset ω−

Low = ωLow;
end

end
Execute Procedure 2 to obtain service caching and
workloads offloading policies;

Procedure 1: Evaluation Network Updating Procedure
Sample random minibatch of transitions (si, ai, ri, si+1)

from D ;
if episode terminates at step i + 1 then

Set yi = ri;
else

Set yi = ri + γ maxai+1 Q′(si+1, ai+1;ω−)
;

end
Execute (17) and (18) to obtain the gradient descent;

Procedure 2: Running Procedure

Require: Trained evaluation network with parameters ω;
Obtain initial state s1;
for each step t do

Select a(t) = arg maxa(t) Q(s(t), a(t);ω);
Execute action a(t) in the emulator;
Observe reward r(t) and new state s(t + 1);

end

derive the corresponding optimal policy π∗
Up for Subproblem

2 as follows:

π∗
Up

(
sUp(t), aUp(t)

)

= arg max
βn

{
Q′

Up

(
sUp(t + 1), aUp(t + 1)

)

− [
ξ1φ(CXn(t)) + ξ2φ(WYn(t)) + ξ3 · bn]}

s.t. (8). (20)

Algorithm 2: HRL-CRAA
Require: Discount γUp, exploration rate εUp, replay
memory capacity PUp;
Initialize the replay memory DUp to capacity PUp;
Initialize the evaluation network with parameters ωUp;
Initialize the target network with parameters ω−

Up;
for each episode i do

Initialize state sLow,1;
for each step t do

Execute Algorithm 1 to obtain the caching and
offloading decisions of lower layer optimization;
Update sLow,1 to sup,1 with the lower layer policy;
With probability εUp choose a random action
aUp(t);
Otherwise choose aUp(t) by evaluation network
with parameter ωUp based on (20);
Execute action aUp(t) in emulator, obtain reward
rUp and new state sUp(t + 1);
Store the following transition in DUp:
(sUp(t), aUp(t), rUp(t), sUp(t + 1));
Execute Procedure 1;
Each JUp steps reset ω−

Up = ωUp;
end

end
Execute Procedure 2 to obtain load balancing policies;

The HRL-CRAA is presented in Algorithm 2. After execut-
ing Algorithm 1, we obtain the service caching and workload
offloading decisions in the lower layer policy optimization.
Algorithm 2 is mainly to solve the load balancing decisions
in the upper layer policy optimization based on DQN2 with
the known optimal solution of Algorithm 1. Furthermore, the
process of DQN2 is similar to that of DQN1 as given in
Algorithm 1. Note that the state sUp is updated by state sLow
and the lower layer policies at each step t. We omit the
description of the DQN2 process for brevity. After execut-
ing Algorithm 2, we obtain the load balancing decisions.

VII. SIMULATION RESULTS AND DISCUSSION

A. Parameter Setting

In this section, we present the simulation study to evaluate
the performance of our proposed HRL-CRAA. The operating
environment of the experiment is based on a laptop with
Intel Core i7-6500U 2.5-GHz processor and 16-GB RAM. We
consider N = 3 MEC servers and U = 6 MUs are uniformly
distributed in the coverage areas of the MEC servers as shown
in Fig. 1, and the cooperative MEC system is operated on
discrete time slots with τ = 1 s. In each time slot, each MU
generates one type of CSs request from a library with K = 2.
We assume that the popularity of each type of CS follows
a Zipf distribution and the shape parameter is 0.8 [39]. The
workload arrivals of each type of CS request are randomly
distributed within [600, 700] Mb [29]. Furthermore, we set
the storage capacity of MEC server n, i.e., Cn, randomly
within [200, 600] GB [39], and the overall uplink offloading

Authorized licensed use limited to: Auburn University. Downloaded on January 13,2025 at 20:55:06 UTC from IEEE Xplore. Restrictions apply.

12212 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 7, 1 APRIL 2024

Fig. 3. Convergence performance of HRL-based lower layer optimization
under different learning rates.

bandwidth Wn as 25 MHz [1]. The service computational
capability Fn is uniformly distributed between 800 and 3000
(in CPU cycles). Moreover, we set the occupied storage space
of each CS as ck ∈ [100, 200] GB. The required uplink
offloading bandwidth is wk ∈ [5, 20] MHz, and the maximum
deadline of execution delay is randomly set within Dk

max ∈
[2, 7]×10−3s [16]. In addition, we set ξ1 = ξ2 = ξ3 = 1 as the
weight of parameters in the objective function (10). In an effort
to ensure the matrix of the training action a(t) of the DQN
architecture fits the model environment, we preprocess the
generated decision matrix and select the appropriate data as the
training action a(t) in simulation based on the mathematical
constraint in (2). In this way, we can guarantee the accuracy
of the DQN training.

B. Benchmark Schemes Designing

We compare our proposed HRL-CRAA scheme with the
following three baseline schemes.

1) HRL-NLB: This is an HRL-based caching and resource
allocation policy but with NLB among the MEC servers. That
is, the arrived workloads to the MEC server n will be processed
by the MEC server. If the MEC server n cannot meet the
service requirements, the workloads will be further offloaded
to the remote cloud.

2) Myopic Optimization: In this approach, we set the dis-
count γ = 0 in the DQN training process. The MEC system
pays attention to the current reward, and we obtain the actions
without considering the temporal correlations between future
states and decisions.

3) Randomized Offloading: In this approach, the workload
offloading decision is randomly selected from the set of
offloading actions with equal probability.

C. Results and Discussion

We first examine the convergence performance of our
proposed HRL-CRAA scheme. As shown in Fig. 3, we set
the learning rate to 0.001, 0.005, 0.01, and 0.015 in our
simulations to present the convergence of the cost. With the

Fig. 4. Convergence performance of HRL-CRAA under a learning rate of
0.01: training loss.

Fig. 5. Convergence performance of HRL-CRAA under a learning rate of
0.01: time averaged system cost.

increase in learning rate (e.g., from 0.001 to 0.005), the
convergence speed of HRL-CRAA is accelerated. A small
learning rate leads to a slow convergence speed and a longer
training time. And if the learning rate is too large, the
algorithm may converge to a poor solution, or it may not
converge at all, as the case when learning rate = 0.015 shows.
Therefore, we set the learning rate in the range of 0.005 to
0.01 in our simulation experiment.

In Figs. 3 and 4, we present the convergence performance
of the proposed scheme concerning cost and training loss.
It can be seen that there is a large cost (training loss) at
the beginning of the training process because the DRL agent
has not learned enough information to make sound caching
and resource allocation decisions. As the number of episodes
increases, the cost gradually decreases until it reaches a
relatively stable value. Fig. 3 shows the convergence for the
lower layer optimization, and Fig. 4 shows the convergence
for the proposed HRL-CRAA scheme. In addition, we present
the convergence performance with respect to time-averaged
system cost of HRL-CRAA under a learning rate of 0.01 in
Fig. 5. As the training time increases, the reward gradually
increases and the system cost gradually decreases as well,
which proves the rationality of our reward function setting
in (12).

Authorized licensed use limited to: Auburn University. Downloaded on January 13,2025 at 20:55:06 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: DEEP-REINFORCEMENT-LEARNING-BASED JOINT CACHING AND RESOURCES ALLOCATION 12213

Fig. 6. Resource utilization of HRL-CRAA in different time slots.

Fig. 7. Cloud load ratio for different computational capabilities with different
schemes.

We next examine the resource utilization of the proposed
cooperative MEC system and present the results from the first
to the 15th time slot in Fig. 6. We present the quantity of
workload execution of local MEC servers (HRL-CRAA-local)
and remote cloud (HRL-CRAA-cloud). Specifically, Fig. 6
shows the ratio of the amount of workloads executed at the
MEC servers to the total amount of workloads at the top
of each bar. In each time slot, the local MEC servers serve
most of the CS workloads, which verify that our proposed
HRL-CRAA can achieve efficient utilization of computational
resources.

We also present the impact of computational capability
Fn of MEC servers on the workloads of cloud execution
under four different approaches. In Fig. 7, Fn for each MEC
server is increased from 800 to 3000 (in CPU cycles). Note
that as Fn is increased from 800 to 2000, the ratio of the
amount of cloud execution to the total amount of workloads
gradually decreases, except for the randomized offloading
approach. When Fn is between 2000 and 3000, the maximum
utilization of system computation resources is reached, as
the curves of HRL-CRAA and myopic optimization tend to
be stabilized. When Fn is equal to 3000, because the MEC
servers have enough computational capabilities to process the
arrived workloads locally, the curve of HRL-NLB becomes

Fig. 8. Averaged system cost with different computational capabilities with
different schemes.

Fig. 9. Cloud load ratio for different execution delay deadlines with different
schemes.

close to that of HRL-CRAA. Especially, compared with the
other baseline approaches, our proposed HRL-CRAA scheme
achieves a smaller cloud load ratio under the same computation
capability, which means that HRL-CRAA executes more
workloads at the MEC servers and achieves efficient utilization
of computational resources.

The impact of the computational capability on the average
system cost is presented in Fig. 8, which shows that as the
increase of computation capability Fn of MEC servers, the
average system cost will gradually decrease. Combined with
the cloud computing ratio results in Fig. 7, compared with
myopic optimization, HRL-CRAA achieves a smaller cloud
load ratio but a larger averaged system cost. In addition, when
Fn is beyond 2000, HRL-CRAA and HRL-NLB have the
same average system cost. Thus, when the MEC servers have
sufficient computational capabilities to execute the arrived
workloads, load balancing among MEC servers will not be
very helpful. In other words, our proposed cooperative MEC
system and the HRL-CRAA scheme are suitable for MEC
systems with limited computation resources and under heavy
CS workloads.

Finally, we investigate the impact of the execution delay
deadline Dmax

k of CS on the workloads of cloud execution
and the averaged system cost in Figs. 9 and 10, respectively.

Authorized licensed use limited to: Auburn University. Downloaded on January 13,2025 at 20:55:06 UTC from IEEE Xplore. Restrictions apply.

12214 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 7, 1 APRIL 2024

Fig. 10. Averaged system cost for different execution delay deadlines with
different schemes.

We increase Dmax
k from 2 × 10−3 s to 6.5 × 10−3 s in the

experiments. In Fig. 9, when Dmax
k is increased from 2 ×

10−3 s to 4 × 10−3 s, the cloud load ratios gradually decrease
for HRL-CRAA, HRL-NLB, and the myopic optimization
scheme. Beyond Dmax

k = 4×10−3 s, the curves approach their
respective stable values. Intuitively, when a larger execution
delay deadline, the MEC servers with the same computational
capability can serve more workloads until most or all the
current arrived workloads are executed. In Fig. 10, we can see
that increasing the execution delay deadline Dmax

k can effec-
tively reduce the average system costs for all four schemes.
Specifically, beyond Dk

max = 4 × 10−3, HRL-NLB and HRL-
CRAA have the same average system cost, which means the
computational capability of each MEC server is sufficient for
executing all the requested CS workloads.

VIII. CONCLUSION

In this article, we investigated a hierarchical caching and
resource allocation problem in a cooperative MEC system
with multiple types of CSs. We formulated the problem as a
long-term time horizon cost minimization MDP, with a reward
function that maximizes the utilization of communication and
computation resources while avoiding invalid transmission of
workloads. We transformed the problem into two subproblems:
i.e., the lower layer and upper layer optimization, and then
designed a two-tier DQN to solve these two subproblems.
Our simulation results validated that our proposed policy
can achieve a superior performance compared to the baseline
approaches, as well as converge and scale linearly with the
network size, making it suitable for MEC systems with
multiple servers and users.

REFERENCES

[1] Y. Mao, J. Zhang, S. H. Song, and K. B. Letaief, “Stochastic joint
radio and computational resource management for multi-user mobile-
edge computing systems,” IEEE Trans. Wireless Commun., vol. 16, no. 9,
pp. 5994–6009, Sep. 2017.

[2] H. Guo, J. Liu, and J. Zhang, “Computation offloading for multi-
access mobile edge computing in ultra-dense networks,” IEEE Commun.,
vol. 56, no. 8, pp. 14–19, Aug. 2018.

[3] S. Yu, R. Langar, X. Fu, L. Wang, and Z. Han, “Computation offloading
with data caching enhancement for mobile edge computing,” IEEE
Trans. Veh. Technol., vol. 67, no. 11, pp. 11098–11112, Nov. 2018.

[4] B. Yang et al., “Edge intelligence for autonomous driving in 6G wireless
system: Design challenges and solutions,” IEEE Wireless Commun.,
vol. 28, no. 2, pp. 40–47, Apr. 2021.

[5] G. Jia, G. Han, J. Du, and S. Chan, “A maximum cache value policy
in hybrid memory-based edge computing for mobile devices,” IEEE
Internet Things J., vol. 6, no. 3, pp. 4401–4410, Jun. 2019.

[6] M. Yan, W. Li, C. A. Chan, S. Bian, I. Chih-Lin, and A. F. Gygax,
“PECS: Towards personalized edge caching for future service-centric
networks,” China Commun., vol. 16, no. 8, pp. 93–106, Aug. 2019.

[7] Y. Mao, J. Zhang, and K. B. Letaief, “Dynamic computation offloading
for mobile-edge computing with energy harvesting devices,” IEEE J.
Sel. Areas Commun., vol. 34, no. 12, pp. 3590–3605, Dec. 2016.

[8] B. Yang, X. Cao, X. Li, C. Yuen, and L. Qian, “Lessons learned
from accident of autonomous vehicle testing: An edge learning-aided
offloading framework,” IEEE Wireless Commun. Lett., vol. 9, no. 8,
pp. 1182–1186, Aug. 2020.

[9] L. Wang, H. Wu, Y. Ding, W. Chen, and H. V. Poor, “Hypergraph-based
wireless distributed storage optimization for cellular D2D under-
lays,” IEEE J. Sel. Areas Commun., vol. 34, no. 10, pp. 2650–2666,
Oct. 2016.

[10] Y. Qian, R. Wang, J. Wu, B. Tan, and H. Ren, “Reinforcement learning-
based optimal computing and caching in mobile edge network,” IEEE
J. Sel. Areas Commun., vol. 38, no. 10, pp. 2343–2355, Oct. 2020.

[11] I. Chih-Lin, S. Han, Z. Xu, S. Wang, Q. Sun, and Y. Chen, “New
paradigm of 5G wireless Internet,” IEEE J. Sel. Areas Commun., vol. 34,
no. 3, pp. 474–482, Mar. 2016.

[12] C. Wang, C. Liang, F. R. Yu, Q. Chen, and L. Tang, “Joint computation
offloading, resource allocation and content caching in cellular networks
with mobile edge computing,” in Proc. IEEE ICC, Paris, France,
May 2017, pp. 1–6.

[13] J. Wang, L. Zhao, J. Liu, and N. Kato, “Smart resource allocation for
mobile edge computing: A deep reinforcement learning approach,” IEEE
Trans. Emerg. Topics Comput., vol. 9, no. 3, pp. 1529–1541, Jul.–
Sep. 2021.

[14] X. Sun and N. Ansari, “EdgeIoT: Mobile edge computing for the Internet
of Things,” IEEE Commun., vol. 54, no. 12, pp. 22–29, Dec. 2016.

[15] X. Cao et al., “Edge-assisted multi-layer offloading optimization of LEO
satellite-terrestrial integrated networks,” IEEE J. Sel. Areas Commun.,
vol. 41, no. 2, pp. 381–398, Feb. 2023.

[16] H. Wu, L. Chen, C. Shen, W. Wen, and J. Xu, “Online geographical
load balancing for energy-harvesting mobile edge computing,” in Proc.
IEEE ICC, Kansas City, MO, USA, May 2018, pp. 1–6.

[17] H. Liao et al., “Cloud-edge-device collaborative reliable and
communication-efficient digital twin for low-carbon electrical equipment
management,” IEEE Trans. Ind. Informat., vol. 19, no. 2, pp. 1715–1724,
Feb. 2023.

[18] Y. Sun, Z. Chen, M. Tao, and H. Liu, “Bandwidth gain from mobile
edge computing and caching in wireless multicast systems,” IEEE Trans.
Wireless Commun., vol. 19, no. 6, pp. 3992–4007, Jun. 2020.

[19] C. Park and J. Lee, “Mobile edge computing-enabled heteroge-
neous networks,” IEEE Trans. Wireless Commun., vol. 20, no. 2,
pp. 1038–1051, Feb. 2021.

[20] M. Chen and Y. Hao, “Task offloading for mobile edge computing in
software defined ultra-dense network,” IEEE J. Sel. Areas Commun.,
vol. 36, no. 3, pp. 587–597, Mar. 2018.

[21] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile edge com-
puting: A survey,” IEEE Internet Things J., vol. 5, no. 1, pp. 450–465,
Feb. 2018.

[22] Y. Sun, S. Zhou, and Z. Niu, “Distributed task replication for vehicular
edge computing: Performance analysis and learning-based algo-
rithm,” IEEE Trans. Wireless Commun., vol. 20, no. 2, pp. 1138–1151,
Feb. 2021.

[23] C. You, K. Huang, H. Chae, and B.-H. Kim, “Energy-efficient
resource allocation for mobile-edge computation offloading,” IEEE
Trans. Wireless Commun., vol. 16, no. 3, pp. 1397–1411, Mar. 2017.

[24] S. Yu, X. Chen, Z. Zhou, X. Gong, and D. Wu, “When deep rein-
forcement learning meets federated learning: Intelligent multitimescale
resource management for multiaccess edge computing in 5G ultradense
network,” IEEE Internet Things J., vol. 8, no. 4, pp. 2238–2251,
Feb. 2021.

[25] S. Xia, Z. Yao, Y. Li, and S. Mao, “Online distributed offloading and
computing resource management with energy harvesting for heteroge-
neous MEC-enabled IoT,” IEEE Trans. Wireless Commun., vol. 20,
no. 10, pp. 6743–6757, Oct. 2021.

Authorized licensed use limited to: Auburn University. Downloaded on January 13,2025 at 20:55:06 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: DEEP-REINFORCEMENT-LEARNING-BASED JOINT CACHING AND RESOURCES ALLOCATION 12215

[26] X. Chen, H. Zhang, C. Wu, S. Mao, Y. Ji, and M. Bennis, “Optimized
computation offloading performance in virtual edge computing systems
via deep reinforcement learning,” IEEE Internet Things J., vol. 6, no. 3,
pp. 4005–4018, Jun. 2019.

[27] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet Things J., vol. 3, no. 5, pp. 637–646,
Oct. 2016.

[28] Z. Zhang and M. Tao, “Deep learning for wireless coded caching with
unknown and time-variant content popularity,” IEEE Trans. Wireless
Commun., vol. 20, no. 2, pp. 1152–1163, Feb. 2021.

[29] L. Chen, J. Xu, and S. Zhou, “Computation peer offloading in mobile
edge computing with energy budgets,” in Proc. IEEE GLOBECOM,
Singapore, Dec. 2017, pp. 1–6.

[30] L. Chen, S. Zhou, and J. Xu, “Computation peer offloading for energy-
constrained mobile edge computing in small-cell networks,” IEEE/ACM
Trans. Netw., vol. 26, no. 4, pp. 1619–1632, Aug. 2018.

[31] T. Zhang, K. Zhu, and J. Wang, “Energy-efficient mode selection
and resource allocation for D2D-enabled heterogeneous networks: A
deep reinforcement learning approach,” IEEE Trans. Wireless Commun.,
vol. 20, no. 2, pp. 1175–1187, Feb. 2021.

[32] S. Deng, H. Zhao, W. Fang, J. Yin, S. Dustdar, and A. Y. Zomaya,
“Edge intelligence: The confluence of edge computing and artificial
intelligence,” IEEE Internet Things J., vol. 7, no. 8, pp. 7457–7469,
Aug. 2020.

[33] S. Shen, T. Zhang, S. Mao, and G.-K. Chang, “DRL-based channel and
latency aware radio resource allocation for 5G service-oriented RoF-
mmWave RAN,” J. Lightw. Technol., vol. 39, no. 18, pp. 5706–5714,
Sep. 2021.

[34] X. Shen et al., “AI-assisted network-slicing based next-generation
wireless networks,” IEEE Open J. Veh. Technol., vol. 1, pp. 45–66, 2020.

[35] C. Zhou et al., “Deep reinforcement learning for delay-oriented IoT task
scheduling in SAGIN,” IEEE Trans. Wireless Commun., vol. 20, no. 2,
pp. 911–925, Feb. 2021.

[36] X. Wang, C. Wang, X. Li, V. C. M. Leung, and T. Taleb, “Federated
deep reinforcement learning for Internet of Things with decentralized
cooperative edge caching,” IEEE Internet Things J., vol. 7, no. 10,
pp. 9441–9455, Oct. 2020.

[37] L. Tan, Z. Kuang, L. Zhao, and A. Liu, “Energy-efficient joint
task offloading and resource allocation in OFDMA-based collaborative
edge computing,” IEEE Trans. Wireless Commun., vol. 21, no. 3,
pp. 1960–1972, Mar. 2022.

[38] K. Psounis, A. Zhu, B. Prabhakar, and R. Motwani, “Modeling cor-
relations in Web traces and implications for designing replacement
policies,” Comput. Netw., vol. 45, no. 4, pp. 379–398, Jul. 2004.

[39] K. Poularakis, J. Llorca, A. M. Tulino, I. Taylor, and L. Tassiulas,
“Joint service placement and request routing in multi-cell mobile
edge computing networks,” in Proc. IEEE INFOCOM, Paris, France,
Apr./May 2019, pp. 10–18.

[40] R. B. Cooper, Introduction to Queueing Theory. Amsterdam, The
Netherlands: North Holland, 1981.

Wenqian Zhang received the Ph.D. degree in
information and communication intelligent system
from Donghua University, Shanghai, China, in
2022.

From 2019 to 2020, she was a Visiting Scholar
with the Department of Electrical and Computer
Engineering, Auburn University, Auburn, AL, USA.
She is currently an Assistant Professor with
the Department of Communication Engineering,
Shanghai Maritime University, Shanghai. Her
research interests include edge intelligence, mobile-

edge computing, and blockchain.

Guanglin Zhang (Member, IEEE) received the
Ph.D. degree in information and communication
engineering from Shanghai Jiao Tong University,
Shanghai, China, in 2012.

From 2013 to 2014, he was a Postdoctoral
Research Associate with the Institute of Network
Coding, Chinese University of Hong Kong,
Hong Kong. He is currently a Professor and
the Department Chair with the Department of
Communication Engineering, and he is the Vice
Dean of the College of Information Science and

Technology, Donghua University, Shanghai. His research interests include
capacity scaling of wireless networks, vehicular networks, smart microgrid,
and mobile-edge computing.

Prof. Zhang serves as a Technical Program Committee Member for IEEE
Globecom 2016–2017, IEEE ICC 2014, 2015, and 2017, IEEE VTC2017-
Fall, IEEE/CIC ICCC 2014, WCSP 2014, APCC 2013, and WASA 2012.
He serves as the Local Arrangement Chair for ACM TURC 2017 and the
Vice TPC Co-Chair for ACM TURC 2018. He serves as an Editor for China
Communications and Journal of Communications and Information Networks.

Shiwen Mao (Fellow, IEEE) received the Ph.D.
degree in electrical engineering from Polytechnic
University, Brooklyn, NY, USA, in 2004.

After joining Auburn University, Auburn, AL,
USA, in 2006, he held the McWane Endowed
Professorship from 2012 to 2015 and the Samuel
Ginn Endowed Professorship from 2015 to 2020
with the Department of Electrical and Computer
Engineering. He is currently a Professor and the
Earle C. Williams Eminent Scholar, and the Director
of the Wireless Engineering Research and Education

Center, Auburn University. His research interests include wireless networks,
multimedia communications, and smart grid.

Prof. Mao received the Southeastern Conference 2023 Faculty Achievement
Award for Auburn, the IEEE ComSoc MMTC Outstanding Researcher Award
in 2023, the IEEE ComSoc TC-CSR Distinguished Technical Achievement
Award in 2019, the Auburn University Creative Research and Scholarship
Award in 2018, the NSF CAREER Award in 2010, and several service awards
from IEEE ComSoc. He is a co-recipient of the 2022 Best Journal Paper
Award of IEEE ComSoc eHealth Technical Committee (TC), the 2021 Best
Paper Award of Elsevier/KeAi Digital Communications and Networks Journal,
the 2021 IEEE INTERNET OF THINGS JOURNAL Best Paper Award, the
2021 IEEE Communications Society Outstanding Paper Award, the IEEE
Vehicular Technology Society 2020 Jack Neubauer Memorial Award, the
2018 Best Journal Paper Award and the 2017 Best Conference Paper Award
from IEEE ComSoc Multimedia TC, and the 2004 IEEE Communications
Society Leonard G. Abraham Prize in the Field of Communications Systems.
He is a co-recipient of the Best Paper Awards from IEEE ICC 2022 and
2013, IEEE GLOBECOM 2023, 2019, 2016, and 2015, and IEEE WCNC
2015, and the Best Demo Awards from IEEE INFOCOM 2022 and IEEE
SECON 2017. He is the Editor-in-Chief of IEEE TRANSACTIONS ON

COGNITIVE COMMUNICATIONS AND NETWORKING and an Area Editor
of ACM GetMobile. He is the General Chair of IEEE INFOCOM 2022,
a TPC Chair of IEEE INFOCOM 2018, the TPC Vice-Chair of IEEE
INFOCOM 2015, and the TPC Vice Chair of IEEE GLOBECOM 2022. He is
a Distinguished Lecturer of the IEEE Communications Society and the IEEE
Council of RFID.

Authorized licensed use limited to: Auburn University. Downloaded on January 13,2025 at 20:55:06 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

