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Abstract—Nonintrusive load monitoring (NILM) is to obtain
individual appliance’s electricity consumption from aggregated
smart meter data. In this article, we propose a middle window
transformer model, termed Midformer, for NILM. Existing mod-
els are limited by high computational complexity, dependency
on data, and poor transferability. In Midformer, we first exploit
patchwise embedding to shorten the input length, and then reduce
the size of queries in the attention layer by only using global
attention on a few selected input locations at the center of the
window to capture the global context. The cyclically shifted win-
dow technique is used to preserve connection across patches. We
also follow the pretraining and fine-tuning paradigm to relieve the
dependency on data, reduce the computation in modeling train-
ing, and enhance transferability of the model to unknown tasks
and domains. Our experimental study using two real-world data
sets demonstrates the superior performance and transferability
of Midformer over three baseline models.

Index Terms—Attention, nonintrusive load monitoring
(NILM), smart home, transferability, transformer.

I. INTRODUCTION

THE RECENT advances in the Internet of Things (IoT)
allow the deployment of uniquely identifiable objects that

are organized in an Internet-like structure to enable smart
homes to monitor, control, and manage house appliances [1].
The communication paths constructed by the IoT integrate
smart meters, home appliances, and renewable energy, in a
home energy management system (HEMSs) [2], [3]. With
more and more IoT-enabled technologies being developed and
deployed, the HEMS system will become more sustainable,
more resilient, and more energy efficient [4].

One important application of the IoT in HEMSs is load
monitoring. The built-in sensors in appliances provide individ-
ual appliance’s energy consumption information to the HEMS
in real time, which can be analyzed to optimize the energy
usage and achieve energy savings. However, there are sev-
eral practical issues that need to be addressed. First, electrical
appliances typically last up to decades. As a result, a household
typically include both old and new generations of appliances.
The legacy appliances may not be equipped with smart sensors
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and their electricity consumption data are usually hard to
measure. Second, the cost of installing sensors to legacy appli-
ances could be high, including both the sensor and installation
cost, as well as the power usage cost. Third, consumers are
more and more concerned about their privacy; they may not be
willing to share the information about their appliances’ power
consumption.

Nonintrusive load monitoring (NILM), which is to identify
individual appliance’s electricity consumption from the given
aggregated smart meter data, provides a useful solution to the
above problems [5]. Recently, deep neural networks (DNNs),
such as convolutional neural networks (CNNs) and recurrent
neural networks (RNNs), have been shown effective to address
the NILM problem. Since 2017, the Transformer [6] and its
variants have dominated the field of natural language process
(NLP), achieving superior performance for tasks such as lan-
guage translation, text analytics, smart assistants, and so on.
This is largely due to Transformer’s capability of using the
attention mechanism to capture the long-range dependency in
sequential data. For computer vision (CV) tasks, the vision
transformer (ViT) [7] has been shown to outperform the pop-
ular CNN model. In our recent work [8], a deep spatiotemporal
attention approach was developed to forecast the tempera-
ture of stored grain using meteorological data. Such successes
in NLP, CV, and other fields have attracted researchers to
investigate Transformer’s application to the NILM problem.

Although some recent preliminary studies have
demonstrated the high potential of the Transformer for
NILM [9], [10], there are still many challenges remain to
be addressed. First is the tradeoff between computational
complexity and the ability to track long-range dependency
in energy consumption data, which usually contains rich
daily, seasonal, and even annual patterns. The self-attention
mechanism is the core of Transformer, which has a quadratic
time complexity with regard to the input sequence length [11].
Low-complexity models are thus desirable to allow longer
input sequences. Second is the dependency on data. Like
most deep learning (DL) models, the Transformer requires
a large amount of high quality labeled data for training,
specifically, each individual appliance’s power consumption
data. The cost of data collection, e.g., submetering, could be
high. In addition, many users are unwilling to share their
appliance’s information due to concern of privacy breach.
Third is the generalization or transferability of the well-
trained Transformer model. The existing Transformer-based
NILM methods are trained and tested on the same data set,
or assume the training and testing sets share similar data
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distribution. The transferability of the models have not been
fully investigated, including testing across different appliances
and/or across different data sets. NILM models with strong
transferability are useful to achieve accurate predictions
for different, unseen houses, different models or brands of
appliances, various aging degrees of electronic circuits, and
different residents daily habits and usage behavior [2].

In this article, we propose a middle window transformer
model, termed Midformer, for NILM, which incorporates sev-
eral novel designs and follows the pretraining and fine-tuning
paradigm to address the above problems. To deal with the com-
putational complexity issue, Midformer is designed as a more
efficient Transformer variant tailored to the characteristics of
the NILM problem. Specifically, we utilize patchwise atten-
tion in Midformer, which reduces the input length compared to
pointwise attention used in existing models [9], [10]. We fur-
ther apply the cyclically shifted window technique to increase
the receptive filed. The drawback of patchwise attention is that
it ignores the connection across patches. In Midformer, we
feed both cyclically shifted input and the original input into
the attention layer to preserve the connection across patches.
To reduce computation, we only calculate full attention using
the middle range of the input, instead of using the entire input.
This allows Midformer to focus on the middle range of the
input and achieve a linear time complexity with respect to the
input length (i.e., the window size).

To address the transferability issue and reduce the depen-
dency on data, we follow the pretraining and fine-tuning
paradigm. First, we pretrain multiple transformers (for dif-
ferent appliances) by using one data set. Then, we test the
performance of the trained models on unseen data in the same
data set. Next, we examine the relationship among different
appliances, i.e., could a model pretrained using one appliance’s
data in a house be used to predict the power usage of another
appliance in another house? D’Incecco et al. [12] used the
model learned from washing machine data to predict the power
consumption of other appliances. In this article, we obtain
the pretrained model (including CNN, RNN, Transformer, and
the proposed Midformer) for five appliances (including ket-
tle, dishwasher, fridge, washing machine, and microwave). We
then fine-tune and test the pretrained model on a different
data set including the same and different appliances’ data.
With this approach, models do not need to be retrained from
scratch for unknown houses and unseen appliances, and can
quickly adapt to new tasks with few-shot fine-tuning due to
the well initialized parameters in the pretrained models. This
way, the computation in modeling training can be reduced and
the dependency on data can be relieved.

We evaluate the performance of the proposed Midformer
model using two real-world data sets and compare it with
three baseline models, including CNN, RNN, and Transformer.
Our experimental study demonstrates the superior performance
and great transferability of the proposed Midformer model for
NILM problems over the state-of-the-art baseline models.

We organize the remainder of this article as fellows. We
introduce the related work in Section II. In Section III, we
formulate the NILM problem and introduces the preliminaries
of Transformers. In Section IV, we present the proposed

transformer method Midformer. We present the data sets
and experiment setup, and discuss the experimental study in
Section V. Finally, Section VI concludes this article.

II. RELATED WORK

A. Nonintrusive Load Monitoring Models

In the literature, many prior studies have developed
approaches for solving the NILM problem, which can be
mainly divided into two categories: 1) unsupervised learn-
ing and 2) supervised learning methods. In this section, we
will briefly introduce the existing solutions for NILM; more
detailed reviews of the different approaches applied to solving
NILM can be found in [5], [13], and [14].

1) Unsupervised Learning: Unsupervised learning has the
unique strength of not requiring labeled data. The addi-
tive factorial hidden Markov model (AFHMM) is one of
the most widely used unsupervised learning approaches for
NILM [15]–[18], which converts time series data into hidden-
Markov models and Bayesian models to infer the possible
states of different appliances. Another method of unsupervised
learning approach is the graph signal processing (GSP)-based
method, which has also been shown to be quite effective for
NILM [19], [20]. The main drawbacks of these methods is
that the prior domain knowledge needs to be provided, and
such schemes may not perform well for solving problems that
have a large number of appliances [12].

2) Supervised Learning: Supervised learning aims to learn
a function, which maps an input to an output, from given
input–output examples, i.e., labeled data. In the literature, var-
ious supervised learning methods have been applied to solving
the NILM problem, such as support vector machine [21],
decision tress [22], K-nearest neighbors (k-NN) [23], and
so forth. Recent works in this area demonstrate the promise
of entirely DL approaches, such as CNNs [24]–[27], long
short-term memory (LSTM) or its variant gated recurrent
units (GRUs) [28]–[31], and denoising autoencoder [32], [33].
The main limitation of supervised learning (machine learning)
method is that it requires large amounts of high-quality train-
ing data. Such approaches usually require high computational
power and storage capacity.

B. Transfer Learning for NILM

Most of the approaches applied to the NILM problem are
carried out on the same data domain, which means the model
is trained and tested using the same appliance’s data in the
same data set. Very few previous studies have addressed the
study of generalizability of the NILM models, also referred to
as the transferability of the pretrained models. For example,
Murray et al. [34] trained two different networks based on
CNNs and RNNs, respectively, by using one of the three data
sets and verify the models’ transferability as well as general-
ization through the other data sets. However, the stability of
the trained models is unsatisfactory due to the different data
distributions in different databases, which lead to the poor
domain adaptation performance.

To address this problem, D’Incecco et al. [12] pretrained
their sequence-to-point (seq2point) learning model using the
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washing machine data in one specific data set, and then tested
their pretrained model on data of different appliances in dif-
ferent data sets. Fine-tuning, which is to train the pretrained
model using a small amount of examples from the testing
data set [2], was applied to adapt the pretrained model to the
difference between the different training and testing domains.
However, the distribution of data used in fine-tuning was quite
different from that of the tested house data, which led to the
negative transfer effect. The generative adversarial networks
(GANs) model has been applied to address the domain adapta-
tion problem in NILM as well [35], [36], which was to train the
feature generator and the domain discriminator in the adversar-
ial manner. The limitation of this method is that training GANs
requires finding a Nash equilibrium of a nonconvex game
with continuous high-dimensional parameters, which could fail
to converge [37], [38]. Our previous work [2] developed a
metalearning-based approach and an ensemble-learning-based
approach that require fewer new data for adaptation, and
can quickly adapt to new NILM tasks. However, we only
explored the transferability between different data sets of same
appliance in [2].

C. Transformer-Based NILM Models

Motivated by the success of the Transformer architecture
in many domains, most importantly in NLP [6], the self-
attention1 based Transformer has recently been proposed for
NILM. The recent works [9], [10] both applied the atten-
tion mechanism to the feature maps extracted by CNNs to
solve NILM tasks. The main drawback of these preliminary
studies is that the computational complexity of self-attention
grows quadratically with window (i.e., input) size, which could
become a serious issue if the fixed window size is large.
Moreover, the generalization performance of these models
have not been verified through different data sets or appliances.

III. PROBLEM STATEMENT

A. NILM Problem

Consider a given collection of J time series
{y1(t), y2(t), . . . , yJ(t)}T

t=1 that record the energy con-
sumption of J appliances in a house over a period of time T;
and {yj(t)}T

t=1 represents the power consumption of the jth
appliance in the house. The aggregate power consumption
x(t) of the house at time t is calculated as follows:

x(t) =
J∑

j=1

yj(t) + e(t) (1)

where e(t) is the measurement noise at time t. The NILM
problem is to estimate the power consumption of an individ-
ual appliance from the given aggregate power consumption
of the entire house. It is also called energy disaggregation
since the goal is to separate the energy consumption measured
at the aggregate level to that of individual appliances. It is non-
intrusive since only the aggregate measurement is needed; and
there is no need for submetering.

1“An attention mechanism relating different positions of a single sequence
in order to compute a representation of the sequence [6].”

In NILM algorithms, to better handle the long time series
data, usually a sliding/rolling window setting is adopted over
the time series with a fixed window size, denoted by W, where
the sliding/rolling step size is one. Rather than predicting
a full window size of outputs, the NILM models often tar-
get at one single time instance (e.g., the middle point of the
window) to avoid redundant computation. This approach is
termed s2p learning [24]. Therefore, given input data of total
power consumption measurements over a window of size W,
i.e., x̃ = {x(1), x(2), . . . , x(W)}, the learning algorithm will
compute output ỹj(�W/2�), for all j.

B. Transformer and Multihead Self-Attention Mechanism

The Transformer model is based on the attention mecha-
nism to significantly enhance the performance of DL, which
computes the representation of a sequence by attending to
information at different positions from different representa-
tion subspaces [6], [39]. The main idea of this mechanism is
to learn an alignment between each element in the sequence
and others to decide which part of the sequence should be
paid attention to [40].

For a given input sequence I ∈ R
W×dmodel , where dmodel is

the dimension of each data sample (i.e., length of the encod-
ing vector), self-attention first transforms the input sequence
into three matrices with three learnable weights. These three
matrices are called queries, keys, and values, respectively, and
they have the same depth of dimension d. Next, the scaled
dot-product is computed, which is given by

Attention(Q, K, V) = softmax

(
QKT

√
d

)
V (2)

where Q = IWQ, K = IWK , and V = IWV , and WQ ∈
R

dmodel×d, WK ∈ R
dmodel×d, and WV ∈ R

dmodel×d are all train-
able parameters that are used to map the input I into the three
matrices Q, K, and V. The attention function (2) is similar to
nonlocal means, which can be described as mapping a query
and a set of key–value pairs to an output [6]. The weighted
sum of the values is computed as the output of attention, where
the weight is determined by the softmax score of the query
with the corresponding key.

In the Transformer model, the attention processor is also
called the attention head. Multihead self-attention computes
the self-attention score function describe in (2) on H different
linear projections of queries, keys, and values in parallel. Then,
the results are concatenated as follows:

MultiHead(I) = Concat

(
H∑

i=1

Attention(Qi, Ki, Vi)

)
(3)

where Qi = IWQ
i , Ki = IWK

i , and Vi = IWV
i . The

dimension of the learning parameters WQ
i , WK

i , and WV
i is

dmodel × di, where di = d/H. By combining several simi-
lar attention results, the attention will have stronger power of
discrimination.
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Fig. 1. Architecture of the proposed transformer-based approach, Midformer,
to NILM.

IV. PROPOSED MIDDLE WINDOW TRANSFORMER

APPROACH

In this section, we introduce our proposed Transformer-
based approach for NILM problems, which is termed middle
window transformer (Midformer). Fig. 1 illustrates the over-
all architecture, which consists of four main parts, including:
1) patch splitting and initializing; 2) cyclic shift window;
3) Transformer layers; and 4) concatenation. Our intuition of
designing this approach is to utilize the Transformer’s atten-
tion ability to model the long-range dependency in the energy
consumption data, while reducing the computational cost.

The existing methods [9], [10] exploit the attention mech-
anism for NILM by combining CNNs with forms of self-
attention. They first extract the feature map from input data
by using convolutional layers. The extracted feature map is
then fed into the Transformer layers. They both adopt global
full self-attention in their models, which has a computational
complexity that is quadratic to the size of the feature map. For
efficient modeling and computation, we leverage the technique
proposed in the ViT for image classification tasks [7], which
reduces the context length by partitioning images into small
patches and using the patches as input to the Transformer lay-
ers. A comparison of the existing approach and that adopted
in this article is presented in Fig. 2. In particular, Fig. 2(a)
shows the original pointwise attention projection method used
in existing NILM works [9], [10], while Fig. 2(b) illustrates
the patchwise attention projection method adopted in this arti-
cle. As shown in Fig. 2(a), when creating the attention matrix,
the input will first be mapped into a space of depth d, which
will then be used by the attention mechanism to calculate the
attention matrix. The length and width of the attention matrix
are the same as the depth of the space. From the comparison
figure, we can visually see that the patchwise attention incurs
significantly less computation than the pointwise attention as
the dimension of the attention matrix becomes much smaller.

A. Patch Splitting and Initialization

In the proposed Midformer model, the input I ∈ R
W×dmodel

is first split into a sequence of nonoverlapping patches of fixed-
size {I1, I2, . . . , Ik}, where Ii ∈ R

W/k×d, for 1 ≤ i ≤ k, and
k is the number of patches. Each patch contains W/k sam-
ples, and is fed into a neuron network to be projected into

(a)

(b)

Fig. 2. Comparing the pointwise and the patchwise attention pattern.
(a) Global full self-attention. (b) Attention after splitting the input into small
patches.

a d-dimension vector. Different from [9] and [10], before the
input data are passed into the Transformer blocks, we do not
need the convolutional layers to extract the feature map and
increase the hidden size of the input sequence. This part of
essential operation is replaced by individual neuron networks
that project the patches. We also add position embedding to
the projection to maintain position information in the data.
The output of this projection is referred as patch embeddings.

B. Window Shifting

The patchwise self-attention splits the input series of sam-
ples into nonoverlap patches. However, this approach breaks
the data correlation at patch boundaries and ignores the con-
nection across patches, which limit its modeling power. In
order to capture the connection across patches while still
maintaining the computational efficiency of nonoverlapping
patches, we apply the shifted window technique to broaden
the receptive field, which is inspired by [41]. As illustrated in
Fig. 1, we cyclically shift the input I ∈ R

W×dmodel to the right
for W/(2k) positions (i.e., half of the patch size); the right-
most half-patch of samples are moved to the left-most part of
the window. The patches obtained from the cyclically shifted
window of data are also fed into patch embeddings as well,
to create a patchwise feature map as shown in Fig. 1.

C. Transformer Layers

The two feature maps created by patch embeddings are then
fed into the Transformer layers. We equally split the H heads
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Fig. 3. Comparison of transformer and the proposed Midformer approach.

into two parallel groups, where each group has H/2 heads
(assume that H is an even number). One group accepts the fea-
ture map created from the original input, and the other group
accepts the feature map created from the shifted input.

We follow the Transformer layer designed in [6], which
consists of a multihead attention layer and multilayer percep-
tion (MLP) layer. A LayerNorm (LN) layer is applied after
each attention layer and the MLP layer. A residual connec-
tion is used from the input to the first LN layer, and from the
first LN layer to the second LN layer. The architecture of the
original Transformer model is shown in the left plot in Fig. 3.

We further enhance the existing Transformer layer and pro-
pose the Midformer layer, to achieve reduced computation
complexity. The idea is simple: we only apply global atten-
tion on N (e.g., N = 3) input patches in the middle range of
the window as queries, which is illustrated in the right plot
in Fig. 3. The reason why we reduce the number of queries
is that, most NILM models (e.g., s2p [12]) only predict the
appliance’s power usage at the center position of the window.
The middle range area of the window is where we should
focus on. By reducing the number of queries, the complexity
of the attention mechanism can be greatly reduced. It is worth
noting that only the number of queries is reduced here, and
the number of key–value pairs remains unchanged, which is
fundamentally different from simply using a smaller window
size W and then calculating the full attention. This tech-
nique contributes to the class of position-based sparse attention
schemes, which reduce the required computations by limiting
the number of query–key pairs that each query attends to [42].

D. Concatenation

Finally, an MLP (i.e., a fully connected layer) is utilized
to concatenate the outputs of the two groups of Transformer
blocks. The final MLP would restore the concatenated fea-
ture maps to the desired output size, which is one for NILM
problems.

E. Computational Complexity Analysis

Supposing each input’s dimension is W × dmodel, the patch
size is W/k, the learnable parameter’s dimension is dmodel ×d,
and the number of queries used in the Midformer layer is N.
The computational complexity of the global Multihead Self-
attention module in each layer is O(W2 · d). The high cost of

computing the global limits its ability to handle the usually
large window sizes in NILM problems. However, with the
proposed Midformer model, the computational complexity of
the multihead self-attention module is reduced to O(N/k·W·d).
In the Midformer design, both N and k are set proportional to
the window size W (e.g., k = W/9 and N = k/3 = W/27 in
our experiments). Therefore, the computational complexity of
Midformer is now linear to the window size W.

V. EXPERIMENTAL STUDY

In this section, we introduce the data sets and the
system configuration used in our experiments to evaluate the
performance of the proposed Transformer model. We then
present our experimental study of the proposed model and
compare it with three baseline models.

A. Data Sets

We use two real-world data sets: 1) the REFIT data set [43]
and 2) the UKDALE data set [44] to evaluate the performance
of the proposed energy disaggregation method. The REFIT and
UK-DALE data sets are both recorded in England. They both
provide house-level aggregate energy consumption as well as
individual appliances’ power consumption data. In particular,
the REFIT data set consists of data from 20 households. Both
the aggregate and appliance levels’ data were recorded every
8 s from September 2013 to July 2015. The UKDALE data
set includes data from five houses. Each house’s aggregated
energy consumption was recorded every 1 or 6 s, and the
appliance level data was measured every 6 s. In order to be
consistent with data in different data sets, the aggregate level
and appliance level data are downsampled to 8 s. Standard
score normalization is applied in data preprocessing; each sam-
ple x in the data set is normalized as x̂ = (x − x̄)/S, where
x̄ is the sample mean and S is the sample standard deviation.
We follow the approach in [12] to set the sample mean and
sample standard deviation values for each appliance.

Following the approach in our recent work [2], for pretrain-
ing, we use a large-scale NILM data set: i.e., the REFIT data
set. Specifically, we use the data from three houses as the
pretraining set and the data from two other houses as the test-
ing set for each appliance. The specific houses used and the
amount of data from REFIT used to pretrain the model are
summarized in Table I. We then use the UKDALE data set
to evaluate the generalization of the models. We use only a
small part of the data in House 2 of the UKDALE data set to
fine-tune the pretrained model and the rest of the unseen data
of House 2 to test the performance of the fine-tuned pretrained
model. There is no overlap between the testing data and the
fine-tuning data. The detailed information of the house and
data from the UKDALE data set used in our experiment is
summarized in Table II.

B. Model and Experimental Setup

Next, we introduce the experimental setup and the mod-
els used to address the NILM problem. The following three
baseline models are evaluated for comparison purpose.
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TABLE I
APPLIANCES AND HOUSES USED IN THE REFIT DATA SET [43]

TABLE II
APPLIANCES AND HOUSES USED IN THE UKDALE DATA SET [44]

1) s2p [12]: This baseline model uses the same structure
of the s2p method as in [12].

2) Bidirectional Gated Recurrent Units (Bi-GRU) [30]:
This baseline model utilizes Bi-GRU, rather than LSTM,
to reduce the amount of model parameters while main-
taining a similar performance as the RNN model.

3) Transformer (Transformer) [6]: This is the traditional
Transformer model. It has the same hyper-parameters
as the Midformer model proposed in this article, which
are summarized in Table III.

Note that comparisons between the s2p model and other tradi-
tional machine leaning methods have been presented in [12],
including AFHMM, RNN, sep2sep, GRU, etc., where the s2p
model achieves the best performance. Therefore, we choose
s2p as a benchmark scheme in this article.

All the models are implemented using TensorFlow 2.6.0 and
trained on NVIDIA RTX 2070 Mobile. We pretrained all the
models using the ADAM optimization algorithm [45] with a

TABLE III
HYPER-PARAMETER SETTING OF MIDFORMER

maximum of 50 gradient updates. We update the weights with
a learning rate of 0.001 and use a minibatch size of 100. Both
Midformer and Transformer incorporate 2–4 attention layers.
The projected dimension of Midformer is d = 64, and the
number of heads is H = 8. The number of patches is fixed at
k = 3, 9, 11, 99. Table III describes the detailed information
of the hyper-parameters.

We fine-tune the pretrained model using the stochastic gra-
dient descent (SGD) method with a momentum of 0.9 and a
learning rate of 0.01.

C. Performance Metrics

We use two metrics to evaluate the performance of the
proposed Transformer model, which are the mean absolute
error (MAE) and the signal aggregate error (SAE). These two
metrics are defined as follows:

MAE = 1

T

T∑

t=1

∣∣ŷj(t) − yj(t)
∣∣ (4)

SAE = 1

rj

∣∣r̂j − rj
∣∣ (5)

where T is the duration of the period used to predict the output;
yj(t) is the ground truth of power consumption of appliance j
and ŷj is the predicted value by the NILM models; and r̂j and
rj are the predicted total energy consumption and the ground
truth of appliance j over period T , respectively.

D. Experimental Results and Discussions

Three scenarios are designed and examined in our experi-
mental study, which are as follows

1) The pretrained model is evaluated on the same appliance
in the same data set.

2) The model is applied to a different data set but on the
same appliance.

3) The model learned using one appliance in one data set
is evaluated on other appliances in a different data set.

Multiple cases are examined, which belong to these three
scenarios and use the data from the two public data sets.

1) REFIT Data Set: The results in terms of the evaluation
metrics on the REFIT data set are represented in Table IV,
which covers Scenario 1) described above. In this experiment,
models for each appliance is pretrained using the REFIT train-
ing set. Next, the data for the same appliance from two unseen
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TABLE IV
MODEL PERFORMANCES ON THE REFIT DATA SET

houses are used to evaluate the pretrained model. For exam-
ple, for kettle, the labeled kettle data from Houses 5, 7, and 13
are used to pretrain the models, and then the kettle data from
Houses 9 and 20 are used to test the pretrained models, while
all the houses belong to the same REFIT data set. Table IV
shows that the proposed Midformer model achieves both lower
MAE and SAE in most cases (i.e., 6 cases out of 10 for MAE
and 7 cases out of 10 for SAE). The average MAE and SAE
values are averaged over the two houses. Our model achieved
the best MAE results in all the cases, as well as the best SAE
results for all the cases except for fridge. Compared to the
baseline model s2p [12], the MAE reductions for kettle, dish-
washer, washing machine, microwave, and fridge are 35.21%,
18.23%, 16.54%, 9.35%, and 3.80%, respectively.

Fig. 4 presents the execution times of different models
for training per epoch under different window sizes. The
Transformer and Midformer models both have two attention
layers. The training set includes 100K samples. From the fig-
ure, we can see that the s2p model [12] uses the least amount
of time; our proposed model uses the second least amount of
time. The traditional Transformer model, which has the same
number of layers as Midformer, consumes the longest time
for training. The Bi-GRU model [30] uses less training time

Fig. 4. Execution times of s2p [12], Bi-GRU [30], transformer (full
attention) [6], and Midformer on the training set.

Fig. 5. MAEs obtained by Midformer models with different window sizes
by testing the kettle in House 9 and the washing machine in House 15. The
number of patches is set to 11.

TABLE V
BEST NUMBER OF PATCHES AND THE BEST PATCH SIZE UNDER

DIFFERENT WINDOW SIZES (WASHING MACHINE)

TABLE VI
ABLATION STUDY: MAE RESULTS

than Transformer for most of the window sizes (except for
W = 100K). However, it is still more time consuming, thank
both s2p and Midformer. Considering the time and accuracy
factors together, our proposed Midformer model consumes
very little time for training and achieves the highest accuracy.

Next, we conduct an ablation study to further investigate
the effectiveness of the proposed model. For brevity, we only
present the results using the first week of the testing set. The
window size and the number of patches are important parame-
ters in our model structure. Fig. 5 presents a comparison of the
MAEs obtained by Midformer models with different window
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TABLE VII
RESULTS OF THE PRETRAINED MODEL WITHOUT FINE-TUNING TESTED ON THE UKDALE DATA SET

Fig. 6. MAEs achieved by Midformer models with different numbers of
patches for washing machine, when the window size is set to 693.

sizes for the kettle in House 9 and the washing machine in
House 15. The figure shows that the best window size for
each appliance is different, which is 99 for kettle and 693 for
washing machine. An overly large window size might hurt the
disaggregation performance and increase the model’s training
time. Choosing a proper window size is vital for saving the
training cost. Note that the unique windows size for differ-
ent appliances limits the transferability of a trained model to
different appliances. Therefore, during the fine-tuning process
in the following part of the experiments, we adopt the same
window size of the pretrained model for the fine-tuned model.
We will explore the problem of transfer learning with different
window sized models in our future work. Fig. 6 illustrates the
effect of the number of patches on the model performance. We

use washing machine as the subject of this study and the win-
dow size is set to 693. The figure shows that the best number of
patches for washing machine is 11. We further test the wash-
ing machine model with different window sizes and different
patch numbers. Table V shows the best number of patches
and the best patch size for each given window size (i.e., 99,
297, and 693), as well as the best MAE result. We find that
a larger window size requires a larger patch size accordingly
to achieve the best performance.

We next study the impact of window shifting on the
Midformer performance. The results are given in Table VI,
which is obtained for the washing machine in House 15 with
a window size of 693 and a patch size of 63. We replace the
cyclically shifted window with unshifted Transformer blocks,
and find the performance drops by 6.67%.

2) UKDALE Data Set: In this experiment, we verify the
transferability performance of the pretrained model across
different domains (i.e., different data sets and appliances).
We first fine-tune the pretrained model, which was originally
learned using one appliance in the REFIT data set, with a
small portion of new data from the UKDALE data set, and
then use the test set of UKDALE to verify the performance of
the model on the same or different appliance (see Table II).
These experiments cover Scenarios 2) and 3) described above.

The performance of the pretrained models on the unseen
UKDALE data set is presented in Tables VII and VIII.
Table VII are the results of the pretrained models without
fine-tuning, while Table VIII are the results of the pre-
trained models after fine-tuning, on the same appliance or
an unseen appliance. The first column of the tables indicates
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TABLE VIII
RESULTS OF PRETRAINED MODEL WITH FINE-TUNING TESTED ON THE UKDALE DATA SET

the appliance and data set learned by the pretrained model.
The second column indicates the unseen test data set and
corresponding appliances (same or different). The remaining
columns are the MAEs and SAEs achieved by the four models.

From Table VII, we can see that the results of the pre-
trained models without fine-tuning have relatively large errors.
When the pretrained model uses the same appliance as the test
appliance, the test results are better than that using a differ-
ent appliance. Except for the Bi-GRU [30] model, the other
three models achieve similar MAE and SAE values, which are
around 85 and 3, respectively.

From Table VIII, it is obvious that fine-tuning has been very
effective in reducing the error of all the models on unseen data
set and appliances, since both the MAEs and SAEs of all the
models are greatly improved. For example, the average MAE
of Midformer is reduced from 84.566 to 7.121, and the aver-
age SAE is reduced from 2.586 to 0.056, after fine-tuning
(huge improvements). In the table, the bold numbers in each
row indicate the best result among the four models obtained
for the test set when using a pretrained model of a particu-
lar appliance. For example, for pretrained model using kettle
in REFIT and the target appliance kettle in UKDALE, the
Midformer model achieves the smallest MAE of 4.183 and
the smallest SAE of 0.041. The number marked by symbol
“†” indicates the best model for that target appliance among
all the pretrained models. For example, for the target appli-
ance kettle, the pretrained model of Midformer learned from

the source appliance dishwasher achieves the best MAE of
3.837. To better present the results, we have summarized such
information in Table IX.

We can make the following observations from these results.
1) The proposed Midformer model outperforms all other

models on average and in most specific cases.
2) Our proposed model achieves superior transferability

performance, which means we can use the pretrained
Midformer model using one appliance for all other tar-
get appliances, resulting greatly reduced cost for model
pretraining.

3) In most cases, the best result for a target appliance
is obtained with the model pretrained using the same
appliance.

The best pretrained model for fridge, washing machine, and
microwave in the UKDALE data set is the model learned from
the same appliance in the REFIT data set, respectively. This
is intuitive since the pretrained model will perform well if the
test data and training data share similar features. In Table IX,
the proposed Midformer model accounts for four of the five
best results of transfer learning.

The predicted power consumption values of House 2 in the
UKDALE data set for the five appliances obtained by the four
pretrained models on the REFIT data set (i.e., s2p, Bi-GRU,
Transformer, and Midformer) for a specific time period are
plotted in Fig. 7, along with the corresponding ground truth
values. Note that the “Aggregate” values are the input to these
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(a)

(b)

(c)

(d)

(e)

Fig. 7. Comparison of predicted power consumption values by Midformer,
Transformer, s2p, and Bi-GRU for the five appliances, along with the ground
truth values. (a) Kettle. (b) Dishwasher. (c) Fridge. (d) Washing machine.
(e) Microwave.

models to be disaggregated into individual appliance’s power
consumption. The figure shows that the proposed Midformer
model achieves the best performance compared to the three

TABLE IX
BEST PRETRAINED MODEL FOR THE UKDALE TEST SET

baseline models, except for the dishwasher (which is consis-
tent with the results in Table IX). The Bi-GRU model fails
to predict the washing machine’s power state at some time
instances, i.e., the washing machine’s state is on, but it is
predicted as off [see Fig. 7(d)].

VI. CONCLUSION

In this article, we proposed the Midformer model to tackle
the NILM problem. We utilized patchwise attention and
reduced the query size to reduce the quadratic time complex-
ity in traditional Transformer models to linear complexity. We
also focused on the transferability performance of the models,
which helped to reduce the model training cost and eased the
deployment of the model in various environments. Our exper-
imental study using two real-world data sets demonstrated
the superior performance and stronger transferability of the
proposed Midformer model over three baseline, state-of-the-art
models on addressing the NILM problem.
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