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Abstract—In this article, we present a Q-learning-enabled safe
navigation system—S-Nav—that recommends routes in a road
network by minimizing traveling through categorically demar-
cated COVID-19 hotspots. S-Nav takes the source and destination
as inputs from the commuters and recommends a safe path
for traveling. The S-Nav system dodges hotspots and ensures
minimal passage through them in unavoidable situations. This
feature of S-Nav reduces the commuter’s risk of getting exposed
to these contaminated zones and contracting the virus. To achieve
this, we formulate the reward function for the reinforcement
learning model by imposing zone-based penalties and demon-
strate that S-Nav achieves convergence under all conditions. To
ensure real-time results, we propose an Internet of Things (IoT)-
based architecture by incorporating the cloud and fog computing
paradigms. While the cloud is responsible for training on large
road networks, the geographically aware fog nodes take the
results from the cloud and retrain them based on smaller road
networks. Through extensive implementation and experiments,
we observe that S-Nav recommends reliable paths in near real
time. In contrast to state-of-the-art techniques, S-Nav limits pas-
sage through red/orange zones to almost 2% and close to 100%
through green zones. However, we observe 18% additional travel
distances compared to precarious shortest paths.

Index Terms—Fog computing, hotspots, Internet of Things
(IoT), path planning, Q-learning model, reinforcement learning
(RL), shortest path.

I. INTRODUCTION

THE COVID-19 virus has spread throughout all major
countries with an explosion in the number of infected

individuals. The small size and intangible nature of the virus
have led to an uncontrollable spread across the world, result-
ing in creation of COVID-19 hotspots. Since contact tracing
in these areas is challenging [1], the concerned authorities
identify these hotspots and categorize them as red, orange, or
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Fig. 1. Road route planning in presence of hotspots marked as red, orange,
and green zones.

green zones. These zones are classified based on the severity
of the spread, and the restrictions in each zone vary accord-
ingly. Although the conditions are adverse, people need to
commute from one place to the other regularly for work
and basic amenities. Safe Transportation is a concern at this
moment, and avoidance of hotspots is of paramount impor-
tance. Conventional route-finding methods, such as shortest
path and optimized path algorithms [2] do not suffice in find-
ing safe routes in COVID-19 environments. However, a road
map consists of a complex network of multiple routes from a
particular source (S) to a destination (D). In such situations,
intelligent routines that recommend routes that bypass hotspots
or minimize passage through them is necessary for ensuring
the safety of the people.

In this work, we propose and develop a Q-learning-based
smart navigation system—S-Nav—that avoids COVID-19
hotspots according to the category of the zones for ensur-
ing the safety of the commuters. S-Nav takes S and D as
inputs from the users/commuters and recommends a safe path
(S-Nav path) that—1) is optimal and 2) minimizes travel-
ing through the hotspots. To achieve this, we design the road
route recommender system by formulating rewards based on
the categorical hotspot zones in a road map like the one in
Fig. 1. We also ensure minimal exposure by minimizing the
travel distance through the zones. In summary, we account
for the category of the zones and the travel length in each
zone. In addition to the need for safe routes in road networks,
real-time results are also essential in mobile environments.
However, Q-learning methods depend on matrix-based oper-
ations, which are relatively time consuming, specifically for
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large road networks. Since the Internet of Things (IoT)-based
solutions have the potential to overcome such issues [3], we
propose a distributed architecture for our system by adopting
cloud and fog computing paradigms to reduce the computation
time in S-Nav. We execute a preliminary road learning rou-
tine on the cloud servers for large road networks (cities/states)
and forward the trained model to the fog nodes (FNs). The
FNs then sight attention to granular details and retrain them
based on designated geographical regions. Since FNs are usu-
ally resource constrained, it is suitable to execute S-Nav on
small-scale road networks. Additionally, the FNs are closer
to the commuters, which helps in reducing latency. The FNs
may also keep track of the changing categories of zones and
update its database accordingly. In case an area has no FNs,
the commuters may receive the recommended routes directly
from the cloud with some additional delays. It may be noted
that the proposed S-Nav system may extend to any applica-
tion that involves the need to avoid traveling through certain
zones/regions. These may include hazards, such as, but not
limited to, radiations, poisonous gas leaks, oil tank blasts, pan-
demics, riots, blockages, and others. In this work, we choose
the COVID-19 scenario because of: 1) the need of the hour
and the urgency to restrict the spread of the COVID-19 virus
and 2) a proof of concept to show the feasibility of S-Nav.

Example Scenario: We illustrate the working of the
proposed S-Nav system by considering a commuter who
needs to travel from location A to B in the map in Fig. 1.
Conventional road route planning techniques may recommend
an optimal path [Route 1 in Fig. 1] based on the distance and
traffic conditions. However, this path may pass through one of
the categorical hotspots, which exposes the commuter to the
threat of contracting the COVID-19 virus. In such scenarios,
the path recommended by S-Nav (Route 2 in Fig. 1) helps
in avoiding the risky zones and ensures safe travel, reducing
the risk of exposure. Additionally, as we design the execu-
tion and response to navigation requests from the FNs close
to the commuters, the S-Nav system recommends routes in
near real time. Additionally, pretrained models from the cloud
also help ensure low retraining time at the FNs and fast local
convergence (geographical region).

A. Difference of S-Nav From Commercial Navigation Tools

Some of the most commonly used applications are Google
Maps, Apple Maps, BackCountry Navigator, HERE WeGo
Maps, and others. Apart from their uniqueness in features,
such as online/offline, personalization, and visualization, these
applications typically focus on road traffic, blockage, speed,
and distance for finding the shortest/optimized route from
source to destination. Such methods are not suitable for use
in the current scenario of COVID-19. The commuters need
to avoid traveling through hotspots to reduce exposure. S-Nav
recommends paths that bypass traveling through hotspots. In
unavoidable situations, S-Nav ensures minimal travel through
them.

B. Contribution

In this work, we propose and develop an IoT-based
system—S-Nav—for recommending safe road routes in a road

network by avoiding COVID-19 hotspots and ensuring the
safety of the commuters. Toward this, our specific set of
contributions are as follows.

1) S-Nav System: The proposed S-Nav is a Q-based rein-
forcement learning (RL) road route recommender system
for ensuring commuters’ safety from the COVID-19
virus while travelling.

2) Rewards: To ensure complete/partial avoidance of the
hotspot zones, we impose penalties based on the cate-
gory of the zones. We also ensure minimal travel through
the zones in case of unavoidable situations.

3) IoT-Based Architecture: To minimize the training time
and the time for delivering results, we adopt a fog-cloud
architecture for the S-Nav system.

4) Evaluation: To demonstrate the performance of the
proposed S-Nav system, we perform experiments
exhaustively and present results.

It may be noted that although we performed our experi-
ments on data sets based on real road maps, we annotated
the hotspots and their categories randomly before training and
implementation.

The remainder of this article is organized as follows. We
present some of the existing literature in Section II, followed
by the proposed method in Section III. We then present our
implementation setup and observations in Section IV, and
finally conclude in Section V.

II. RELATED WORK

Road route/path planning has been an area of great interest
among researchers. Apart from parameters, such as distance,
road route planning techniques also consider traffic, data
derived from GPS systems, and others to determine efficient
paths. In this section, we categorize and briefly describe some
of the existing route planning methods in literature.

A. Road Route/Path Planning Techniques

Da Silva et al. [4] proposed a method for localizing the
robots/devices and support them for navigation using Kinect
sensor and convolution neural networks (CNNs). Similarly,
Da Mota et al. [5] proposed a localization and navigation
tool using radio-frequency identification (RFID) and petri net
technologies. Zhou and Wang [6] designed a routing model
by considering intersection signals and real-time velocity of
the vehicle. The authors ensured reduced travel time and
energy consumption. Szucs [7] developed a model based on
Dempster–Shafer theory to calculate the uncertainty (road con-
ditions) in cost function while using Dijkstra’s algorithm.
Zhao et al. [8] built a two-step model (using K-path and
shuffled frog leaping algorithm) for dynamic path planning by
considering real-time traffic data and travel speed as param-
eters. Customer-centric routes have a unique impact than
conventional ones. It is essential to model the routes accord-
ing to the requests. Chen et al. [9] proposed a log C-means
clustering algorithm (LFCM) to form clusters based on driving
style. Then, they used the ant colony algorithm to calculate the
shortest path. Sun et al. [10] proposed a graph-based method
to minimize travel time by either recommending the shortest
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path or the best starting time using conventional and extended
Bellman–Ford algorithms. The authors considered the traffic
pattern and its history to recommend the starting time and
reduce the traveling time. Horváth et al. [11] used a tradi-
tional four-step model for dynamically assigning parameters
(traffic and user specifications) in two matrices to estimate an
efficient route. Liu et al. [12] designed an optimized path algo-
rithm based on RL (OPABRL) using prior RL and improvised
searched A* algorithm.

B. Fog Computing and IoT Solutions

Sun et al. [13] presented an IoT-based method for taking
decisions based on the past and present scenario in a smart
city as a connected community. The fog-cloud architecture
helps in load sharing for performing machine learning oper-
ations on resource-constrained FNs [14]. Ahmad et al. [15]
proposed a route recommender system for solid garbage col-
lection by waste carrier vehicles. They built the recommender
system by profiling the areas based on waste production rates.
Lv et al. [16] demonstrated how IoT systems have the potential
to monitor these routes and vehicles by using off-the-shelf sen-
sors for communicating with street lights and other stationary
units installed on the street. Xu et al. [17] proposed a crowd
evacuation recommender system in case of disasters. IoT solu-
tions also help guide and plan optimized routes for data traffic
in applications such as smart homes [18]. Zhu et al. [19]
exploited the features of Q-learning methods to schedule trans-
missions to ensure reliable exchange of data. Such methods
play an important role in sending decisions in real-time IoT
environments.

C. Synthesis

Route planning based on different parameters and under
various conditions is a well-explored field in the research com-
munity. As discussed in the previous sections, the existing
literature offers efficient route planning solutions. However,
there is a lacuna in the study. The existing solution tech-
niques typically focus on finding the shortest/optimal paths
between the source and destinations. Such methods are not
suitable for use in the current scenario due to the threat of the
COVID-19 virus. The commuters need to maintain social dis-
tancing and avoid traveling through zones that may be part of
the optimized routes to reduce exposure. Furthermore, train-
ing machine learning models takes significant time, which
opens the scope for distributed learning in fog/edge computing
platforms.

III. SYSTEM MODEL

In this section, we first present our network architecture.
We then briefly explain the need for RL in lieu of other solu-
tion techniques for determining the road routes in COVID-19
situations. We then present our formulations and algorithms
toward training and deployment of S-Nav.

A. Network Architecture

We consider an IoT-based network architecture, as shown
in Fig. 2 for realizing S-Nav. In this work, we consider a

Fig. 2. Network architecture for the S-Nav system.

scenario with a remote cloud server C and a set of FNs
F = {f1, f2, . . . , fn}. The cloud is responsible for computing
the paths for a wide area (cities/states) and for areas that are
devoid of FNs. On the other hand, we propose the use of
location-aware FNs for S-Nav. In other words, for a set of
geographical regions G = {g1, g2, . . . , gm} each of the FNs
is responsible for their own geographical area. This strategy
reduces the size of the map on the FNs, which is suitable for
the resource-constrained nature of the FNs. It may be noted
that we consider networking devices, such as switches, routers,
and others for assuming the role of FNs. Although the com-
munication among the FNs for information sharing is beyond
the scope of this work, we envision that each geographical
region is associated with only one FN, i.e., for fpq to be the
p th FN associated with q th geographical region,

∑
q fpq ≤ 1.

As C tries to train for a large region, and the FNs feed gran-
ular details with respect to the hotspots, the separation of the
tasks among the fog and cloud helps distribute the load along
with easy data management. Further, once the model is ready,
the FNs respond to requests from the set of users/commuters
U = {u1, u2, . . . , uk}. Since the FNs are closer to the users, the
delay in obtaining the recommended routes is minuscule [20].
It may be noted that the red zones are converted to orange
when there are no COVID-19 positive cases for 14 continu-
ous days, and its conversion to the green zone needs at least
28 continuous days with no positive reports. In this work, we
depend on some user intervention in this regard and allow only
concerned authorities to update the databases. In the extension
of this work, we plan to incorporate Web crawlers to update
the databases from reliable sites periodically.

B. Motivation of Using Reinforcement Learning

On the one hand, as the COVID-19 virus is spreading
rapidly, concerned authorities are successful in limiting the
spread on the other. Due to this handoff, the status of the
hotspots keeps changing at specific intervals. The criteria for
road routes need to change per the changing states of the
hotspots. In such scenarios, RL-based solutions give us the
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scope for imposing dynamic penalties for the hotspots. The
model then trains based on the updated penalties before rec-
ommending the safe paths with the motive to maximize the
rewards. RL also allows the model to learn from the actions
based on the outcome of past decisions. The feedback loop
plays a significant role in avoiding past mistakes and mak-
ing smart decisions. Furthermore, RL allows straightforward
updates in the system as the state of the zones change. Due to
these salient features, we use RL, particularly Q-learning, for
realizing S-Nav. Q-learning is an off-policy value-based RL
technique that does not depend on the conventional greedy
methods and estimates its reward for the future. In summary,
because of the feedback loop, Q-learning, changing status
of the hotspots, and nongreedy selection technique, we use
RL instead of other possible solution techniques. Another
attractive feature of using RL is that it is an online learn-
ing approach, which allows training the model across devices
in parts.

C. Road Network and Graph Generation

In this section, we explain the graph generation and then
navigation with respect to the network architecture explained
in Section III-A. For a geographic region (small/large), we
extract the road information and form a road network graph.
We represent it as G = < V, E > such that V is the set of
vertices representing the intersection points, and E is the set
of edges representing the roads. It may be noted that the cre-
ation of the network map from the maps is beyond the scope
of this work, and we rely on publicly available data sets for
the same. For the set of vertices V = {v1, v2, . . . , va} and cor-
responding edges E = {e1, e2, . . . , eb}, the final vertex–edge
pair representing the road route is < V∗, E∗ > ⊆ < V, E > .
The < V∗, E∗ > pair is user centric as it depends on the com-
muter’s source and destination. As mentioned in Section III-A,
C is responsible for G that spans over a large area, while the
FNs focus on only on its region of interest (ROI)/sector. In
case the source and the destination belong to different ROIs,
we execute the route-finding routine on C. In the future, we
plan to extend this work by enabling the FNs to communicate
with one another and perform virtual map stitching. We believe
processing in the FNs will incur less delay as compared to C.

D. Hotspot Category-Aware Rewards

As explained in Section III-C, we obtain G from the maps
to generate a reward matrix and process it on C or F to pro-
duce the safety-aware path (PS-Nav). For G = < V, E > , we
represent the length of the ith edge as edist

i = li and the set
of all distances as L = {l1, l2, . . . , lc}. We represent the max-
imum, minimum, and average of the distances in L as lmax,
lmin, and lavg, respectively. Since it is challenging to create
zones in < V, E > , we introduce a containment factor α to
represent the category of the containment zone that a road
passes through or belongs to. Thus, for a road/edge ei, its
containment factor is αi and the set of all containment factors
is α = {α1, α2, α3, . . . , αb} such that |E| = |α|. For instance,
the government has divided the regions into zones according
to three categories: 1) red zone (αr): regions that have a large

number of COVID-19 positive cases; 2) orange zone (αo):
regions with a relatively fewer number of COVID-19 cases
compared to the red zones; and 3) green zone (αg): regions
with no reported COVID-19 cases. In this work, we assign
low α values to edges belonging to zones with lower sever-
ity, implying that αg < αo < αr. In context of the mentioned
parameters, we formulate the reward of a path based on two
major components—1) path length or distance and 2) intensity
of containment. For rei as the reward associated with ei, we
calculate it as

rei = lmax

1 + e
lmin−li

lavg

× αei (1)

where re1 > re2 when l1 < l2 and αe1 = αe2 (2)

and re1 > re2 when l1 = l2 and αe1 < αe2 . (3)

There may be situations where traversal through a hotspot
is unavoidable. We ensure minimum passage through them by
accounting the lx ∈ L values in addition to α to reduce the risk
of contracting the virus. In (2), in case α1 = α2, we assign
higher rewards for edges with smaller distances. For instance,
rei is higher for min(l1, l2). In case l1 = l2, rei is higher for
those with lower containment factor [min(α1, α2) in (3)]. We
create the reward matrix R of size a×a, such that the indices
of the columns and rows represent the set V . Mathematically,
the entries of R corresponding to eij connecting vi and vj are

R[vi, vj] =
{

rei, if ∃eij �= 0
−1, otherwise.

(4)

The first condition in (4) assigns positive values to the matrix
elements in case there exists an edge connecting the vertices
vi and vj. In case there is no edge connecting them, we assign
a negative value, specifically −1 (second condition).

E. S-Nav: Safety-Aware Smart Navigation

S-Nav operates in two steps. First, we train the devices
involved in finding PS-Nav with respect to the corresponding G
and then calculate PS-Nav. For the training phase, we create a
Q-matrix (Q) on obtaining R, which acts as the memory for
the model. We initialize the entries by setting them all to be
0. We use rowi to denote the set of entries in the ith row of
Q and maxrowi to be the maximum of rowi. Also, we use cs

to denote the current state, and ns for the next state from cs.
A(cs,ns) is the action of moving from cs to ns. We update the
reward entries for A(cs,ns) in Q as

Q[cs, ns] = R[cs, ns] + γ.maxrowi (5)

where γ is the learning parameter. For gamma values close
to 0, the model considers immediate reward for its actions.
When gamma is close to 1, the model considers cumulative
reward for its actions and chooses to delay it if necessary.
The reward entries in the Q matrix may be represented as
rA(cs,ns)

= Q[cs, ns]. Finally, the S-Nav system calculates
PS-Nav by maximizing the sum of the Q-matrix rewards.
Mathematically, our objective function is

max
D,D∑

i=S,j=maxi

rA(i,j) (6)

Authorized licensed use limited to: Auburn University. Downloaded on February 10,2025 at 18:15:28 UTC from IEEE Xplore.  Restrictions apply. 



MISRA et al.: S-Nav: SAFETY-AWARE IoT NAVIGATION TOOL FOR AVOIDING COVID-19 HOTSPOTS 6979

where i represents the current state and j is the best next state
from i. The state j is found by traversing through all the entries
at the ith row of the Q-matrix. Mathematically, Q[i, maxi] =
max(Q[i, vk]) where vkεV .

In summary, S-Nav operates on the roads from G and the
corresponding R matrix. The rewards for each edge in (1)
take care of assigning higher rewards to low containment
factors and distances. The low containment factors ensure tak-
ing routes through low-risk regions. The distance parameter
ensures minimal traversal through the containment zones if
there is no safer alternative. Upon training the Q matrix based
on these rewards, S-Nav considers the path that renders the
maximum reward according to (6).

Lemma 1: The Sigmoid function is concave for values
greater than zero.

Lemma 2: The sum of two concave functions is a concave
function.
Since the Lemmas 1 and 2 are straightforward and based
on basic mathematical principles, we refrain from providing
proofs in this article and maintain simplicity.

Theorem 1: The reward associated with the selection of
the edges in the road network map for reducing the passage
through the categorical COVID-19 hotspots represented by (6)
is a concave function.

Proof: Equation (6) is the summation of sigmoid func-
tions in (1). Since the parameters in the reward function
for the cells in the matrices are dependent on the distances
between two vertices, the parameters for the sigmoid function
are greater than zero. According to Lemma 1, (1) is a con-
cave function, implying that (6) is a sum of concave functions.
Using Lemma 2, we prove that the proposed objective function
for S-Nav is concave.

On training the model, we calculate PS-Nav starting from
source S and move to the next step. We represent the next
intermediate steps as Sint

Nind
, where ind represents the hop/step

count in the matrix. It may be noted that ind is not the distance
but the count of number of the number of vertices involved
while calculating PS-Nav. The selection of Sint

Nind
is based on

the rewards on taking action A. The model performs the set of
actions while maximizing according to (6) until it encounters
the destination D during Q exploration. We represent PS-Nav
as < V∗, E∗ >, which contains the vertices and edges of the
recommended path by the S-Nav model. Algorithm 1 repre-
sents the steps involved in training S-Nav and Algorithm 2
represents the steps for determining the PS-Nav path.

Theorem 2: The time complexity in determination of the
safety-aware path in a geographic region by S-Nav is O(N2),
where N is the number of nodes.

Proof: S-Nav operates by maximizing (6). Finding j needs
O(N) time because we iterate over all the entries belonging
to the current row (ith) and find the value of maxi = j. For
N number of nodes in the map/graph (considering the worst
case where S = 1 and D = N, edges exists only between i and
i + 1(i = {1, 2, 3, . . . , N − 1} and maxi = i + 1), S-Nav needs
to iterate through N steps. Thus, the maximum reward is

Rmax =
N,N∑

i=1,j=maxi

Q[i, j] =
N−1∑

i=1

Q[i, i + 1] + Q[N, N].

Algorithm 1: S-Nav—Training

Input: epochs = iterations ; // Number of
iterations set according to number of
nodes
Result: All the possible paths are discovered and

knowledge of the best path is attained by the
trail and error approach.

for epochs do
Select cs randomly from Q-matrix;
Select ns from available states for cs;
Update the Q[cs, ns];
// According to Section III-E

end

Algorithm 2: S-Nav—Determination of PS-Nav

Input: Current step (Scurr) = S ;
Result: PS-Nav from S to D
Initialization: PS-Nav = [Scurr] ; // Initial point
of the path is the source
while current_step != Destination do

add the index(s) of maxrow in a next_index;
if len (Sint

Nind+1
) ≥2 then

choose Sint
Nind+1

randomly from the list;
else

Sint
Nind

= Sint
Nind+1

;
end
Psafer.append(Sint

Nind
);

Scurr = Sint
Nind

;
// The next best state is found and

added to PS−Nav

end

The total time required in this case is O(N × time for
finding j) = O(N × N) = O(N2).

It may be noted that excluding roads/edges belonging to the
COVID-19 hotspots may be a possible solution to avoid trav-
eling through risky areas. However, there may be situations
when no alternate route exists from a source to its destination.
In such cases, on imposing the mentioned constraint, the S-
Nav system will not recommend any route. Thus, we refrain
from applying it as S-Nav ensures no passage through the
hotspots during the presence of alternate routes to the desti-
nation. Additionally, in cases when all alternate routes pass
through hotspots, the zone-based rewards help in ensuring
minimal passage through them.

IV. EXPERIMENTAL SETUP AND RESULTS

We performed a series of experiments to evaluate the
performance of S-Nav. Toward this, we used the road-network
data set exported from OpenStreetMap [21] and processed the
data in a device with 1.8-GHz Dual-Core Intel Core i5 proces-
sor. We used different sets of longitudes and latitudes to vary
the number of nodes and edges. We used a random distribu-
tion process to allocate the categorical hotspot zones in the
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Fig. 3. Time taken by FN and cloud devices for training the S-Nav system.

Fig. 4. Time taken to calculate the S-Nav path by FN and cloud devices
after training the S-Nav model.

network map. We used Google Colab to assume the role of
cloud and the device mentioned earlier as FNs. It may be noted
that the FNs may be further resource constrained. However,
we did not scale our results and presented them in its original
form. While training the model for S-Nav, we fix the number
of epochs/iterations sufficiently high to ensure that the model
accurately explores the environment. We draw inferences, and
safety-aware paths after the training is complete.

A. S-Nav Training Time

We calculate the delay incurred while training and testing
S-Nav and present the results separately to get better insights.
Fig. 3 illustrates the time necessary for training the S-Nav
model in both cloud and fog devices. We vary the number
of nodes by ranging it across 50–250 nodes and record the
time in each case. We observe that S-Nav training time at
the FN is higher than that of the cloud by more than 50%.
However, as the number of nodes increases, both the devices
demonstrate similar delays. We attribute the lower delays to
the superior CPU clock cycles and configurations of the cloud.
On the other hand, the demonstration of similar delays as we
increase the number of nodes is unlikely to occur in ideal con-
ditions. Intuitively, we justify this phenomenon to the feature
of context switching among multiple applications that exe-
cute on the cloud. Additionally, as we execute the code on
Google Colab, we also attribute the additional delay to network
latencies.

Implication: The delays give the impression of biasing the
training at the cloud and then transfer the weights and matri-
ces to the FNs. As the S-Nav system is a Q-based RL model,
it may be easily trained in parts by the FNs with much
lower latencies. This is the reason for adopting the network
architecture in Section III-A for S-Nav.

Fig. 5. Reward values while training the S-Nav model with varying number
of nodes in the map.

B. S-Nav Testing Time

We calculate the time taken by the FN and cloud devices
for finding the path from the S-Nav model after training and
present the results in Fig. 4. Interestingly, in the instant of
performing our experiment, we observe in Fig. 4(a) that the
FNs need less time to determine the path as compared to the
cloud in Fig. 4(b). One of the possible reasons for this is that
the cloud servers are preoccupied with serving other requests.
The response time is larger than the actual execution time,
which dominates the overall delay.

Implication: Irrespective of the reasons for demonstrating
higher pathfinding delays in the cloud server, we observe that
the FNs offer comparative results. Such minuscule delays give
us the motivation and justification toward deploying S-Nav in
the FNs.

C. S-Nav Rewards

We keep track of the rewards while training the S-Nav
model and present the results in Fig. 5. We vary the number of
nodes on the map and start training. We observe convergence
in each case. Additionally, as we increase the number of nodes,
the value of the rewards keeps increasing. Interestingly, we
observe that the number of iterations for attaining maximum
rewards is proportional to the number of nodes. We measure
the reward values by the sum of all the entries in the Q-matrix
of the model. We notice the jumps and downs in Fig. 5 as the
S-Nav model’s training phase uses the trial and error approach.
It learns from its mistakes and gains knowledge of the safer
path. So, when the number of nodes is more, the number of
edges is usually more. The model needs to explore all the
possibilities and requires more number of iterations.

Implication: With the results in Fig. 5, we safely com-
ment that the S-Nav system reaches convergence under all
conditions. The S-Nav system offers correct solutions with
minimum probabilities of making an error. In summary, the
S-Nav system is reliable. It always fetches safety-aware paths
irrespective of the number of nodes in the map.

D. Comparison of S-Nav With Conventional Techniques

Commonly available applications, such as Google Maps
rely on Dijkstra’s algorithm and recommend shortest paths
based on parameters explained in Section I-A. Without loss of
generality, we refer to the available methods as shortest path
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TABLE I
COMPARISON OF PATHS RECOMMENDED BY S-NAV (SN) AND SHORTEST

PATH (SP) ALGORITHM (DIJKSTRA’S) IN TERMS OF TRAVEL DISTANCES

AND PASSAGE THROUGH THE DEMARCATED CATEGORICAL COVID-19
HOTSPOTS

algorithms. In this section, we present a detailed analysis of
a comparison between the paths/routes produced by Dijkstra’s
algorithm (Shortest path) and the proposed S-Nav model. As
an example, we consider a road network of Kolkata (north,
east, south, west = 22.5862, 88.3785, 22.5764, 88.3645). We
assign contamination (hotspot) intensities to different areas of
the data set, as shown in Fig. 6(a) (color coded). Let S be the
source, and D be the destination in the data set. We execute
both S-Nav and shortest path models and present the results
in Fig. 6(b). We observe that the S-Nav path (green) avoids
the red zones/contamination areas and recommends passage
through the green zones. On the other hand, the shortest path
(pink) takes the route through the hotspots, which increases
the commuter’s threat of contracting the virus.

Although the S-Nav model finds the safest route possible,
it increases the travel distance, implying a tradeoff between
safety and distance. On setting arbitrary source–destination
pairs, we study the increase in travel distance and present our
observations in Table I. We observe higher travel distances
by S-Nav in all cases. On average, we see almost 15% addi-
tional travel distance in the case of S-Nav as compared to the
shortest path. However, we analyze the travel distance through
hotspots (red/orange/green) and present the percentage with
respect to each case’s total recommended path. In both red
and orange zones, we observe that S-Nav takes paths as small
as 2% (15 m). The shortest path algorithm takes 65% on the
same source–destination pair. In the case of green zones, we
observe that the S-Nav model travels mostly through them
compared to the shortest path model. In some unavoidable
conditions like the one in the last row of Table I, the S-Nav
path is the same as the shortest path. We attribute that such a
similar route decision occurs due to the absence of better alter-
native routes. In cases when alternate routes are available, we
observe 100% passage through the green zones.

Implication: We safely comment that the S-Nav model
ensures safe to travel in all source–destination pairs. However,
it increases the travel distance, which is not a concerning fac-
tor as it reduces the risk of contracting the virus. In case the
users seek shorter routes, we plan to modify S-Nav in our
extended work to provide alternate paths (if any) with minimal
thoroughfare through the hotspots.

E. S-Nav Confusion Matrix

We consider a map with 22 nodes and 55 edges. We demar-
cate some areas as red and orange zones to show the confusion

Fig. 6. Comparison of paths by S-Nav and shortest path algorithm in the
presence of COVID-19 hotspots. (a) Road-network with demarcated roads
(color-coded). (b) Paths between source S and destination D.

Fig. 7. R and Q matrices while training the S-Nav system.

matrices. We set the rewards according to (1) and populate the
R matrix of size 22×22. R is a symmetric matrix as we con-
sider an undirected map. The destination node has the highest
reward, and hence we observe dark patches in Fig. 7(a). The
lightest shade, which covers the majority of the matrix, rep-
resents nonexisting edges among the nodes. The other shades
represent the rewards for each edge. The S-Nav system trains
the model and populates the Q matrix in Fig. 7(b). The patch
with the darkest shade in the row represents the best possible
next state from the current state (row index). The values of
the Q-matrix updates according to the Bellman equation.

Implication: The S-Nav system correctly updates its matri-
ces, which elevates its reliability, implying that the routes
recommended by S-Nav are correct and safe.

V. CONCLUSION

In this article, we proposed and developed an RL-
based model (S-Nav) that recommends safety-aware road
routes/paths. The recommended path by S-Nav avoids trav-
eling demarcated categorical hotspots, ensuring safety, and
reducing exposure risk for the commuters. To facilitate real-
time results, we proposed an IoT-based network architecture
by incorporating the cloud and fog computing paradigms.
The fog computing platform allows partitioning of the maps
and operations on small portions rather than the entire map,
which is time-consuming. We also performed extensive exper-
iments on S-Nav using real data sets from OpenStreetMap and
presented results. We also performed a detailed comparative
analysis of the recommended paths by S-Nav with Dijkstra’s
algorithm (shortest path). We observed a 15% increase in travel
distances by S-Nav. However, its passage through the hotspots
is minuscule.

In the future, we plan to extend this work by consider-
ing additional factors, such as real-time traffic, multilane road
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system, and speed control. Furthermore, we plan to incor-
porate user protection status by considering full, partial, or
unprotected based on the inbound vehicle. We also plan to
address the issue of source and destination being in geograph-
ical areas served by different FNs. Furthermore, we plan to
incorporate disconnected graphs and divide them into various
relevant components.
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