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Abstract—Radio-frequency fingerprint (RFF), which comes
from the imperfect hardware, is a potential feature to ensure
the security of communication. With the development of deep
learning (DL), DL-based RFF identification methods have made
excellent and promising achievements. However, on one hand,
existing DL-based methods require a large amount of samples
for model training. On the other hand, the RFF identification
method is generally less effective with limited amount of sam-
ples, while the auxiliary data set and the target data set often
needs to have similar data distribution. To address the data-
hungry problems in the absence of auxiliary data sets, in this
article, we propose a supervised contrastive learning (SCL)-based
RFF identification method using data augmentation and virtual
adversarial training (VAT), which is called “SCACNN.” First,
we analyze the causes of RFF, and model the RFF identifi-
cation problem with augmented data set. A nonauxiliary data
augmentation method is proposed to acquire an extended data
set, which consists of rotation, flipping, adding Gaussian noise,
and shifting. Second, a novel similarity radio-frequency finger-
printing encoder (SimRFE) is used to map the RFF signal to
the feature coding space, which is based on the convolution, long
short-term-memory, and a fully connected deep neural network
(CLDNN). Finally, several secondary classifiers are employed to
identify the RFF feature coding. The simulation results show that
the proposed SCACNN has a greater identification ratio than the
other classical RFF identification methods. Moreover, the identi-
fication ratio of the proposed SCACNN achieves an accuracy of
92.68% with only 5% samples.

Index Terms—Data augmentation, deep learning (DL), physi-
cal layer security, radio-frequency fingerprint (RFF), supervised
contrastive loss, virtual adversarial training (VAT).
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I. INTRODUCTION

ITH the development of wireless communication tech-
Wnology, the Internet of Things (IoT) has been widely
used in numerous fields, such as smart home, intelligent driv-
ing, and intelligent transportation [1], [2]. In addition, the
Internet of Everything (IoE) represents an inevitable trend
of current industries. Moreover, the wide deployment of the
fifth-generation (5G) wireless communications has brought the
benefits of low latency and high speed, which will further pro-
mote the development of these industries. However, the rapid
increase of communication and IoT devices has also brought
about many security issue [3], [4], [5], [6]. Traditional authen-
tication and identification techniques are usually based on the
cryptography, which may be at risk in facing malicious users
with huge computing resources [7]. Therefore, an effective
authentication and identification method for IoT devices is
needed.

In recent years, great achievements have been made in
device authentication and identification based on the physi-
cal layer features. The specific emitter identification (SEI) is
a technology that relies on the characters of radio-frequency
(RF) signals [8], [9]. The RF fingerprinting (RFF) identifica-
tion is an effective method in SEI. Specifically, the difference
in RF signals can be considered as fingerprints of the RF
signals with the ability to uniquely and stably represent the
emitters [10], [11]. In addition, RFF comes from the imper-
fection of hardware, which is inevitable in the manufacturing
process [13]. RFF identification consists of data preprocessing,
feature extraction, and identification. The data preprocess-
ing usually contains power normalization, synchronization,
and data cleaning. It aims at normalizing the RF signal and
mitigating the impact of nonstandard RF signals on feature
extraction.

As mentioned above, the difference of RF signals are
caused by the hardware manufacturing process, which are
usually very small to distinguish. Therefore, the feature extrac-
tion is the principal step of RFF identification, which is
employed to reduce the dimension of RF signal and “amplify”
the difference. Traditional feature extraction of RFF iden-
tification usually employ statistical processing technologies.
Then, classic machine learning methods, such as support vec-
tor machine (SVM), multilayer perception (MLP), and linear
Bayesian classifier, are employed for the identification [14],
[15], [16]. Most of the traditional RFF identification methods
can achieve a near perfect performance. However, the signal
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processing-based feature extraction is usually based on the
prior knowledge of the devices., which is device specific
and cannot be generalized to another signal. Second, tra-
ditional feature extraction usually requires manual feature
extraction with expert knowledge, which is impractical in
dynamic communication scenarios.

Deep learning (DL) has achieved a great performance in
computer vision (CV), natural language processing (NLP),
and intelligent communication. Furthermore, DL shows excel-
lent abilities in data mining and feature extraction, which
has been employed in channel state information (CSI)
feedback [17], [18], resource allocation [20], beamforming
[21], [22], and automatic modulation classification (AMC)
[23], [24], [25], [26]. Meanwhile, the DL-based RFF identi-
fication method performs feature extraction and identification
at the same time. It can also obtain more robust and effective
RFF features of RF signals using a neural network, when com-
pared with traditional methods [27], [28], [29], [30], [31], [32],
[33], [34]. However, the neural network is a data-driven model,
which depends on the availability of historical data sets. The
data sets used in most DL-based RFF identification methods
are capable of supporting neural network fitting. Nevertheless,
in the real world scenarios, a large amount of labeled data
may not be available, which leads to a sharp degradation
of the performance of DL-based RFF identification methods.
Although this problem can be solved with few-shot learning,
it still requires a massive auxiliary data set with a similar data
distribution to get optimum weights for the neural network.
In this article, we focus on RFF identification with nonauxil-
iary, limited samples, which is a limited data set and unable
to support the neural network fitting.

Compared with the softmax-based RFF identification
methods, the metric-learning-based methods have better
performance with limited samples. Meanwhile, the supervised
contrastive learning is the improved form of metric learn-
ing. In this article, a supervised contrastive-learning-based
RFF identification method is proposed, which contains data
augmentation, a similarity RFF encoder (SimRFE), and a sec-
ondary classifier. Specifically, data augmentation uses prior
knowledge to extend the raw data set with simple mathemat-
ical operations, which does not require extra auxiliary data
sets. Then, unlike the traditional softmax-based RFF identifi-
cation method, we use a SImRFE to map the original RF signal
to a high-dimensional feature space and constrain the feature
coding with a supervised contrastive loss (SCL). Finally, sev-
eral secondary classifiers based on neural network, traditional
machine learning, and distance similarity measurement are
used to identify the RFF feature coding. The main contribution
of this article is summarized as follows.

1) Different feature embedding methods are employed to
improve the performance of RFF identification with lim-
ited samples, including a data augmentation method and
a model-based virtual adversarial training (VAT) method.

2) We propose an SCL-based RFF identification method,
which has a better feature clustering performance. The
optimal hyperparameters of the proposed method are
also provided to balance the training cost with the
identification performance.
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3) Several typical machine-learning-based secondary clas-
sifies are employed for identification of RFF feature
codings. A simple distance similarity measurement-
based classifier is also proposed for the identification
with a simple mathematical operation.

The remainder of this article is organized as follows. In
Section II, we introduce related RFF identification methods
and DL with limited samples. The RFF signal is modeled and
the RFF identification problem is described in Section III. In
Section 1V, we present the proposed SCL-based RFF identi-
fication methods. Various simulation results are provided to
show the performance of our proposed system in Section V.
Finally, we conclude our work in Section VI.

II. RELATED WORKS

In this section, we introduce the traditional RFF identifica-
tion methods with artificial RFF feature coding, the DL-based
RFF identification methods, and three feasible schemes for
DL-based RFF identification with limited samples.

A. RFF Identification Methods

1) Traditional RFF Identification Methods: Traditional
RFF identification methods usually consist of feature extrac-
tion and identification. The feature extraction aims at acquiring
artificial RFF features via prior knowledge, which also reduces
the dimension of the high-dimensional raw RF samples. Then,
the artificial RFF features are identified with a traditional
machine learning method. Cobb et al. [14] sliced the RF
signal into slices, and obtained the instantaneous amplitude,
phase, and frequency of RF signals slices as characteristics
according to the definition of I/Q signals. Then, the statistical
characteristics, including standard deviation, variance, kurto-
sis, and skewness of those three instantaneous characteristics,
were used to represent the RFF features. Multiple discrim-
inant analysis (MDA) and a linear Bayesian classifier were
employed to reduce the dimension of RFF features and identify
them, respectively. Tu et al. [16] employed conventional signal
processing, such as dual tree complex wavelet transform (DT-
CWT), short-time fourier transform (STFT), and Wigner—Ville
distribution (WVD), to extract the RFF features. Robust prin-
ciple component analysis (RPCA) and SVM were employed.
Furthermore, constellation error [35], [36], IQ imbalance [37],
and modulation shape [38] have all been utilized for RFF
identification.

2) DL-Based RFF Identification Methods: Unlike the tra-
ditional RFF identification methods, the DL-based RFF identi-
fication benefit from the powerful feature extraction and model
fitting capabilities, and avoid the complex feature extraction
operation. Usually, the RF signal is in the form of I/Q signals,
while there are several methods which convert 1/Q signals
into the form of image. Existing DL-based RFF identifica-
tion methods can be divided into time-series signal-based and
image-form signal-based methods.

The time-series data set mainly consists of I/Q signals,
spectrum, or signal components in the form of time series.
Merchant et al. [27] employed the multilayer neural network
to identify RFF signals. Specifically, the authors estimate the
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ideal signal, and then subtract the ideal signal from the mea-
sured signal to get the error signal, which can be considered
as the RFF feature. Then, the CNN is used to identify the
error signal. Yu et al. [28] proposed a denoising autoencoder
to reduce the influence of noise, which achieved considerable
improvements at all SNR levels. Yu et al. [29] also proposed
a multisampling convolutional neural network (MSCNN) to
identify RF devices. The MSCNN extracts multiscale RFF
feature from the selected region of interesting (ROI). The
MSCNN achieves a 97% identification ratio for 54 CC2530
ZigBee devices under the line-of-sight (LOS) scenarios with
SNR = 30 dB. Ding et al. [31] employed a supervised dimen-
sionality reduction method to compress the dimensions of the
bispectrum, and then, adopted a convolutional neural network
to identify specific emitters.

In addition, recurrent neural networks (RNNs) have been
used to handle time series. Roy et al. [32] studied the
performance of long short-term memory (LSTM), gated recur-
rent unit (GRU), and convolutional LSTM (ConvLSTM) for
RFF identification. RF signals collected from 8 USRP B210
were used, while achieved an accuracy of over 92%.

The common image-form signals include spectrogram and
constellation diagram. Shen et al. [33], [39] used STFT to con-
vert the I/Q signal into spectrogram. Then, a metric-learning-
based neural network was used to extract RFF features. Note
that Peng et al. [40] used the difference constellation trace fig-
ure (DCTF) to replace I/Q signals, which was focused on the
carrier frequency offset between the transmitter and receiver.
Tu et al. used a window function to slide on the constellation
diagrams. Then, the number of sampling points in the win-
dow were countered to generate the contour stella image [41].
Peng et al. [42] converted the I/Q signal into heat constella-
tion trace figure (HCTF), which used the area of the Voronoi
diagram to calculate the heat of the sampling points trace. A
slice integration cooperation was also employed to improve
the performance. The simulation results showed that all of the
RFF identification methods based on the constellation diagram
were effective.

B. DL With Limited Samples

In order to achieve a good performance with limited sam-
ples, we start with data set preprocessing and feature extrac-
tion. For example, data augmentation extends the raw data
set, while a better feature extraction model has the ability of
dealing with limited data more effectively.

1) Data Augmentation: Huang et al. [43] proposed a data
augmentation method for AMC, which contained Rotation,
Flip, and Gaussian. Cai et al. studied the performance of
data augmentation for small sample communication device
recognition. The RFF samples were augmented with differ-
ent operations, which consists of noise disturbance, amplitude
and time-delay transformation, frequency offset, and phase
shift transformation [44]. The VAT was also used to augment
the RFF samples during the training process. The simulation
results demonstrated the feasibility of these methods.

2) Metric Model and Contrastive Model: As can be seen in
Fig. 1, the metric model and contrastive model are similar in
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Fig. 1. Similar structure of the metric model and the contrastive model.

structure. Both of them extract features by measuring the sim-
ilarity of feature vectors, which can be considered as “learning
to compare.”

The Siamese neural network is a widely used metric learn-
ing method, which extracts features with a weight-shared
“encoder” and measures similarity with the Euclidean dis-
tance [45]. Unlike metric learning, contrastive learning is
usually used in semisupervised learning. Chen et al. [46]
proposed a simple framework for contrastive learning of visual
representations (SimCLR), which is a classical contrastive
model. In addition, van den Oord et al. [47] modified the loss
function in SimCLR for supervised representation learning.
The simulation results showed that the supervised contrastive
loss has a strong ability of feature representation. Wu et al. [48]
and Sun [49] introduced the Siamese network for SEI, which
achieved a great performance in both open set identification
and few-shot learning.

3) Meta Model: Meta learning is also a very effective
method in the face of limited samples, which uses auxiliary
data sets to build multiple subtasks for the most generalized
model. Yang et al. [50] first introduced the model-agnostic
metalearning for SEI. The RF signals from 20 ZigBee devices
were used as the auxiliary data set, while the generalizability
of the model has also been demonstrated with the performance
on a limited UAV data set.

Considering that the meta model has complex pretraining
and unstable gradients [51], the metric model and contrastive
model are more suitable for RFF identification. Those models
are easy to implement, since there are similar to the conven-
tional DL-based model. The supervised contrastive loss (SCL)
in [47] can be regarded as an improved form of triplet loss,
which is also a typical metric loss function. Therefore, we
employ the supervised contrastive model in this article.

III. DATA MODELING AND PROBLEM FORMULATION
A. RFF Signal Modeling

As in [27], the collected I/Q modulation RF signal is
described as

ey

where rmpeas(f) means the collected signal at the receiver, and
Terror (f) means the error signal, which is considered as the RFF.

However, as can be seen in Fig. 2, the RF signal is gen-
erated by passing the baseband signal to digital to analog
converter (DAC), bandpass filter, oscillator, and power ampli-
fier (PA). Each of the modules will introduce some RF signal

Tmeas(f) = Fideal(f) + Terror(?)
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error. Therefore, (1) is not sufficient to describe the complex
RFF signal, and the specific details of reror(f) are also worth
studying. The baseband signal can be described as

ry (1)
1 = 2
Tbase (1) |:VQ1 (1) ()
where 7y, (1) and rg, (¢) are the baseband signals of the I and Q
channels, respectively. Then, rpase i transmitted into the DAC,
and the signal after DAC is described as

_ | re@ | _ |t +
rpc(t) = [Vsz(t)} = |:VQ1(I) +MQ} 3)

where 1y and g are the direct current (dc) offsets of the /
and Q channels, respectively. Then, the bandpass filter is used
to filter rpc, and the filter error is described as

@ | _ | kR, () @ ri, (1)
rir(r) = [rQZ (r)} = [hBFQ ) ® r, (r)] @

where hgr, (1) is the filter transfer function of the / channel,
and hgr, (7) is the transfer function of the Q channel. ® sym-
bol means the convolution operation. When rgp(f) is passed
into the upconverter, the RF signal will be corrupted by the
gain imbalance. In addition, the oscillator will also introduce a
phase offset and the frequency offset in the carrier. The phase
difference of the I channel and Q channel is not exactly equal
to /2, which will also introduce errors in rmeas(f). The signal
rup(?) is given as

|y (t)

u(®) = [rQ4 (t)}

_ [ by (8) - cosl(@c + Aw)t + Ag + gy } )
" Agros(0) - sin[(a)c + Aw)t + Ap + goQ]
where A is the gain imbalance of the upconverters, ¢ is the

quadrature offset error, and Aw and Ag are the offset of phase
and frequency, respectively. Then, ri, is written as

rin(1) = r1, () + ro, ()
= R[(X[ +j- XQ)e—./'[(wc—i-Aw)t-&-A(p]:I

= \/ kT + kg + 2sin(—gr + o) - coslwint + ¢in]  (6)

where ki = A - (0, kg = Ao - ro;(1), wn =
we + Aw, and @i, = Ag + arctan([k; cos ¢y + kg singg]/
[—ky sing; + kg cos pgl). X; and X are expressed as

Xp = Ap-rig(1) -cosp —j- Ap - rip (7) - singy

Xo = —Xg - 1g;(t) -singpg —j-Ag-10,(t) -cospg. (7)
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The nonlinearity of the PA plays a significant role in rerror,
which can be described with the baseband nonlinear model.
In this article, the memory effects of PA is ignored. The
AM-PM conversion of PA can also be ignored, when the car-
rier frequency is much higher than the baseband bandwidth.
The Saleh model [52] and the complex coefficient polynomial
model [53] are employed to model the nonlinearity of the PA.

1) Saleh Model: The AM-AM conversion of PA in the
Saleh model is written as

o A(1)
A = 8
mO= T BalA(D]? ®
Fout(r) = Apa (1) cos(@in? + @in) )

where o, and B, are the fitting parameters of PA. A(¢) is the
amplitude of the RF signal and A(f) = |rin(?)], and wji, and
¢in are the frequency and the phase of rj,, respectively.

2) Complex Coefficient Polynomial: The AM—AM conver-
sion of PA in the complex coefficient polynomial model is as
follows:

N
— ' ' ' . k—1
Fout(t) = Zak [rin () + H(rin () rin (@) + H(rin ()]
k=1
(10)

where H(-) means the Hilbert transform. Considering the
model of the RFF signal, reror(?) in (1) is a function of rigeal.
Therefore, there will be a residual component of rigeq(?),
which will influence the performance of RFF identification.
We rewrite (1) as follows:

Tmeas (1) = Gr(Fideal (1), 0;) (11)

where G, denotes the model of the RFF signal, and 6; =
{m;, her,, Aw;i, Ag;, @, wi,A} represents the parameters which
belong to y;, and the y; is the real label of RF device.

B. Problem Description

The RFF identification is based on the imperfection of the
transmitter, which is represented by 6; in (11). In addition, 6;
can be fitted with rmeas(f) and rigear (7). However, rigeal (f) may
be hard to obtain, and it is impracticable to achieve 6; when
considering the error of the modeling. Thus, most of the RFF
identification methods extract the feature vector of 6; rather
than finding the specific value with rpeas(?).

1) RFF Identification Problem: We use r, to represent
Fmeas(f), Which is the nth RFF sample collected from an RF
device. Let y, represent the real category of nth RFF sample.
The data set of RFF signal is denoted as Dy, = {r,, y»}. RFF
identification can be described as a feature extractor problem,
which is given as follows:

Dy = {h,, yn}

by = freen) = fRee(Gr(Hyea (O, 07))
where h,, is the feature of r,, and frrp(-) is the feature extrac-
tor. Dy, is the data set of features. ri”deal(t) is the disturbed

component of r,. h, should reduce the influence of rf}_ (1),
which is described as

12)

P(h" ’ ’Ji1deal (t))

13
P(rjildeal (t)) 4

P(h"|rindeal(t)) =
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where P(rjy.,;(#)) is the marginal probability distribution, and
P(hy, 1., (1) is the joint probability distribution.

Then, h, is considered as the RFF feature. The softmax-
based identification methods of the RFF feature h, are
written as

min Ep, y,)~0, £ (9n: ¥n) (14)

where ¥, is the predicted category of h,, and L(-) is used to
evaluate the difference between y, and y,. The frequently used
loss function £(-) here is cross-entropy loss function, which
is written as

1 N np

sod d

LcE = N X};logun -log P,
n= =

5)

where logitZ represents the logical value. When ¥, # y,,
logiti = 0, on the contrary, logitﬁ = L. y, is the dth category.
Pg is the probability of r, belong to y,. In addition, the metric
and contrastive-based identification methods are written as

min ]E(hn’,\’n;hw,\’c)NhNE(yn’ yC) (16)

where hy is the set of all RFF features. A, is metric or con-
trastive RFF feature, which usually consists of positive sam-
ples and negative samples, and y. is the category. Contrastive
loss function in the Siamese network is a typical £(-), which
is written as

1 e
Lsiam = E[(l — logit¢) - d(hy, he)

+ logit{, - max(0, margin — d(h,, hc))] (17)

where d(h,, h.) is the Euclidean distance of h,, and h.. max(-)
means the maximum value of two elements. margin is the ideal
extra-class distance. When y, # y., logic; = 0; otherwise, it
is equal to 1.

2) Limited Samples RFF Identification Problem: 1t is obvi-
ous that the more samples in Dy, the better performance of
the neural network. Thus, the data augmentation is employed
to acquire an extended data set without using an auxiliary
data set. The extended data set is described as: me =
Draw UDayg = {#n, Yu} and Dayg = fog(Draw) = {I‘;l, y;,}’ where
Jag(+) is the function of data augmentation. f,, usually con-
tains simple mathematical operations, such as adding Gaussian
noise, introducing channels, etc. Then, }'zn is considered as the
augmented RFF feature. The identification of the augmented
RFF feature h,, is given by

(18)
19)

min ]E(ilm)"n)NDhuD;'*C().’n, }.}n)
min ]E(h,,,y,,;izuyf)wh,vu;,;vE(y,,, Ve)

where ;n is the predict category of h,,.

It is also a feasible method to solve this problem by set-
ting regularization constraints on the identification model.
The regularization training method based on adversarial sam-
ples are popular which constructs virtual samples by adding
perturbations. which is given by

BAY = frep(rn + Fagy) (20)
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Fig. 3. Framework of the proposed DL-based RFF identification method

using SCL.

where hfldv is the feature of RFF signal with perturbations, and
rady 1S the perturbations which is depended on the RFF identi-
fication model. The detailed identification of the regularization
training method is given in Section IV.

IV. PROPOSED RFF IDENTIFICATION METHOD
A. Framework of Proposed RFF Identification Method

As shown in Fig. 3, the proposed system is divided into two
parts: 1) data preprocessing and 2) model fitting. RF signals
from different signal generators are collected. However, the
collected signals are not sufficient to achieve a high identi-
fication ratio and there is no auxiliary data set can be used.
Therefore, the raw data set is augmented to obtain an extended
data set. In order to adapt to SCL, the augmented data set is
converted to minibatch data set. In the part of model fitting,
the minibatch data set is inputted into the SimRFE. Then, the
SCL and VAT is used to get a robust and specific features,
which should be normalized by the module normalization
(MN). Finally, the classifier is employed to get the predicted
category.

B. Data Augmentation

The measured signal above is described as

rs(t) = 17 (0 + 15(0)

ri(t)
ro(?)

where r12(t) and ré(t) denote the measured signal of the I chan-
nel and Q channel in the receiver, respectively. Here, rg is the
complete set of RF signals, P(rg, y;) is the marginal probabil-
ity distribution of the complete set, which belongs to y;. Data
augmentation can be considered as to acquire the extended
data set with prior knowledge. Then, the extended data set
should be label reserved, which is described as y, = .
In addition, data augmentation aims to generate a differ-
ent sample space distribution. Therefore, the main idea of

s (1) = arctan

2L
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augmentation is to acquire labels preserved in the extended
samples, which are least similar to the raw sample. However,
it is unrealistic to measure the label reservation between
Diaw and Dyyg. In this article, all the extended data set are
based on the transformation of raw data. Four different simple
data transformation are employed: 1) Rotation; 2) Flipping;
3) Gaussian [43]; and 4) Shifting.

1) Rotation: Considering the modulation of the RF signal
used, the RF signal in the I channel and Q channel share
the same generation method, except the different symbols (the
difference of carrier frequency can be removed by phase shift-
ing). Therefore, it is reasonable to exchange the / channel and
Q channel to acquire more samples, described as

oo [ cos ¢ sinw][n}

n —sing cosg || ro
where ry denotes an extended RF sample in the receiver and
¢ is the rotation angle. Unlike the rotation angle in CV, ¢
is aimed at the value of in-phase and quadrature components.
Thus, ¢ will affect the quality of the extended data set. In order
to avoid superposition of in-phase and quadrature components,
the ideal ¢ values are /2, m, and 37/2. When ¢ moves
away from the ideal angle, the result of augmentation will
be come unpredictable. However, Rotation will also introduce
troubles in the RFF identification. As can be seen in Fig. 2,
it is obvious that when the ideal angel is w/2 or 27 /3, the
difference between the 1/Q channels will be interference. As
can be seen in (11), r, and 7}, have different w;, hpg;, and ¢;.
Therefore, Rotation acquires the extended data set at the cost
of losing RFF features.

2) Flipping: As can be seen above, the I channel and Q

channel can be exchanged to acquire more data samples. Thus,
ry and rp can be flipped, which is described as

/ +ry
'n = [:trQ :|
Flipping can be considered as setting the initial symbol to its
opposite one. Flipping augments the data set with a simple
operation, and r, and r], will have different w;s.
3) Adding Gaussian Noise: The RF signal will be affected
by the noise in transmission, and the SNR of the RF signal

is not constant. Thus, Gaussian noise can be added to the RF
signal to acquire the extended data set, which is described as

(22)

(23)

(24)

where N is a stochastic time series and it obeys the Gaussian
distribution N'(u, o). However, it is difficult to find the
optimal value of u and o. Let the power of Ny be within
[a, b] dB. If the SNR of r¢(¢) is out of the range, the extended
data set will be corrupted, which will be counterproductive to
RFF identification. In addition, if N is too small, the result
of data augmentation may be poor. Here, u is set as: 0, while
o is set as: 0.0005, 0.001, and 0.002, respectively,

4) Shifting: Inspired by the Shifting in CV, ry can be con-
sidered as an L x H image, where L is the length of the RF
signal, and H = 2 is the height. Then, the Shifting in ry is
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described as

iy Tkt 1, 1L, 01, 12, « vy Tk—2, Bk—1 ] 25)

/
n= [% Qi1 9L 415 Q25 - -+ > Gh—25 Gh—1
where iy and g denote the kth sampling point of the I chan-
nel and Q channel, respectively. Unlike CV, RFF identification
does not rely on the information of the signal itself, which
makes it free from the risk of cutting off the interest area.
However, when the RF signal is composed of a constant frame
structure, Shifting may decrease the accuracy of RFF identi-
fication. In addition, as can be seen in (4), rgr(¢) is obtained
by the convolution operation. Therefore, the shifted data will
have a different hpp,. In addition, ryp and 7oy are generated
from rgp(r). Therefore, r), after Shifting only share the same
;i with r,,.

Here, the self-collected data set Device 1 is taken as an
example. The data distributions of raw data set and aug-
mented data set are shown in Fig. 4. Only the adding Gaussian
noise has significant change. The amplitude and frequency are
also normalized to avoiding interference. Considering the Shift
does not change the amplitude of raw data set, it only given
in the data distributions of frequency. The data distributions
of the phase are also analyzed, while the distributions of those
methods are quiet similar.

C. Virtual Adversarial Training

The VAT is the most classical regularization training
method, which can improve the generalization of the model
by virtual adversarial samples. Unlike the traditional adver-
sarial training methods, the virtual perturbations are obtained
through gradient, which is described as

8y < VradVKL(radv)|rad\,:’;“d,, (26)
8
Fady = € = 27
8,12

where g, is the gradient of the distance between raw RFF
signal and RFF signal with perturbations, d,, is a random unit
vector obeying Gaussian distribution, £ and € are tiny numbers
used to control the intensity of perturbations, and KL(-) is the
Kullback-Leibler (KL) divergence, which is described as

SREE(ry)
KL(ragy) = ) log —————— 28
(Facy) ZfRFF(r ) ngRFF(rn + Fadv) %)

where fagv(-) is the RFF identification model. Then, the KL
divergence is added as the loss function. Considering the
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Algorithm 1: Detailed Procedures of SCL Algorithm

Input: z; < RFF feature coding; np < number of
categories; N <— number of samples;
Output: £ < supervised contrastive loss;
1 Set hyperparameters:
2 Nyjeyw < View; T < number of temperature ; Logit = 0;
3 for i=1 to nyjey - np do
4 Logit,. (i, /) = u l’
5 Logit. (i, j) = exp(Logitdot(i, N
6 Logit, (i, j) = {Logit] (i, j); Logit; (i, )};
AN
7 | Logit(i) = 5+ log %
8 Logit = Logit + Logit(i);
9 end
10 £ = Logit;
11 return L;

generation of perturbations, the VAT can be considered as a
model-based data augmentation method.

D. SCL-Based RFF Identification Method

As mentioned above, SCL is evolved from the normalized
temperature-scaled cross-entropy (NT-Xent) loss in semisu-
pervised contrastive learning (SimCLR). The NT-Xent loss is
mainly used in SimCLR. The main steps of SimCLR are as
follows: first, a huge number of unlabeled data are augmented,
and the augmented sample and the raw sample are considered
to have the same label. Second, all the samples are mapped to
the feature space by an encoder. Finally, feature coding is con-
strained by the NT-Xent loss to increase the similarity between
the raw sample and the augment sample.

When the NT-Xent loss is introduced to SCL, NT-Xent loss
is incapable of using the information of label. Thus, the SCL
is proposed, which is described as

SC_Z| ()| 2 tog 'Y

peP(@)

exp zZ;- z,,/r)
acA() XP(Zi - 24/ T)

(29)

where A(i) is the set of all the samples except the ith sample,
P@) = {p € A(i) : yp = yi} is the set of positive samples in
A(i), and 7 is the temperature. In order to distinguish from the
hidden layer features of other metric and contrastive models,
z is used here to represent the feature coding.

The detailed procedure of SCL is introduced in Algorithm 1.
It can be seen that when there is only one positive sample,
SCL is the same as the NT-Xent loss. Meanwhile, if there is
only one class of negative examples, SCL can be regarded as
a deformation of triplet loss. In this article, we propose two
modules for RFF identification with SCL.

1) Module Normalization Layer: The MN layer in this
article is described as

Lnorm () = — (30)

1
|zi|
As can be seen in (29), the similarity of feature coding is
measured by the value of the dot product. It is obvious that
the module of feature coding will affect the performance of
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SCL. Thus, an analysis of gradients is implemented, which is
focused on the module of feature coding

IP()I 2 loe °T

PEP(i)

exp zZ; - Z,,/‘L')

acA(i) EXP(Zi - 2,/T)

€1y

Then, the partial derivative of £; with respect to z; is described
in three scenarios

j=i (a)
J=1J€PW (D) (32)
JENQ (¢
where N(i) = {n € A(i) : y, # yi} is the set of negative

samples in A(i). The partial derivative of each scenario is as
follows.

When i =,
aL; -1
—_— = — |P()| - Pig), 33
T = POl T 2 (2= PO Pu) (33)
peP(i)
when z; is belong to positive samples,
aL;
i — [P - Pyj), (34
oz PO o 2
when z; is belong to negative samples,
aL; -1
P@)| - Pij), 35
PO ( |P(i)| - Py) (35

where Pix = ([ cx (i) Zx - €XP(Zi - Zx/T)/[ X pen) €XP(Zi - 2a
/T)D). Then, (dL/z;) is given by

oL 0L;
BZj 7 azj'
9L
F]
fo
— | 9L 3Ly 0Lizy DL, MZ (36)
= | 0z > 0z, 00 0z 0 Oz Y
9L
AL
9L;
and (0L/0z) is described as
_% 3[,2_._3611 B_Q_ .
0z) 071 9z 0z, DL
9Ly 9Ly . 8Li AL oL
Gl 0z d Gl —
Y ?2 .12 ' '12 ?2 3Ly
dz ALy 0Ly ALiy L Z—ﬁ
0zj—1 0zj—) 0z 0zj) 8ai_l
0Ly 9Ly | DLt VL =
L 9z 0z 0z;  0z; !
9L
AL
9L
- 9Ly
=J/- (37)
AL
L1
9L
9L,

where 7, is the Jacobian, all the elements in the matrix should
meet three scenarios above. It is obvious that when the module
of z is too large, J, will be more sparse. Thus, the back prop-
agation will be slowed down or even “killed.” In addition, in
reality, the loss is limited by the numeric type. If the module
is unconstrained, the exp(z; -z,/7) term will be out of control.
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Algorithm 2: Detailed Procedures of Minibatch Generator

Input: D,,, < RFF dataset; np < number of
categories; N <— number of samples;

Output: D,,, < mini-batch dataset;

Set hyperparameters:

Nyjew < View; A < mark interval,

count = 0;
d _ +d
xanchor - xl
for n =1 to int(—
d e g d
Dview = {xl y X, Myiew—17 xlim‘hl}r}’
noo__ 1 2 D — D .
Dmb - {Dview’ Dview’ T Dview > Pyiew)»
count = count + 1;
if count > A then
i Y N
xanchor =X
count = 0;
end

D,,, = (D!, D?

mb> “mb> "

L) do

D-TE-REE N B LY B N SR S R

-
W N = D

n—1 no.
Tty Dmh ) Dmh}’
end

5 return D,,p;

-
'S

2) Minibatch Generator: The minibatch in SCL [47] refers
to the semisupervised learning in CV. Therefore, the mini-
batch in RFF identification needs improvement. As shown in
Algorithm 1 and (37), the samples in different minibatch are
independent of each other. It will lead to the x; with the same
y be mapped into z; with various distributions, which can be
seen in the left plot of Fig. 5. Thus, this article employs a mini-
batch generator to constrain z; € y in different minibatches,
which is shown in the right plot of Fig. 5. With the “anchor,”
the samples of different minibatch are linked together. The
details of the minibatch generator are given in Algorithm 2.

As shown in Algorithm 2 and Fig. 6, the last sample in each
minibatch is chosen as the mark signal or in other words, the
anchor. The mark interval A is employed to adjust the number
of anchors between the minibatch.
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Fig. 7. Structure of the neural network. (a) CNN [27]. (b) CLDNN.

E. Proposed SimRFE

Contrary to the traditional softmax-based supervised RFF
identification method, the SCL-based method consists of the
SimRFE and the secondary classifier. The SimRFE shares the
same feature extraction layers with the traditional method, but
the last fully connection layers are different. In this article, two
neural networks are employed to analyze the performance of
the SCL-based method. One of them is considered as a weak
neural network, and the other is considered as a competent
neural network to study the stability of the proposed method.
The structure of the neural networks can be seen in Fig. 7.

The neural network in Fig. 7(a) is a typical CNN, which is
modified from [27]. The neural network in Fig. 7(b) is a con-
volution, long-short-term-memory, and fully connected deep
neural network (CLDNN) [54]. The specific parameters are
similar to the CNN. The CLDNN can be considered as a
combination of CNN and LSTM. The CNN can reduce the
frequency variance of RF signals, and the LSTM is employed
to handle the middle features with a large number of time fea-
tures. In order to acquire the middle features at different time
scales, the output of the first convolution layer and the sec-
ond convolution layer are concatenated. Then, the features are
passed into the fully connected layers with the same structure.
The last layer of both neural networks is dependent on the
loss function. The Adam is employed as the optimizer, and
the initial learning rate is 0.001.

FE. Secondary Classifier

Contrary to the softmax-based RFF identification method,
the SCL and triplet loss-based method needs a secondary clas-
sifier for RFF identification with the feature codings. Thus,
this article employs several classification models, including
DL, machine learning, and simple mathematics.

1) DL: The softmax-based CNN and fully connection neu-
ral network are used here, which are denoted as DL/ and
DL2, respectively. Both neural networks share partial of their
structure, which is shown in Table 1.
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TABLE I
STRUCTURE OF THE DL SECONDARY CLASSIFIER

Layers Size Activation function
ConvlD 128 x1 x4 PReLU
Dropout - -

Dense 128 PReLU
Dropout - -

Dense np Softmax

Algorithm 3: Detailed Procedures of Distance Similarity
Measurement
Input: z < RFF feature codes; np < number of
cate%?ries; Niest < number of samples;
Output: R, *""” < Dot product matrix
VY = g iy %
for i =1 to Ny do
for j=1 to np do
| Rap(ij) =2 x &
end
end

N S R W

Niestxnp .
return R dp ;

The CNN is composed of a 1-D convolution layer with a
1 x 4 kernel, and two dense layers. While the fully connection
neural network consists of the last two dense layers, which
are the same as the layers in CNN.

2) Machine Learning: Considering the cost of neural
networks, this article also employs the traditional machine
learning method as the secondary classifier, i.e., SVM, which
is a classical supervised learning method.

3) Distance Similarity Measurement: Both the secondary
classifiers above need model fitting and complex parameter
passing. Considering the core of the SCL, this article also
implements a classification index with the dot product. The
detail is given in Algorithm 3, where I(i,j) ={i € [ : y; = y;}
is the set of all the samples belonging to the jth category,
and 7 is the “standard” feature coding of the jth sample. It is
obvious that the dot classifier is based on simple mathematical
operations without model fitting and complex parameter pass-
ing. Then, the max value of column in the ith row indicates
the category i, i.e.,

y; = arg max(de). (38)

G. Comparison Methods

In this article, an SCL-based RFF identification with
data augmentation and VAT is employed to solve the lim-
ited samples RFF identification problem, which is named
as “SCACNN.” The other RFF identification methods for
comparison are as follows.

1) Direct and DA-Aid Methods: The direct methods are the
classical RFF identification. Here, two different RFF iden-
tification architectures are used: softmax-based [27], [31],
triplet-based [34], based on training on Dy,,. Besides, the
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TABLE II
PARAMETERS SETTING OF THE RFF DATA SET

Experiment parameters  Our dataset  Public dataset

Sampling frequency 5 MHz
Modulation mode 16QAM

Number of devices 7 16
Length of samples 5,120 128

Number of samples 63,000 2,500,800
Carrier frequency 443 MHz 2.45 GHz
Signal generator VSG25A USRP X310
Spectrum analyzer BB60C USRP B210

DA-aid methods are based on training on Dyayw U Dayg [43]. It
is worth noting that all of the network structures are replaced
with suitable structure for fair comparison.

2) SiameseNet Method: The SiameseNet method is a effec-
tive contrastive learning architecture, and is also widely used
in RFF identification. Here, the SiameseNet method [48], [49]
uses Dy, for training, and its specific implementation steps
has been introduced in Section II. In addition, the CNN of the
SiameseNet is also replaced with a suitable structure to adapt
to the limited samples RFF identification in this article.

3) Instantaneous Feature: The instantaneous feature is a
traditional RFF identification, which extracts the statistical fea-
ture of I/Q samples. First, the instantaneous amplitude, phase,
and frequency are extracted, and the raw I/Q samples are
divided into slices. Then, the variance, skewness, and kurto-
sis of the instantaneous components of each slice are used to
represent the I/Q signal [16].

V. EXPERIMENTAL RESULTS
A. Data Set and Experiment Setup

In this article, to verify the universality of our proposed
SCACNN, two data sets are used: 1) an RFF data set col-
lected by ourselves and 2) the public RFF data set [55]. The
first data set is collected by the spectrum analyzer BB60C.
The signal generator VSG25A with different PAs are used to
generate RF signals. Each device is collected with LOS trans-
mission. The environment in which the sampled signals are
collected is approximately a noise-free environment. In addi-
tion, Our data set does not contain a special signal structure,
it is only a simple 16QAM modulated signal transmitted by
single antenna. The public data set collects the RF signal from
different Wi-Fi devices, each emulated by a USRP X310. A
fixed USRP B210 is used to collected the RF signals. Both
of the parameters in the data set are set to the same to avoid
the influence of the other feature in the signal. The detailed
settings of data sets are shown in Table. II.

The empirical cumulative distribution function (ECDF) and
probability distribution are distribution measurement methods.
As can be seen in Fig. 8, all of the devices has the similar
distributions. More specifically, the Device 3 and Device 6
may be easily classified. However, the other devices needs
appropriate RFF signal identification methods.
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Fig. 9. Performance of different RFF identification methods.

Both the above data sets are divided into three sets: 1) a
training data set; 2) a validation data set; and 3) a test data
set. The training data set consists of 60% samples, while the
validation data set takes 20% of samples and the test data
set takes the rest. RFF identification achieves a great result
with the complete training data set and validation data set.
Then, a few samples of the complete training data set are
randomly selected to simulate the case of RFF identification
with a limited data set. Significantly, considering the difference
of the data sets, the data ratio mentioned below is a relative
value, i.e., 5% of samples in data set A is not equivalent to
the same data ratio of samples in data set B.

Data preprocessing is carried out with MATLAB. The loss
functions and neural networks are built with Python and
Tensorflow. A PC with GeForce RTX 2070 is used to train
the neural networks in this article.

B. Performance of Different RFF Identification Method

The performance of different RFF identification methods
with 5% RFF samples is shown in Fig. 9. The proposed
SCACNN is compared with several classical RFF identifica-
tion methods. It is obvious that the proposed SCACNN has
the best performance in all of the SNR environments.

From the perspective of the RFF identification model
architecture, the contrastive loss architecture shows better
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Fig. 10. Performance of different hyperparameters. (a) Different secondary
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TABLE III
OPERATION TIME OF DIFFERENT SECONDARY CLASSIFIERS

Data ratio DL1 DL2 SVM Dot
0.05 13.2825s  11.2577s  0.0453s  0.0023s
0.1 17.4738s  13.8143s  0.0629s  0.0025s

performance than the Softmax loss architecture except the
DA-SoftmaxNet. It indicates that the contrastive loss architec-
ture does well in dealing with the limited samples problem, or
in other words, the contrastive loss architecture has stronger
feature extraction capability than the Softmax one. In addition,
the DA-aid also shows wonderful performance improvement.
However, considering the basic performance of SoftmaxNet,
the DA-SoftmaxNet in [43] is incapable to solve the lim-
ited samples problem. Besides, the instantaneous feature also
shows terrible performance, which indicates that traditional
RFF feature extraction will also facing the limited samples
problem.

C. Performance of Different Hyperparameters

There are lots of hyperparameters that can influence the
performance of the proposed SCACNN. Here, the different
secondary classifiers, the length of z;, and the use of the
MN layer are considered. As can be seen in Fig. 10(a), the
secondary classifiers of the SCACNN shows negligible dif-
ference, and the same is true for the classifiers of the triplet
loss-based method. The Dot scheme in Fig. 10(a) means the
distance similarity measurement.

It is obvious that the Dot shows the worst performance in
all case, while the performance of DLI and DL2 is simi-
lar which is slightly less effective than the SVM. However,
However, even the difference between the Dot and the SVM
is within 1%. From the perspective of computational cost,
as can be seen in Table III, the operation time of sec-
ondary classifiers are shown. The Dot scheme has the east
computational cost, while the DLI and DL2 have thousand-
fold operation time. Even the SVM also has twentyfold
operation time. Finally, considering the performance and oper-
ation time, the SVM and the Dot scheme are both optional
secondary classifiers. Here, in order to facilitate compari-
son with other contrastive architecture models, the SVM is
selected as the representative of secondary classifier in this
article.
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TABLE IV
ACCURACY OF RFF IDENTIFICATION WITH DIFFERENT
DATA AUGMENTATION METHODS

Method Data ratio | Benchmark  Rotation  Flipping Gaussian  Shifting

N 5% 0.5792 0.6469 0.6457 0.5772 0.6022
SoftmaxNet

10% 0.7824 0.8553 0.8194 0.7886 0.8554

. 5% 0.6838 0.7435 0.7149 0.6681 0.7392
TripletNet

10% 0.7629 0.8545 0.7964 0.7760 0.8287

SCL 5% 0.7296 0.8888 0.8627 0.7499 0.8458

10% 0.8808 0.9675 0.9384 0.8900 0.9274

0 5 10 15 20 0 5 10 15 20
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Fig. 11.  Performance of the SCACNN identification method
augmentation methods. (a) 5% samples. (b) 10% samples.

with data

Considering the performance of the proposed method with
different sizes, only the data set with 10% and 5% samples
are shown. In Fig. 10(b), it can be seen that the accuracy
of the proposed method increases with the increase of the
length of z;. More specifically, the performance with 10%
samples shows a relatively constant rate of increase, while
the performance with 5% has a sharp increase between length
8 and 16. It is obvious that the longer the feature coding,
the richer the feature distribution space. However, a longer
feature coding will also increase the cost of computation.
Significantly, the length of z; grows as a power of 2, so the
actual growth rate is even slower. The feature coding with
length of 16 has the optimal performance in both the 10%
and 5% data sets.

D. Performance of Different Data Augmentation

The performance of the SCL-based RFF identification
method with different data augmentation methods are also
studied. The accuracy of RFF identification with different
data augmentation methods in 20-dB environment is shown
in Table IV. As can be seen, all the proposed data augmen-
tation methods improve the accuracy of RFF identification.
JfRotation achieves the greatest improvement in all the cases,
while Flipping and Shifting are slightly inferior to Rotation.
In view of the loss functions, the SCL-based RFF identi-
fication method achieves the best performance with all the
augmentation. What is more, the accuracy improvement of the
SCL-based method also far exceeds the others. The SCL-based
method with Rotation augmentation and 5% samples achieves
an accuracy of up to 88.88%, and 96.75% with Rotation
augmentation and 10% samples.

The performance of the SCL-based RFF identification
method in different SNR environments is shown in Fig. 11.
When the SNR is lower than 10 dB, the improvement of data
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TABLE V
ABLATION EXPERIMENT OF DATA AUGMENTATION
Method 0 dB 5 dB 10dB 15dB 20 dB
SCL-based 0.5901 0.6477 0.6808 0.7269  0.7296
SCL + VAT | 0.6006 0.6756 0.7122 0.7656  0.7687
SCL + DA 0.6070  0.6644  0.7502 0.8015  0.8888
SCACNN 0.6084  0.6821 0.7725 0.8689  0.9268
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Fig. 12.  Ablation experiment of SCL components. (a) 5% samples. (b) 10%
samples.

augmentation is small. Rotation shows better performance,
when the SNR is up to 10 dB.

E. Ablation Experiment

In order to demonstrate the effectiveness of each compo-
nents in SCACNN, ablation experiments were carried out
in this article. As shown in Table V, the SCACNN has the
best performance in all SNR environment. It is obvious that
both the DA and VAT have significant performance improve-
ment. The SCL 4+ VAT can improve the accuracy by about
3% when the SNR is up to 5 dB. However, the SCL 4 VAT
also reach the upper bound when the SNR is 15 dB. The SCL
+ DA has a adequate improvement when the SNR is up to
10 dB. And different from SCL + VAT, the SCL + DA has a
huge improvement when the SNR is 20 dB, which indicate the
DA can provide additional RFF sample information. Finally,
the SCACNN combines the advantages of DA and VAT, and
its performance improves with the increase of SNR.

Some specific experiment result about the minibatch gen-
erator and the MN layer are also given in Fig. 12. Method 1
is the initial SCL-based method, Method 2 is the initial SCL
+ minibatch generator, Method 3 is the initial SCL + MN
layer, and the methods is the proposed improved SCL-based
method. It is obvious that the module layer has huge impact
on the result, the Method 3 and Method 4 show great stability.
Meanwhile, the minibatch generator can improve performance
of the SCL-based method, the Method 2 and Method 4 is better
than the Method 1 and Method 4, respectively. It is noting that
the minibatch generator will also slightly reduce the stability,
which can be ignored when compared with the improvement
of identification ratio.

F. Performance of Different Scenarios

The proposed SCL-based RFF identification method is not
only for the data set collected by ourselves and CLDNN, but
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Fig. 13. Feature visualization of SCACNN and other RFF identification method. (a) TripletNet. (b) DA + TripletNet. (c) SiameseNet. (d) DA 4 SiameseNet.

(e) SCL-based. (f) SCL + VAT. (g) SCL 4 DA. (h) SCACNN.

TABLE VI
ACCURACY OF DIFFERENT LOSS FUNCTIONS WITH
THE WEAK NEURAL NETWORK

Data ratio | Softmax SCL
DLI1 DL2 SVM Dot
10% 0.5628 0.6828 0.6789  0.6818  0.6790
20% 0.6049 0.7300 0.7286  0.7282  0.7179
30% 0.6570 0.7893  0.7886  0.7901  0.7857
40% 0.6723 0.8543  0.8518 0.8593 0.8415

also has strong generalizability. Here is the performance of our
proposed method with the weak neural network and the public
data set. As can be seen in Table VI, the SCL-based RFF iden-
tification method also outperforms the softmax-based method
in the 20-dB SNR environment. From the view of the neural
network, compared with the competent neural network, the
weak neural network takes more samples to achieve the same
accuracy. In addition, the performance of the proposed SCL-
based method decrease less than the softmax-based method.
Thus, the proposed SCL-based RFF method is more robust
to the fitting ability of neural networks. The secondary clas-
sifiers shows similar performance as before, while the SVM
also achieves the best performance.

The public data set consists of the Wi-Fi signals gener-
ated by USRP X310, which is collect with USRP B210 [55].
The data set contains Wi-Fi signals which are collected
twice at different distances. In this article the 12 of the
Wi-Fi signals collected at a distance of 2 ft are used. The
performance of RFF identification with the public data set
is show in Table VII. Here, the performance of the bench-
mark and augmented with Rotation are shown. It is obvious

TABLE VII
ACCURACY OF DIFFERENT LOSS FUNCTIONS WITH PUBLIC DATA SET

. . Benchmark Rotation
Time | Data ratio
Softmax  SCL+SVM | Softmax SCL+SVM

0.5% 0.5297 0.6295 0.5869 0.9344
1 1% 0.6401 0.8630 0.8322 0.9656
5% 0.9492 0.9749 0.9481 0.9919
0.5% 0.5115 0.6270 0.6723 0.9325
2 1% 0.5944 0.8868 0.7138 0.9818
5% 0.9121 0.9881 0.9240 0.9969

that the SCL-based method shows an excellent improvement,
when compared with the softmax-based method. Rotation also
improves the accuracy of the SCL-based method in all the
cases. However, the accuracy of the softmax-based method has
a negligible increase after Rotation, when the data ratio is 5%.
Unlike the performance with our data set, Shifting achieves a
poor performance, which may because the public data set is
composed of specific data structure. This will also appear with
the ADS-B data set [56].

G. Feature Visualization

The feature clustering results of different RFF identification
methods with 5% samples are shown in Fig. 13. It is obvious
that the proposed SCACNN has the best clustering result. The
SCACNN has a clear clustering boundary, while the results of
TripletNet and SiameseNet seem a little messy. In addition, the
data augmentation has greater improvement with SCL-based
method than the TripletNet and SiameseNet. It is worth noting
that the VAT shrinks the intraclass distances and expands the
interclass distances between feature coding.
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VI. CONCLUSION

In this article, we proposed a novel supervised contrastive
loss base RFF identification method, which showed excel-
lent performance in the case of using limited samples. A
data augmentation method and a model-based regularization
constraints were employed to improve the training model
performance. Specifically, the proposed method consists of
Data preprocessing and Model fitting. The raw RFF data set is
converted into augmented minibatch data set. Then, SimRFE
maps the RFF samples to the feature space with SCL and VAT,
while different secondary classifiers are employed for RFF
identification. Although the distance similarity measurement
showed a slightly inferior performance, it is still valuable in
future work for its simplicity. The simulation results indicated
the proposed SCACNN are effective. Feature visualization also
demonstrated that the ability of SCACNN was better than
TripletNet and SiameseNet. In addition, the feature visualiza-
tion indicates that it is necessary to further limit the feature
intraclass distances. It is worth noting that the current study
still has some open problems. The augmented data set exists
redundant signal, which increases the cost of training. Thus, a
augmented data set evaluation algorithm is needed to choose
the representative samples. In addition, the “anchor” in mini-
batch is selected randomly, when outlier samples are selected,
the performance of RFF identification system will be affected.
Hence, these questions are worth to address in our future work.
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