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Abstract—Deep learning (DL)-based specific emitter
identification (SEI) is a potential physical layer authenti-
cation technique for Industrial Internet-of-Things (IIoT)
Security, which detects the individual emitter according to its
unique signal features resulting from transmitter hardware
impairments. The success of DL-based SEI often depends on
sufficient training samples and the integrity of samples’ labels.
The extensive deployment of wireless devices generates a huge
amount of signals, but signals labeling is quite difficult and
expensive with the high demand for expertise. In this article, we
present an SEI method based on dual consistency regularization
(DCR), which enables feature extraction and identification using
a few labeled samples and a large number of unlabeled samples.
With the help of pseudo labeling, we leverage consistency
between the predicted class distribution of weakly augmented
unlabeled training samples and that of strongly augmented train-
ing unlabeled samples, and consistency between semantic feature
distribution of labeled samples and that of pseudo-labeled sam-
ples, which takes the unlabeled samples into account to model
parameter tuning for a more accurate emitter identification.
Extensive numerical results demonstrate that compared with
well-known semi-supervised learning-based SEI methods, our
method obtains 99.77% identification accuracy on a WiFi data
set and 90.10% identification accuracy on an automatic depen-
dent surveillance-broadcast (ADS-B) data set when only 10%
of training samples are labeled, and improves the identification
accuracy on the WiFi data set and the ADS-B data set by more
than 19.07% and 5.30%, respectively. Our codes are available
at https://github.com/lovelymimola/DCR-Based-SemiSEI.

Index Terms—Consistency regularization, deep metric learn-
ing, pseudo labeling, semi-supervised learning, specific emitter
identification (SEI).
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I. INTRODUCTION

INDUSTRY 4.0 comprises scenarios where the entire
production cycle, from its very initial conception phase

to the design, rollout, and operation, is accomplished with
the use and support of a variety of digital technologies [1].
Communications is the fundamental backbone of this digital
environment. However, the open nature of the wireless medium
provides more security vulnerabilities and authentication is
an important issue in wireless communications [2]. Specific
emitter identification (SEI) is a potential physical layer authen-
tication technique for avoiding spoofing attack in Industrial
Internet-of-Things (IIoT), which achieves an authentication by
comparing the physical-layer features of an unknown emitter
with one of the legitimate emitter [3].

Deep learning (DL) has made considerable progress over
last few years, and DL methods play an vital role in shift-
ing the security of Internet-of-Things (IoT) systems from
merely facilitating secure communication between devices to
security-based intelligence systems [4], [5]. Consequently, a
large amount of DL-based SEI methods have been proposed
for physical layer authentication. Driven by the training sam-
ples, the parameters of deep neural network are tuned for
minimizing the value of objective function through forward
propagation and backward propagation, realizing the mapping
operation from sample space to category space for a given
testing sample. The existing DL-based SEI methods can be
classified into four categories with respect to the input data
format: 1) in-phase/quadrature (I/Q)-based; 2) constellation-
based; 3) spectrogram-based; and 4) multimodal imformation-
based.

Chen et al. [6] used I/Q and inception-residual neural
network for 5157 automatic dependent surveillance-broadcast
(ADS-B) signals classification and 3143 aircraft communi-
cations addressing and reporting system (ACARS) signals
classification. Wang et al. [7] used I/Q and deep complex resid-
ual network for 20 WiFi network card devices identification.
Zha et al. [8] used I/Q and complex Fourier neural network
for seven simulated emitters classification. Peng et al. [9] used
heat constellation trace figure and deep neural networks for
seven power amplifiers classification. Ding et al. [10] used
compressed bispectrum and convolutional neural networks for
multiple universal software radio peripherals (USRPs) iden-
tification. Pan et al. [11] employed Hilbert–Huang spectrum
and deep residual network for five simulated emitters classifi-
cation. Shen et al. [12] used channel independent spectrogram
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generated by the short-time fourier transform (STFT) and con-
volutional neural network for long range radio (LoRa) devices
classification. Liu [13] used multimodal information consisting
of amplitude, phase, and spectrum asymmetry and convolu-
tional neural network for 20 aircraft transponders classifica-
tion. Zhao et al. [14] used multimodal information consisting
of I/Q, frequency spectrum, amplitude, and phase and deep
residual network for 20 aircraft transponders classification.

Sensing and capturing over-the-fly radio signals in the form
of I/Q signals can be performed using software definition
radio (SDR) platforms. However, I/Q signals annotation is a
time-consuming and labor-exhaustive task because an expert
is required to identify and annotate each captured signal and
the number of unknown signals increases the complexity of
the signal annotation task in unknown communication envi-
ronments [15]. Driven by sufficiently labeled training samples,
the above DL-based SEI methods achieve good identification
performance, but they will face the risk of declining iden-
tification accuracy when the labeled training samples is not
sufficient. Therefore, SEI methods in the case of limited-
labeled training samples have attracted attention. Transfer
learning [16], semi-supervised learning [17], unsupervised
learning [18], and data augmentation [19] have been intro-
duced into SEI in the case of limited-labeled training samples,
where semi-supervised learning [20], [21], [22] improves the
efficiency of deep models by learning from a few labeled train-
ing samples and a large number of unlabeled training samples
(UTSs).

In this article, we focus on SEI in the case of limited
labeled training samples and semi-supervised learning. A
Semi-supervised SEI (SemiSEI) method based on dual con-
sistency regularization (DCR) is proposed and referred to
as the DCR-based SemiSEI method. We leverage a self-
learning framework to propagate label information from the
labeled to the UTSs in the form of DCR. Specifically, we
adopt confidence thresholds to generate pseudo labels on
weakly augmented UTSs and utilize these pseudo labels
as annotations for strongly augmented UTSs to enhance
the predicted class consistency between weakly augmented
UTSs and strongly augmented UTSs; in addition, we lever-
age deep metric learning to efficiently enhance the semantic
feature consistency between labeled and pseudo-labeled train-
ing samples which belong to same category. The DCR-based
SemiSEI method takes into account both labeled and UTSs in
model training and consequently obtains better identification
performance.

The main contributions of this article are summarized as
follows.

1) We present an SEI method based on DCR that are
predicted class consistency and semantic feature con-
sistency, which enables features extraction and identifi-
cation without the need of sufficiently labeled training
samples.

2) We present a data augmentation method for labeled
and UTSs to increase the training samples diver-
sity and avoid confirmation bias, while introducing
entropy minimization to regularize the predicted class
consistency of UTSs with different disturbance and

semi-supervised metric learning to regularize the seman-
tic feature consistency of labeled and pseudo-labeled
training samples.

3) We evaluate the proposed DCR-based SemiSEI method
on a WiFi data set with 16 categories and an ADS-B
data set with ten categories. The simulation results show
that the proposed method achieves a better identification
accuracy and feature discrimination compared with five
latest SemiSEI methods.

II. RELATED WORKS

Semi-supervised learning can be categorized in deep genera-
tive methods, consistency regularization methods, graph-based
methods, pseudo-labeling methods, and hybrid methods [23].
To the best of our knowledge, there is little semi-supervised
signal recognition method based on graph. Therefore, as shown
in Table I, we focus on reviewing the semi-supervised signal
recognition methods based on deep generative model, con-
sistency regularization, pseudo-labeling, or hybrid ideas. In
addition, we particularly care about how these methods use
labeled and UTSs to drive the training process of deep neural
networks.

A. Deep Generative Methods

Deep generative methods, such as generative adver-
sarial networks (GANs) [24], convolutional autoencoders
(CAEs) [25], and their variants, can learn the data distribu-
tion from UTSs. Therefore, SemiSEI methods based on an
unsupervised component, such as auxiliary classifier GAN
(ACGAN) [26], deep convolution GAN (DCGAN) [27], con-
ditional GAN (CGAN) [28], Triple-GAN [29], improved
GAN [31], or CAE and a supervised classification backbone
have been proposed in the literatures as follows.

1) ACGAN: Tu et al. [30] presented a semi-supervised
ACGAN for automatic modulation classification (AMC), and
some training tricks of improved GAN [31], such as feature
matching, minibatch discrimination, and classification back-
bone, were introduced into the ACGAN. The labeled and
unlabeled samples were used as real samples to train the
ACGAN and the labeled samples participated in the training
process of discriminator for enabling its classification capa-
bility. However, this framework was effective in small labeled
data set but not in larger labeled data set.

2) DCGAN: Similar to [30], Zhou et al. [32] proposed a
semi-supervised DCGAN for AMC and SEI, and some training
tricks of improved GAN [31], such as one-side label smooth,
feature matching, and classification backbone, were introduced
into the DCGAN. The unlabeled samples were used as real
samples to train the DCGAN and the labeled samples partici-
pated in the training process of discriminator for enabling its
classification capability. This framework was also effective in
small labeled data set, but its effectiveness in larger labeled
data set was not been analyzed.

3) CGAN: Similar to [30] and [32], Tan et al. [33]
proposed a semi-supervised CGAN for SEI in multiple com-
munication scenarios, and some training tricks of improved
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TABLE I
RELATED WORKS

GAN [31], such as feature matching and classification back-
bone, were introduced into the CGAN. The unlabeled samples
were used as real samples to train the CGAN and the labeled
samples participated in the training process of discriminator
for enabling its classification capability.

4) Triple-GAN: Considers that the I/Q signals contain more
information, but using I/Q signals with high dimension to train
the generator and discriminator brings great difficulty in the
training process, Gong et al. [34] introduced an autoencoder
into semi-supervised Triple-GAN termed as Quadruple-GAN.
The labeled and unlabeled samples were compressed to be
feature samples with low dimension using autoencoder, and
then the feature samples participated in the collaborative learn-
ing of Triple-GAN. Xu et al. [35] presented an improved
quadruple-GAN for interference signal recognition (ISR) and
AMC, which was an improved version of the method [34]
with applications on ISR and AMC, an enhanced collaborative
learning, modified objective functions, and lightweight models
based on knowledge distillation for inference phase.

5) CAE: Camelo et al. [15] presented a semi-supervised
CAE for automatic wireless technology recognition (AWTR),
where the encoder and decoder were trained in an unsu-
pervised way using only unlabeled samples; then the frozen
encoder together with a classifier were trained in a supervised
way using labeled samples; and finally, the de-frozen encoder
together with a classifier were fine-tuned in a supervised
way using labeled samples. Different from the staged training
in [15], Wang et al. [36] designed a multiple-objective func-
tion to synchronously train a CAE together with a classifier

for AMC, where the labeled samples were fed into encoder
and classifier and the unlabeled samples were fed into encoder
and decoder to drive the training process.

The above deep generative model-based methods compared
with the same frameworks without corresponding generator
or decoder have obvious identification performance improve-
ment, especially in small labeled data set. However, GAN-
based methods have the disadvantage of training instability and
strong probability of model collapse and many training tricks
are required to overcome them; CAE incorporating unlabeled
samples into model training only through reconstruction objec-
tion cannot fully utilize the information embedded in unlabeled
samples. The current research trend of semi-supervised signal
recognition methods has shifted to consistency regulariza-
tion, pseudo-labeling or hybrid idea including our proposed
SemiSEI method.

B. Consistency Regularization Methods

According to the smoothness assumption or the mani-
fold assumption, the consistency regularization applies the
similarity constraints to the final loss functions, which the
deep models are encouraged to output similar predictions
of perturbed versions of the same signals [37]. Therefore,
a simple and efficient SemiSEI method can be provided by
combining the consistency regularization with a supervised
classification backbone. Consistency regularization combined
with advanced data augmentation significantly improves the
diversity of samples and features, fully extracts and utilizes
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the information of unlabeled samples, and offers superior
identification performance.

1) Temporal Ensembling: Huang et al. [38] proposed a
temporal ensembling [39]-based semi-supervised ISR method.
The labeled samples were fed into convolutional neural
network to produce predictions; for these predictions, the
cross-entropy loss between the predicted labels and true labels,
and the mean square error between the latest predictions
and the ensemble predictions were computed. The unlabeled
samples were also fed into convolutional neural network to
produce predictions, but only the mean square error between
the latest predictions and the ensemble predictions were
computed.

2) Contrastive Learning: Liu et al. [40] presented a
SimCLR [41]-based semi-supervised AMC method. The unla-
beled samples were used to train an encoder that preferred
mapping such similar inputs (an input rotated with differ-
ent angles) to nearby locations in the latent space, and the
labeled samples were used to train a classifier which took the
representations (out of frozen encoder) as input.

3) Unsupervised Domain Adaption: Deng et al. [42]
introduced the unsupervised domain adaption [43] into the
semi-supervised AMC method. The labeled samples were con-
sidered as source domain and the unlabeled samples were
considered as target domain.

4) Virtual Adversarial Training: Xie et al. [44] proposed a
virtual adversarial training [45]-based SemiSEI method. The
labeled and unlabeled samples were used to encourage the
neural network to output similar predictions for the perturbed
ones, and the labeled samples were used to train the neu-
ral network in a supervised way. Fu et al. [46] presented a
virtual adversarial training-based SemiSEI method, and intro-
duced deep metric learning into the proposed framework to
extract discriminative features.

The above consistency regularization-based methods com-
bined with data augmentation encourages the neural network
to output similar predictions for the original sample and the
perturbed one, but does not encourage the neural network
to output similar predictions for the samples which have
same pseudo labels or labels. In this article, we introduce
the pseudo-labeling and deep metric learning into consistency
regularization to solve this shortcoming.

C. Pseudo-Labeling Methods

Based on the prediction of high-confidence model, pseudo-
labeling methods are employed to generate pseudo labels for
UTSs, and then use these pseudo-labeled samples to regularize
the training process of deep model [23].

1) Pseudo Label: Longi et al. [48] presented an SEI
method based on pseudo label. The framework iteratively
generated pseudo labels and additionally weighted the impor-
tance of the individual samples based on the number of the
unlabeled samples and the learning phase. Similar to [48],
Yang et al. [49] and Yuan et al. [50] introduced the pseudo
label into the SEI. Xu et al. [51] applied the interpolation
consistency training [52] in AMC, where the labeled samples
were fed into neural network to calculate the cross entropy

loss, and the pseudo labels of mixing-unlabeled samples were
predicted, and the mixing-unlabeled samples were fed into the
neural network to calculated the cross entropy loss.

2) Meta Pseudo Labels: For decreasing the confirmation
bias of the pseudo label, Ren et al. [53] introduced meta
pseudo labels [54] into SEI. The labeled samples were used
to train the teacher model, and then the pseudo labels of unla-
beled samples were predicted by teacher model and were used
to train the student model, and finally the cross-entropy loss
of labeled samples on student model were used to optimize
the parameters of the teacher model.

The pseudo label is one popular semi-supervised learning
method, but it suffers from confirmation bias [55], where the
model overfits to incorrect pseudo labels predicted by owns.
Mixing samples is an effective regularization techniques for
reducing it [55]. This well matches our approach that drives the
training process of deep neural network using mixing-rotating
signals and its corresponding pseudo labels generated from
rotating signals to reduce the confirmation bias.

D. Hybrid Methods

Hybrid methods are composed of the combination of
various methodologies, such as generative model, consis-
tency regularization, pseudo labeling, data augmentation,
and other components. The superiority of multiple compo-
nents than single components were demonstrated in methods
[17], [56], [58], [59].

1) Deep Generative Model Combined With Pseudo
Labeling: Li et al. [56] designed a DCGAN with a classifier
for AMC. For each training round, the DCGAN with classifier
was trained in a supervised way using labeled samples, and
then the classifier predicted the labels of the unlabeled sam-
ples, and those positive samples with high confidence were
selected as newly labeled samples for the next training round.
Li et al. [57] introduced a conditional variational autoencoder
and a spatial transformer network to optimize the training
stability of [56].

2) Consistency Regularization Combined With Pseudo
Labeling: Dong et al. [58], [59] combined the unsupervised
data augmentation with pseudo label for AMC. The labeled
samples and pseudo-labeled samples were used to train a neu-
ral network in a supervised way, and unlabeled samples were
used to train the neural network that preferred mapping such
similar inputs (original version and the noise-added version)
to similar probabilistic distributions. Fu et al. [17] combined
virtual adversarial training with pseudo label for SEI. Different
from [46], this method introduced the pseudo labels into deep
metric learning, where the improved metric learning operated
not only on labeled training samples but also UTSs.

According to our survey on related works, there are few
signal recognition methods based on hybrid methodologies;
methods [56] and [57] have risks on confirmation bias, and
methods [17], and [58], [59] have risks on model gener-
alization because simple data augmentation only propagates
the label information to the directly connected neighbors of
the samples. In this article, we used a weak data augmenta-
tion and a strong data augmentation for the SemiSEI method
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because the augmentation diversity leads to more neighbors for
each sample and consequently the identification performance
is improved.

III. PROBLEM FORMULATION

A. DL-Based SEI

Let R and Y be the sample space and category space,
respectively. Given a training data set Dt = {(ri, yi)|i =
1, . . . , N, r ∈ R, y ∈ Y}, the goal of DL-based SEI problem
is to produce a mapping function f ∈ F : R → Y and its
expected error is minimized approximately, i.e.,

min
f∈F

E(r,y)∼DtLs(f (r), y) (1)

where E represents the computing mathematical expectation,
and Ls(f (r), y) stands for the loss that compares the prediction
f (r) to its ground-truth category. The parameters of deep
neural network are tuned by forward propagation and back
propagation to minimize the error, so that the deep neural
network has the mapping function from sample space to cat-
egory space. More supervised samples contained in Dt will
bring more constraints on f and then it will bring a good
generalization.

B. General SemiSEI

In a SemiSEI problem, the training data set Dt is composed
of labeled training data set Dl and unlabeled training data set
Dul, where their relationship can be described as Dt = Dl∪Dul,
Dl = {(rn

l , yn
l )|n = 1, . . . , L, rl ∈ R, y ∈ Y} consists of L

labeled training samples, Dul = {rm
ul|m = 1, . . . , N − L, rul ∈

R} consists of N − L UTSs. The goal of a general SemiSEI
is also to produce a mapping function f ∈ F : R → Y but
approximately minimize the expected error as follows:

min
f∈F

E(rl,yl)∼DlLs(f (rl), yl)+ ωErul∼DulLus
(
f (rul), Trul

)
(2)

where Lus(rul, Trul) is an unsupervised loss that encourages the
model to produce predictions which are similar to the target
Trul for UTSs, and ω is a weighting scalar for balancing the
loss terms.

C. Proposed SemiSEI Method

In general SemiSEI methods, different semi-supervised
techniques differ in how they generate the target Trul of (2).
In the proposed SemiSEI method, the Lus is predicted class
consistency of Dul, which extracts the data distribution embed-
ded in Dul to tune model parameters for a more accurate
emitter identification. To further build the connection between
Dl and Dul, we introduce another consistency regularization
to constrain their semantic feature consistency. Therefore,
the expected error that is minimized approximately by the
proposed SemiSEI method can be formulated as

min
f∈F

εem = min
f∈F

E(rl,yl)∼DlLs(f (rl), yl)

+ ω1Erul∼DulLus
(
f (rul), Trul

)

+ ω2E(r∗,y∗)∼DtLc
(
f (r∗), Ty∗

)
(3)

TABLE II
DETAILS OF CVNN

where Ty∗ is the prototypical-semantic features which can
be indexed by labels y∗. Lc constrains not only the seman-
tic features of Dl but also that of Dul to be close to
their corresponding prototypical-semantic features, where the
prototypical-semantic features of Dl and Dul can be indexed
by their true labels and pseudo labels, respectively.

IV. PROPOSED DCR-BASED SEMISEI METHOD

In this section, the proposed DCR-based SemiSEI method
will be described by four sections that are framework of
DCR-based SemiSEI, data augmentation, semantic feature
consistency, predicted class consistency, and training and
testing procedure.

A. Framework of DCR-Based SemiSEI

The proposed DCR can be combined with various classifi-
cation backbone networks for the SEI method. In this article,
the complex-valued neural network (CVNN) [60] is used as
an example of classification backbone network to evaluate the
effectiveness of DCR. The structure of CVNN is shown in
Table II, where two kinds of CVNN are empirically designed
for long signals and short signals. The framework of DCR
is depicted in Fig. 1, which contains a training stage and a
testing stage.

In the training stage, there is classification backbone loss
function designed for labeled training samples. Specifically,
the standard cross-entropy loss is utilized to evaluate the gap
between true class distribution and predicted class distribution
of training samples preprocessed by weak data augmentation.
In addition, there are two consistency regularization loss func-
tions: 1) predicted class consistency loss function for UTSs
and 2) semantic feature consistency loss function for both
labeled and UTSs. Specifically, the predicted class consis-
tency loss function is the cross-entropy for measuring the
predicted class distribution gap between UTSs preprocessed
by weak and strong data augmentation. It is noted that the
pseudo labeling is applied to sharpen the predicted class dis-
tribution of weakly augmented UTSs. The semantic feature
consistency loss function is the semi-supervised center loss
(SSCL) [17], [61] for measuring the gap between semantic
feature distribution of training samples preprocessed by weak
data augmentation and prototypical-semantic feature distribu-
tion. Here, the prototypical-semantic feature distribution is the
central feature distribution of a certain class of training sam-
ples, and the prototypical-semantic features of these labeled
training samples can be indexed by their true labels, while
that of these UTSs are indexed by their pseudo labels.
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Fig. 1. Framework of the proposed DCR-based SemiSEI method.

In the testing process, radio signals are first preprocessed
by weak data augmentation, and then the weakly augmented
version of radio signals are fed into the CVNN to predict
class distribution, and finally the predicted labels are given by
ensemble decision (ED).

B. Data Augmentation

Inspired by literatures [62], [63], the rotation and the
combination of rotation and cutout are used as weak data
augmentation and strong data augmentation in the DCR,
respectively. The weakly augmented symbols of radio signals
are obtained by rotating the symbols around its origin, which
can be formulated as

fwda[r(i); θ ] =
[

cosθ −sinθ

sinθ cosθ

][
I
Q

]
, i = 1, 2, . . . , I (4)

where I and Q are the in-phase and quadrature components
of the symbols of radio signals, respectively; θ is the angle
of rotation and θ ∈ {0, π/2, π, 3π/2}; I is the number of
sampling points of radio signals. To obtain the radio signals
with a stronger perturbation, the rotated signals are further
processed by cutout, which can be expressed as

fsda[r(i); θ ] = fwda[r(i); θ ]� z(i) (5)

z(i) =
⎧
⎨

⎩

1, 1 ≤ i < s
0, s ≤ i ≤ s+ l− 1
1, s+ l− 1 < i ≤ I

(6)

where {z(i)|i = 1, 2, . . . , I} is a mask sequence consisting of
one and zero, and � indicates the elementwise product, and
the number of one to the number of zero ratio η obeys the

Beta(1, 1) distribution. To obtain the mask sequence based
on the ratio η, the cutting region on the rotated signals is
designed as l = I

√
1− η, and then the starting index s of the

cutting region is randomly sampled according to the uniform
distribution as

s ∼ �U(0, I − l+ 1)�. (7)

To simplify following description, we use r̈∗ =
{fwda[r(i); θ ]|i = 1, 2, . . . , I} and r̃∗ = {fsda[r(i); θ ]|i =
1, 2, . . . , I} to represent a weakly augmented signal and a
strongly augmented signal, respectively; we use R̈∗ = {r̈b∗|b =
1, 2, . . . , B∗} and R̃∗ = {r̃b

∗|b = 1, 2, . . . , B∗} to denote a
batch of weakly augmented signals and a batch of strongly
augmented signals, respectively. The illustrations of the weak
data augmentation and strong data augmentation are shown
in Fig. 2.

C. Predicted Class Consistency

Each unlabel training sample (UTS) is weakly augmented
and strongly augmented, and the pseudo label of r̈ul and pre-
dicted class distribution of r̃ul are constrained to be consistent
by entropy minimization [64]. Specifically, first, the pseudo
label of each UTS is obtained by

qb
ul = fc

(
fe
(

r̈b
ul

))
(8)

ŷb
ul = arg max

(
qb

ul

)
(9)

where r̈b
ul represents the bth sample of R̈ul = {r̈b

ul|b =
1, 2, . . . , μB}, fe is the feature extractor, fc is the classifier,
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Fig. 2. Weak data augmentation and strong data augmentation in the DCR-based SemiSEI.

and ŷb
ul is the pseudo label; second, the pseudo label is used

as the ideal distribution of model’s output for r̃b
ul, i.e.,

Lu = 1

μB

μB∑

b=1

1
(

max
(

qb
ul

)
> τ

)
H

(
ŷb

ul, fc
(

fe
(

r̃b
ul

)))
(10)

where τ represents a threshold above which a pseudo
label is retained, and H stands for the cross-entropy
loss.

D. Semantic Feature Consistency

The prototypical-semantic feature distribution is first learned
from the R̈l = {r̈b

l |b = 1, 2, . . . , B}, and meanwhile
the semantic feature distribution of R̈l is also constrained
to be closed to the prototypical-semantic feature distribu-
tion. When the prototypical-semantic feature reaches cer-
tain representativeness and stability, R̈ul participates in
the tuning of prototypical-semantic feature distribution,
and the semantic feature distribution of R̈ul is encour-
aged to be consistent with the prototypical-semantic fea-
ture distribution. To achieve this, we introduce the SSCL
[17], [61], i.e.,

Lc = 1

2B

B∑

b=1

∥∥∥fe
(

r̈b
l

)
− cyb

l

∥∥∥
2

2

+ α(t)
1

2μB

μB∑

b=1

1
(

max
(

qb
ul

)
> τ

)∥∥∥fe
(

r̈b
ul

)
− cŷb

ul

∥∥∥
2

2

(11)

α(t) =
{

0, t < 100
1, 100 ≤ t < T

(12)

where cyb
l

and cŷb
ul

are the prototypical-semantic features of cat-

egory yb
l and category ŷb

ul, respectively. For each category of
emitter devices, the prototypical-semantic features are learned.
α(t) is a coefficient balancing the terms, which is expected to
help the optimization process when increasing α(t). Different
from MAT-CL [17], the SSCL encourages the model to learn
an invariant representation under weak data augmentation and
further build the connection between labeled and UTSs in this
article. Specifically, the data augmentation of DCR produces
stronger sample diversity than MAT-CL, and DCR employs

(a) (b) (c) (d)

Fig. 3. Semantic feature consistency, where (a) and (b) is the training sam-
ples and weakly augmented training samples in sample space; (c) and (d) is
the corresponding semantic features in the feature space. Blue and orange
nodes are labeled training samples, white nodes are UTSs whose labels have
not been determined, and light blue nodes and light orange nodes are unla-
beled nodes whose labels are correctly determined, litter nodes are weakly
augmented training samples, the stars are the semantic features of the corre-
sponding samples, and cross symbols are the prototypical-semantic features
of the corresponding categories.

semantic feature constraints on both labeled and UTSs pre-
processed by weak data augmentation, while MAT-CL only
applies semantic feature constraints into labeled and UTSs
without any data augmentation.

As shown in Fig. 3, first, the label information is propa-
gated to the directly connected neighbors of labeled training
samples by performing weak data augmentation on labeled
training samples, and the label information traverses to the
connected neighbors of the UTSs by performing weak and
strong data augmentation on UTSs as shown in Fig. 3(b);
second, the semantic features of labeled and pseudo-labeled
training samples which belong to the same category are con-
strained to approach the prototypical-semantic features of
the corresponding category as shown in Fig. 3(c) and (d).
The semantic space is more accurately divided into K sub-
spaces, where K represents the number of categories of
emitters, and consequently the identification performance is
improved.

E. Training and Testing Procedure

Based on the above design, the objective loss function
for optimizing the CVNN in the training stage can be
expressed as

L = Ls + ω1Lus + ω2Lc. (13)

We describe the training procedure of DCR in Algorithm 1. In
addition, in the testing stage, the predicted label of a testing
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Algorithm 1: Training Procedure of the DCR-Based
SemiSEI Method

Require:
• T: Number of training iterations;
• C: Number of batches;
• Wm, Wc: Parameters of CVNN and

prototypical-semantic features of semi-supervised
center loss, respectively;

• lrm, lrc: Learning rate of CVNN and semi-supervised
center loss, respectively;

• za,b
l , za,b

ul , zA,b
ul : Semantic feature distribution of a

weakly-augmented labeled training sample, a
weakly-augmented unlabeled training sample and a
strongly-augmented unlabeled training sample,
respectively;

• qa,b
l , qa,b

ul , qA,b
ul : Predicted class distribution of a

weakly-augmented labeled training sample, a
weakly-augmented unlabeled training sample and a
strongly-augmented unlabeled training sample,
respectively;

for t = 1 to T do
for c = 1 to C do

Randomly Sampling a batch of labeled training
samples Rl = {(rb

l , yb
l )|b = 1, 2, . . . , B}.

Randomly Sampling a batch of unlabeled training
samples Rul = {(rb

ul)|b = 1, 2, . . . , μB}.
Forward propagation:
Extracting the semantic features:
Za

l , Za
ul, ZA

ul = fe(Wm, Wc; R̈l, R̈ul, R̈ul);
Predicting the class distribution:
Qa

l , Qa
ul, QA

ul = fc(Wm;Za
l , Za

ul, ZA
ul);

Obtaining the artificial labels:
for b = 1 to μB do

ŷb
ul = arg max(qa,b

ul )

end
Calculating the sub-objective loss:
Ls = 1

B

∑B
b=1 H

(
yb

l , qa,b
l

)

Lus = 1
μB

∑μB
b=1 1

(
max

(
qa,b

ul

)
> τ

)
H

(
ŷb

ul, qA,b
ul

)
.

Lc = 1
2B

∑B
b=1

∥
∥∥za,b

l − cyb
l

∥
∥∥

2

2
+

α(t) 1
2μB

∑μB
b=1 1

(
max

(
qa,b

ul

)
> τ

)∥∥∥za,b
ul − cŷb

ul

∥∥∥
2

2
Calculating the objective loss:
L = Ls + ω1Lus + ω2Lc

Backward propagation:
Updating the parameters of CVNN:
Wm ← Adam(∇Wm ,L, lrm, Wm);
Updating the prototypical-semantic features:
Wc ← Adam(∇Wc ,L, lrc, Wc)

end
end

sample rt is obtained by

arg max
∑

θ

fc
{
fe
[
fwda(rt; θ)

]}
. (14)

TABLE III
DETAILS OF DATA SET AND SIMULATED PARAMETERS

V. EXPERIMENTAL SETUP AND RESULTS

A. Simulation Parameters

The details of simulated parameters are shown in Table III,
where the ratio indicates how many of training samples are
labeled. In addition, the validating samples are randomly
selected from 30% of the labeled training samples.

B. Comparative Methods

To demonstrate the effectiveness of our DCR-based
SemiSEI method, we choose some representative signal recog-
nition methods corresponding to the above categories of
semi-supervised learning as the comparative methods, namely,
DRCN [36], Triple-GAN [34], and SimMIM [69], [70] (deep
generative methods), and SSRCNN [59], MAT-CL, and MAT-
PA [17] (hybrid methods composed of pseudo labeling and
consistency regularization). We also compare the proposed
DCR-based SemiSEI method with the classification backbone
CVNN [60] which is merely trained using labeled training
samples.

C. Identification Performance

Table IV shows the identification accuracy of the proposed
DCR-based SemiSEI method and comparative methods. It is
worth noting that some values of identification accuracy may
be the same, but the identification results are actually different.
We observe that as the number of labeled training sam-
ples increases, the identification performance of all methods
improves because the more labeled training samples, the more
information about samples distribution the model has and the
better decision boundaries are. As the number of labeled train-
ing samples decreases, the superiority of the proposed method
in identification performance can be observed. Specifically,
when the ratio is 10%, the identification accuracy of the
proposed method can achieve 99.77% for the WiFi data set and
90.10% for the ADS-B data set. Our method has 71.13% and
15.60% higher classification accuracy than the classification
backbone CVNN on the WiFi data set and the ADS-B data set,
respectively. In addition, our method has 19.07% and 5.30%
higher classification accuracy than MAT-CL, which has the
highest classification accuracy in these comparative methods
on WiFi data set and ADS-B data set, respectively.
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TABLE IV
IDENTIFICATION ACCURACY OF THE PROPOSED DCR-BASED SEMISEI METHOD AND COMPARATIVE METHODS

UNDER THE WIFI DATA SET AND THE ADS-B DATA SET

Fig. 4. Visualization of semantic feature of different SEI methods when the data set is WiFi and the number of labeled training samples to the number of all
training samples ratio is 5%, where the silhouette coefficient of CVNN, DRCN, SSRCNN, TripleGAN, SimMIM, MAT-CL, MAT-PA, and DCR is −0.0039,
−0.0130, −0.0050, −0.0005, −0.0178, 0.0279, 0.0030, and 0.5969, respectively. (a) CVNN [60]. (b) DRCN [36]. (c) SSRCNN [59]. (d) Triple-GAN [34].
(e) SimMIM [69], [70]. (f) MAT-CL [17]. (g) MAT-PA [17]. (h) DCR (proposed).

However, we also observe that the identification accu-
racy of DCR is not always better than that of comparative
methods under the ADS-B data set. The DCR has 1.10%
lower identification accuracy than MAT-CL when the ratio
is 50%, and 0.20% lower identification accuracy than the
classification backbone CVNN when the ratio is 100%. The
explanation is that when the number of labeled samples is suf-
ficient for supervised learning, unlabeled samples may bring
additional perturbations to degrade the model identification
performance, especially as the perturbations increase with
the data augmentation diversity of the unlabeled samples.
Therefore, semi-supervised learning and data augmentation is
not recommended when labeled training samples are sufficient.

D. Visualization of Semantic Feature

T-distributed stochastic neighbor embedding (t-SNE) [71]
visualizes high-dimensional data by giving each data point a
location in a two or 3-D map. It is able to capture the local
structure of high-dimensional data while also revealing the
global structure, such as the presence of clusters at multiple
scales. Because of these advantages, t-SNE has been widely
used in visualization of feature extracted by neural networks.

In this article, the dimension of extracted semantic features
of long signals (WiFi) and short signals (ADS-B) is 1024

and 128, respectively. We use t-SNE to compress the dimen-
sional of extracted semantic feature from 1024 or 128 to 2 and
visualize it. As shown in Figs. 4 and 5, the proposed method
enables a lower density of data points at the decision bound-
ary and makes the classification problem easier to solve for
testing samples. When the ratio is 5%, the silhouette coef-
ficient of DCR is 0.5969 and 0.2344 on the WiFi data set
and the ADS-B data set, respectively. DCR has 0.5690 and
0.0210 higher silhouette coefficient than MAT-CL, which has
the highest silhouette coefficient in comparative methods. The
superiority of feature discrimination of DCR can be observed
clearly, especially in the WiFi data set. According to the cluster
assumption, DCR can get a better identification performance.

E. Ablation Experiment

There are two important factors, SSCL and ED, in the
proposed DCR-based SemiSEI method. We analyze the iden-
tification performance when any factor of DCR is ablated,
to demonstrate the necessity of each factor for the success
of DCR. Moreover, it is worth noting that under appropriate
assumptions or conditions the UTS can improve the learn-
ing performance, but some empirical studies [72], [73] have
demonstrated that UTS may result in even worse performance
than models learned only with labeled training samples.
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Fig. 5. Visualization of semantic feature of different SEI methods when the data set is ADS-B and the number of labeled training samples to the number
of all training samples ratio is 5%, where the silhouette coefficient of CVNN, DRCN, SSRCNN, TripleGAN, SimMIM, MAT-CL, MAT-PA, and DCR is
0.1000, 0.0427, −0.0042, 0.0105, 0.1072, 0.2134, 0.1853, and 0.2344, respectively. (a) CVNN [60]. (b) DRCN [36]. (c) SSRCNN [59]. (d) Triple-GAN [34].
(e) SimMIM [69], [70]. (f) MAT-CL [17]. (g) MAT-PA [17]. (h) DCR (proposed).

TABLE V
ABLATION ANALYSIS OF THE PROPOSED DCR-BASED SEMISEI METHOD UNDER THE WIFI DATA SET AND THE ADS-B DATA SET

Hence, we also demonstrate that the UTS also has a positive
effect on the success of DCR.

Table V shows the identification performance when any fac-
tor of DCR is ablated. We observe that all factors are important
to DCR. When any factor is ablated, the identification accuracy
of the DCR decreases. Especially when the UTS is ablated,
the identification accuracy of the DCR significantly decreases.
This indicates that our proposed DCR can learn the valuable
knowledge of UTS that is beneficial to model training.

To further demonstrate that the proposed DCR efficiently
utilizes the UTSs data, we analyze the identification accuracy
of CVNN whose training process are driven or enhanced by
rotation, cutout, center loss, and their combination in a super-
vised way, and compare the proposed DCR with it as shown
in Table VI. In Table VI, the values * in parentheses indicate
that the identification accuracy of model with sum of cross-
entropy loss and center loss as objective function is *% higher
or lower than that of model with cross-entropy loss as objec-
tive function. It can be observed that clear superiority of DCR
on identification accuracy, although data augmentation brings
gains of identification accuracy compared with none, where
none means that there is no data augmentation.

In addition, from Table VI, it can be observed that rota-
tion and cutout combined with center loss-based SEI method
has a significant decrease in identification accuracy com-
pared to rotation and cutout-based SEI method. Therefore,
it is inappropriate to define prototypical-semantic features
and encourage the semantic features of strongly augmented

unlabeled samples originated from UTS to be close to them.
This is the one of the reasons that DCR why not syn-
chronously constrain the semantic features of UTSs which
are preprocessed by strong data augmentation to be close to
their corresponding prototypical-semantic features (referred to
as DCR-S). Another reason is that the prototypical-semantic
features are initialized by weakly augmented labeled train-
ing samples, and it is intuitively natural to encourage the
semantic features of labeled training samples and UTSs which
are preprocessed by weak augmentation to be close to their
corresponding prototypical-semantic features. Compared with
weak augmentation, strong augmentation imposes more com-
plex perturbations to the UTSs. If strongly augmented UTSs
are introduced into optimization of prototypical-semantic fea-
tures, they may bring negative noise to prototypical-semantic
features, resulting in oscillations of prototypical-semantic fea-
tures and even destroying the features extractor. To support
this idea, we analyze identification performance of DCR and
that of DCR-S as shown in Fig. 6. It can be observed that
DCR-S does not bring significant performance gain, but in
some semi-supervised scenarios DCR-S actually bring about
identification accuracy decline.

F. Analysis of Data Augmentation

Similar to [74], we define a graph where each node cor-
responds to a sample r ∈ R and an edge (r̂, r) exists in the
graph if and only if the data augmentation operation can be
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TABLE VI
IDENTIFICATION ACCURACY OF THE PROPOSED DCR-BASED SEMISEI METHOD AND DATA AUGMENTATION-BASED SEI

METHODS UNDER THE WIFI DATA SET AND THE ADS-B DATA SET

TABLE VII
IDENTIFICATION ACCURACY OF THE PROPOSED DCR-BASED SEMISEI METHOD WITH DIFFERENT DATA AUGMENTATION

Fig. 6. Identification accuracy of DCR and that of DCR-S.

reserved. For a K-category classification problem, that graph
has K components (disconnected subgraphs) when all sam-
ples with each category can be traversed by the augmentation
operation. Otherwise, the graph will have more than K com-
ponents. In fact, the quality of the augmentation operation
always decides the number of components, and ideal augmen-
tation should be able to reach all other samples of the same
category given a starting instance. To find out a better augmen-
tation operation, we analyze the different combination of weak
data augmentation and strong data augmentation as shown in
Table VII.

In the DA V2 and DA V4, none means that there is no
data augmentation and the original data is used to calculate
the pseudo label for the strongly augmented one. Without any
perturbation on data or model, the model which learn from
the pseudo labels may have the risk on confirmation bias. It
can be observed that the DA V2 and DA V4 have a lower
identification accuracy than DA V1. The predicted class dis-
tribution of the weakly augmented data will provide pseudo
labels for strongly augmented data. Consequently, the weakly
augmented data should maintain high similarity to the original
data and the strongly augmented data have partial similarity to
the original data. It is intuitively understood that rotation and
cutout make more powerful disturbances on original data than

rotation because cutout erases part of the data, and we can
observe that the identification accuracy of DA V1 is higher
than that of DA V3. According to this analysis, the DA V1 is
the optimal solution for DCR.

VI. CONCLUSION

In this article, we presented a semi-supervised learning
framework referred to as DCR for SEI. Only few training
samples were required to be annotated and cooperated with
a large amount of UTSs to participate in the training process.
In addition to the weak data augmentation and standard cross-
entropy loss function for labeled training samples (first term of
the objective loss function), there are weak data augmentation,
strong data augmentation, and predicted class consistency loss
function for UTSs (second term of the objective loss function)
and weak data augmentation and semantic feature consistency
loss function for both labeled and UTSs (third term of the
objective loss function).

Due to the first term, the label information is propagated to
the directly connected neighbors of labeled training samples.
Due to the second term, the label information is traversed to
the connected neighbors of the UTSs. Due to the third term,
the semantic features of labeled and pseudo-labeled training
samples which belong to the same category are constrained
to approach the prototypical-semantic features of the corre-
sponding category, and the semantic space is more accurately
divided into K subspaces for K categories of emitters, and con-
sequently the emitters identification accuracy is significantly
improved.

The proposed DCR-base SemiSEI method was validated on
the WiFi data set with 16 categories and the ADS-B data set
with ten categories. The simulation results showed that as the
number of labeled training samples decreases, the superiority
of the proposed method in identification performance could be
observed. Specifically, when the ratio was 10%, the proposed
method could achieve 99.77% identification accuracy for the
WiFi data set and 90.10% identification accuracy for the
ADS-B data set. Compared with the state-of-the-art methods,
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the proposed method improved the identification accuracy on
the WiFi data set and the ADS-B data set by more than 19.07%
and 5.30%, respectively.
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