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Abstract—Although great advances have been made in machine
learning (ML) based wireless communications and networking,
the performance of most ML-based schemes is heavily dependent
on the availability of large amounts of high quality radio
frequency (RF) data, which are more challenging and costly to
obtain than other forms of data. To address this challenge, we
propose to leverage diffusion models to generate high quality
RF data, and develop a novel lightweight AIGC model for
RF sensing, termed RFID-ACCDM (Activity Class Conditional
Diffusion Model). RFID-ACCDM can synthesize large amounts of
RF data at low cost, conditioned on a particular activity class. The
high quality of RFID-ACCDM generated data is demonstrated
by metrics of Structural Similarity Index (SSIM) and Frechet
Inception Distance (FID), as well as a representative downstream
task of human activity recognition (HAR), where the model
trained with sufficient synthesized data outperforms the model
trained by real data.

Index Terms—AIGC, Conditional diffusion, Data augmenta-
tion, human activity recognition, RFID sensing.

I. INTRODUCTION

The recent decade has witnessed considerable advances in
machine learning (ML) based wireless communications and
networking [1]. However, the performance of most ML-based
schemes is heavily dependent on the availability of large
amounts of high quality radio frequency (RF) data. Compared
to image or text, RF data has its unique features and high
quality RF data is much harder to collect. First, the captured
RF data is highly susceptible to the open-space channel; any
change in transceiver location and the propagation environ-
ment may result in a new data domain. Second, RF data
is also highly dependent on the frequency band, as well as
the transceiver devices and protocols (e.g., waveforms). For
instance, a 900 MHz RFID channel is fundamentally different
from a 60 GHz millimeter wave channel. Third, the wireless
channel is also time-varying: a WiFi channel during business
hours would look much different from that in the midnight.
Due to such spatial, spectral, and temporal dependencies, it is
very costly to collect RF datasets, while a collected RF dataset
may have limited use when the setting becomes different.
Therefore, how to obtain high quality RF data with high
diversity while at a low cost, would be the first barrier to
overcome to make “ML/AI for wireless” successful.

Another trend in the past couple of years is artificial
intelligence generated content (AIGC). Prominent products,
such as ChatGPT, DALL-E, and Codex, are paving the way
for Artificial General Intelligence (AGI). These applications
generally use transformer and diffusion models as backbone,
and are mostly used in the context of text-to-image generation

or text-prompted AI agents. A natural question is “can we
exploit AIGC to address wireless communication problems,
and in particular, to generate RF data?” Generative Adversarial
Networks (GANs) [2], as a relatively older generation of AIGC
technology, have been explored for data augmentation over
the years [3]–[5]. However, most works are only able to use
synthesized data to boost the performance of the existing
dataset via augmentation or fine-tuning [4]. The complications
of wireless data, coupled with the difficulty of training a GAN
model, usually result in synthesized data with low fidelity or
low diversity. The simple and low-dimensional synthesized
data would be of limited value for RF sensing applications
such as human activity recognition (HAR) [6], [7].

To this end, there have been several recent works on 3D
pose estimations in the computer vision (CV) domain [8]–
[10], which utilized diffusion models to generate 3D pose
animation data with great fidelity and diversity. Motivated
by these interesting works, in this paper, we propose to go
one-step further, to use diffusion models to generate high
quality RF data for HAR. Specifically, we shall develop a
novel lightweight AIGC model for RFID sensing, termed
RFID-ACCDM (Activity Class Conditional Diffusion Model)
to synthesize high quality RF data at low cost conditioned
on a particular activity class. The proposed RFID-ACCDM
system is illustrated in Fig. 1. As a representative example of
downstream tasks, we also design an RFID sensing system,
which queries the RFID tags attached to a test subject’s joints
to recognize human activity. The conditional diffusion based
RFID-ACCDM system will generate large amounts of high
fidelity, high diversity data at low cost for training the RFID
sensing system, thus saving the huge efforts on collecting
training RF data.

The main contributions made in this paper can be summa-
rized as follows:
• To the best of our knowledge, this is the first work that

harnesses the power of conditional diffusion models to
generate RF data. The quality of the synthesized data, in
terms of quantity, fidelity, and diversity, are all superior
over existing approaches. More important, the proposed
AIGC model only requires a small amount of real RF
training data to be effective.

• We qualitatively demonstrate the performance of RFID-
ACCDM through a visual comparison of its synthesized
data with ground truth. Furthermore, we quantitatively
show that our generated data is of high fidelity and
diversity through metrics of Structural Similarity Index
(SSIM) [11] and Frechet Inception Distance (FID) [12].

2024 IEEE International Conference on Communications (ICC): Cognitive Radio and AI-Enabled Networks

978-1-7281-9054-9/24/$31.00 ©2024 IEEE 4060

IC
C 

20
24

 - 
IE

EE
 In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 C
om

m
un

ic
at

io
ns

 |
 9

78
-1

-7
28

1-
90

54
-9

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

IC
C5

11
66

.2
02

4.
10

62
24

01

Authorized licensed use limited to: Auburn University. Downloaded on January 13,2025 at 19:12:39 UTC from IEEE Xplore.  Restrictions apply. 



Figure 1. The procedure of conditional RF data generation with RFID-
ACCDM. The reverse process p (see (4)) gradually converts random noises
into plausible time series data, conditioned on embedded class labels. The
structure of the noise predictor, the U-Net model, is illustrated in detail.

• Using a representative downstream task of HAR with
RFID sensing, we demonstrate that our RFID-ACCDM
generated data is highly effective in boosting the HAR
performance without the need for real RF data.

In summary, we address two important problems with an AIGC
for Wireless approach: how to avoid the high cost of collecting
RF data, and how to synthesize RF data with high fidelity and
high diversity for effective training of ML models.

The remainder of this paper is structured as follows. We
first review related work in Section II. We then introduce the
background of diffusion in Section III. Section IV describes
the proposed system design and Section V presents our exper-
imental study. Section VI summarizes this paper.

II. RELATED WORKS

AIGC applications based on diffusion have mostly been
concentrated in the field of CV. The pioneering Diffusion
Probabilistic Model (DPM) was applied to general medical
image segmentation in [13], where superior performance of
segmentation tasks have been demonstrated over state-of-the-
art methods. In [14], the authors leveraged conditional dif-
fusion models (CDM) for image-to-image translation, which
outperformed GANs. Recently, it has been proven that diffu-
sion models are also capable of generating continuous time-
series data. The authors in [15] leveraged a Conditional Score-
based Diffusion model to impute time-series healthcare and
environmental data, which outperformed classic RNN-based
models. A recent work [16] applied diffusion models to enable
reliable 3D monocular pose estimation, to effectively reduce
the inherent uncertainty and occlusion. RF data typically
involves time frames and RF features in multiple dimensions.
Since diffusion models are proficient with images and time-
series data, they should also be a good fit for RF sensing tasks.

Various RF sensing applications have been developed for
detecting human activities [6]. The impact of changes in the
environment, user location and orientation, and user herself,
tends to require large amounts of training data with high
quality and diversity, in order to train models with good gener-
alibility. To meet these requirements, GAN-based approaches
have been explored recently [3], [5], [17]. For example, Li et
al. [17] proposed the Amplitude-Feature Deep Convolutional
GAN (AF-DCGAN) to generate additional channel state in-

formation (CSI) amplitude feature maps in order to reduce
the effort of collecting WiFi fingerprints. However, Since
CSI data is quite sensitive to environmental dynamics, any
change in the indoor environment may result in a drop in
location accuracy. Furthermore, most GANs can only syn-
thesize additional data based on existing data with limited
diversity. In [18], a multimodal GAN was proposed to deal
with environmental changes. However, the multimodal system
is rather complicated, consisting of two generators and one
classification model. Overall, GANs have proved to be still
effective for data augmentation in the wake of diffusion and
transformer models, but generating useful and high-quality
synthesized data tend to depend on complex procedures and
mutlimodal systems.

III. DIFFUSION PRELIMINARIES

This work follows the philosophy of the most prominent
diffusion-based architecture proposed in [19]. The underlying
idea is that the model can progressively improve its output
through a series of small adjustments, ultimately yielding a
high-quality sample. Diffusion models are based on a rather
simple concept. They start with an input x0 and slowly corrupt
the input over a series of time steps (T ) into a Gaussian distri-
bution N (0, I) using fixed-variance-schedule defined Markov
chain kernels, which is referred to as the forward process,
given by [19]:

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI). (1)

At each time step t, Gaussian noise with a variance of βt is
added to xt−1, resulting in a new latent variable xt. I is the
identity matrix, ensuring that each and every dimension of the
multi-dimensional input have the same variance βt. Therefore,
the process, starting from input x0 to xT , can be tracked with
q(x1:T |x0) =

∏T
t=1 q(xt|xt−1). The sampling of xt can then

be admitted for any time step t in closed form, as [19]:

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I), (2)

where ᾱt is given by
∏t
τ=0 ατ and using βt, αt can be defined

as (1−βt). We then obtain xt using a reparameterization trick
in a recursive manner, as:

xt =
√
αt · xt−1 +

√
1− αt · εt−1

=
√
αtαt−1 · xt−2 +

√
1− αtαt−1 · εt−2 = ...

=
√
ᾱt · x0 +

√
1− ᾱt · ε0, (3)

where εt ∼ N (0, I), αt = 1− βt, and ᾱt =
∏t
τ=0 ατ .

On the other hand, the reverse process denoises the noisy
inputs, after the forward diffusion process applies noise steps
up to a certain point (t ≤ T ), to recover x0. The reverse
process is defined by the following Markov Chain [19]:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t))

pθ(x0:T ) = p(xT )
∏T
t=1pθ(xt−1|xt).

(4)

In [19], the authors showed that the reverse process can be
trained by solving the optimization problem given below.

min
θ

Et,ε,x0 = ‖(ε− εθ(xt, t))‖2 , (5)
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where ε ∼ N (0, I) is the Gaussian noise added to the noisy
input xt, and εθ is a trainable denoising function that is often
learned through a neural network such as U-Nets [20]. So
one can interpret εθ(x, t) as the noise vector estimated by the
trained U-Net. This simplified training loss is made possible
by the parameterization of pθ(xt−1|xt), as:

µθ(xt, t) =
1√
αt

(
xt −

βt√
1− ᾱt

(ε− εθ(xt, t)
)
, (6)

After training the diffusion model, high-quality samples x0

can be obtained as given in (4).

IV. SYSTEM DESIGN

A. RFID Data Generation with Conditional Diffusion

In our prior work [6], we showed that by attaching RFID
tags to human joints, RF information describing joint move-
ments can be obtained, hence creating a complex high-
dimensional data that can enable high-performance 3D human
pose estimation and activity recognition. However, training
the models requires large amounts of synchronized RFID and
vision data, which is very costly to collect. Inspired by [16],
where complicated 3D human animations represented by 3D
joint coordinates are generated with high fidelity through diffu-
sion models, we propose a conditional diffusion system termed
RFID-ACCDM (i.e., RFID-based Activity Class Conditional
Diffusion Model) to synthesize RFID data for various activity
classes. Since the data are sampled when the test subject
continuously repeats the activities, the data samples capture
both short-range delicate movement information of human
joints and long-range time-series information of movement
trajectories. The proposed system can learn and leverage
the inherent relationship between RFID data and 3D human
movements to synthesize data with high fidelity for 3D human
pose tracking and HAR.

Let xRFt denote the RFID data corresponding to a certain
human activity at a random time step t, and A represent
the class of human activity ranging from simple activities
(e.g., standing still) to complex activities (e.g., boxing). We
develop an RFID-sensing-specific reverse diffusion process
and a supervised training method. The class condition A is
taken as one of the inputs. The Markov chain for the reverse
process of RFID-ACCDM is defined as follows.

pθ(x
RF
t−1|xRFt ,A) = N (xRFt−1;µθ(x

RF
t , t | A),Σθ(x

RF
t , t | A))

pθ(x
RF
0:T |A) = p(xRFT )

∏T
t=1pθ(x

RF
t−1|xRFt ,A).

We then consider utilizing the following parameterization
for εθ, which is different from (6) in that the class label of
human activity A is taken as the condition in the newly defined
conditional denoising function εθ(·), given by:

µθ(x
RF
t , t) =

1√
αt

(
xRFt − βt√

1− ᾱt
(ε− εθ(xRFt , t | A)

)
.

Finally, we formalize the training objective for the RFID-
ACCDM system as a minimization problem, given by:

min
θ
Lθ = min

θ
Et,ε,x0 =

∥∥(ε− εθ(xRFt , t | A)
)∥∥2

. (7)

Algorithm 1 Training Procedure of RFID-ACCDM
Input: A

1: repeat
2: Ã = Embedding(A);
3: xRF0 ∼ q(xRF0 );
4: t ∼ Uniform(1, 2, ..., T );
5: ε ∼ N (0, I);
6: xRFt =

√
ᾱtx0 +

√
1− ᾱtε;

7: t̃ = t
⊕
Ã;

8: Take gradient descent step on
∇θ =

∥∥(ε− εθ(xRFt , t̃)
)∥∥2

;
9: until Convergence

Algorithm 2 Sampling Procedure of RFID-ACCDM
Input: A

1: Sample xT ∼ N (0, I) with label A;
2: for t = T, ..., 1 do
3: if t > 1 then
4: z ∼ N (0, I);
5: else
6: z = 0;
7: end if
8: xRFt−1 = 1√

αt

(
xRFt − 1−αt√

1−ᾱt
εθ(x

RF
t , t | Ã

)
;

9: end for
10: Return xRF0 ;

Algorithm 1 and Algorithm 2 describe the training and sam-
pling procedures of RFID-ACCDM, respectively.

B. U-Net for Denoising

As in [19], we adopt a U-Net [20] based on a wide ResNet
for its desirable ability to facilitate the diffusion process. It
takes in a noisy input at a particular time step and returns the
predicted noise with the same size as the input data. The loss
between the actually introduced noise ε and the predicted noise
εθ is then used as the training objective. Loss minimization
can be easily implemented via an MSE (mean squared error)
function between εθ and ε at the current time step t in each
training epoch. Sinusoidal positional encodings are applied to
encode the time step t (also the noise level). The encodings
help the network understand the particular time step it is at
for each input within a batch during the diffusion process.

The activity class label A is embedded using a Pytorch
package. This embedding layer works as an MLP (multilayer
perceptron) layer, which is represented as a high-dimensional
vector. MLP layers typically apply a linear transformation
followed by a non-linear activation to obtain the embedding.
The embedded label is next concatenated with time step t
to integrate the class embedding into U-Net. This is possible
because t is already implemented as a condition in the dif-
fusion process. The resulting time step is denoted as t̃. The
input RFID data, along with time step and class embedding,
undergoes the standard encoder to decoder structure in the
U-Net model. Our U-Net network has two downsampling
operations realized by the maxpooling2D function in the
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encoder, which reduce the spatial dimension to 16×3. At
each downsampling step, we double the number of feature
channels from 64 all the way to 256. Each downsampling
operation is followed by a residual block and a convolutional
block. The self attention mechanism is implemented right
after the convolutional block with a multi-head self attention
module to capture richer representations. The bottleneck (the
middle block that keeps the feature size unchanged) has
three convolutional blocks. A convolutional block has two
2D convolutional layers connected by a GeLU activation layer
followed by a GroupNorm layer, with the final layer being
another GroupNorm layer right after the second convolutional
layer. A residual block is the same except for the addition of
skip connections. The decoder is simply built with the reverse
order as the encoder to recover the original input dimension,
while concatenating the feature maps from the encoder. The
basic convolution module has a kernel size of three. A deeper
network can be used if there are larger numbers of joints. The
complete conditional diffusion process along with a detailed
structure of our implemented U-Net model are shown in Fig. 1.

V. EXPERIMENTAL STUDY

A. Implementation and Experiment Setting

We develop an RFID sensing system, as a representative
downstream task, to evaluate the performance and benefits of
our generative network. The system consists of an off-the-
shelf Impinj R420 reader, passive ALN-9634 (HIGG-3) tags,
and three S9028PCR polarized antennas. 12 RFID tags are
attached to the test subject’s joints (i.e., hip, neck, left upper
leg, left knee, right upper leg, right knee, left shoulder, left
arm, left forearm, right shoulder, right arm, and right forearm).
An Lenovo Legion gaming laptop with an Nvidia GTX 1660
Ti GPU is used as the processor for signal processing and
network training. The setup of the system is illustrated in
Fig. 2. RFID data and vision pose data are collected simulta-
neously in front of the RFID system and an Xbox Kinect 2.0
device, when test subjects are performing different activities.
The vision data will be used as labels for supervised training in
the original, baseline system, where joint kinematics of vision
data are transformed to the variations between RFID phase
values from two consecutive time frames.

The frame rate of Kinect is 30 frames per second (fps),
while the RFID data sampling rate is approximately 110 Hz.
All data undergoes preprocessing and synchronization before
being downsampled to 7.5 Hz. Throughout the experiment,
both RFID phase variation data and 3D pose data are set
to have a length of 8.53 seconds. A sliding window of 1.33
seconds is leveraged to create 4 basic data units with a length
of 4 seconds. Their dimension is set to (30, 12, 3), with 30
being the frame number, 12 being the number of joints, and
3 being the number of antennas.

As for the diffusion training, we utilize a fixed linear βt
schedule from β1 = 10−4 to βT = 0.02 with T = 1, 000.
Inspired by [21], a simple and elegant implementation of clas-
sifier free guidance is applied. In each epoch during training,
we set the model to train unconditionally for 10% of the time;
And in each epoch during sampling, we linearly interpolate
from unconditional towards conditional sampling. This trick

Figure 2. The configuration of the experimental system for RFID sensing.

Figure 3. A visual comparison of generation quality between the real RFID
data (left) and the generated RFID data (right) in the form of surface plots
when the activity performed was walking.

greatly enhances the stability of the model’s ability to generate
RFID phase variation data with corresponding classes, and
simultaneously, the quality of the generated samples. A total
of six RFID data files with a length of 64 frames per activity
class are used as the U-Net’s training data. These data are
captured from three test volunteers with similar body shapes.

B. Qualitative Results

In Fig. 3, we provide a visual comparison of the generated
RFID phase variation data with the real RFID phase variation
data captured for the activity. The surfaces are plotted in detail
for a complicated activity of walking involving the movements
of all limbs and torso. It can be seen that the generated
RFID data, in the form of phase values, closely follows the
movement trends along each joint and across time. There are
small discrepancies between the generated and ground truth
data, which help to enhance the diversity of the generated
data.

C. Quantitative Results

In computer vision, the Structural Similarity Index
(SSIM) [11] has been recognized as a useful metric to evaluate
how similar the generated data is to the real data, since it not
only measures the average intensity (luminance) and standard
deviation (contrast), but also the details and general pattern
of features inside an image using the structure index. For a
regular image containing, say, a car or portrait, the structure
index can locate the important features across all pixels,
and similarly, the index is naturally suitable for evaluating
the pattern of movement features across time frames and
human joints. We choose a complicated activity of boxing to
demonstrate the similarity in Fig. 4. The SSIM score is 0.65
in this case. From the SSIM map in Fig. 4(c), we can see that
despite having matching patterns and periodicity, there is a
certain amount of discrepancies between the real and generated
data.
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Figure 4. Generated (left) and real (middle) RFID data for boxing presented
as images with scaled colors. On the right is the SSIM map showing the
differences in each pixel between the generated and real data.

Table I
COMPARISON OF FID SCORES: RFID-ACCDM VS. RFPOSE-GAN

Standing still Waving Walking

RFID-ACCDM (proposed) 8.7926 8.2465 20.6782
RFPose-GAN [5] 36.1981 32.2464 45.3412

Our proposed model also excels at generating high-quality
RFID data with great diversity, instead of only generating
homogeneous data similar to the training set (which yield
high SSIM scores). Such diversity is critical for training a
robust model, but cannot be accurately captured by SSIM.
Also note that SSIM could introduce more bias as it focuses
more on the evaluation of a single pair of real and generated
data. Therefore, we also use the Frechet Inception Distance
(FID) [12] to evaluate the distribution similarity between
collections of generated and real RFID data. The FID score
measures the distance between the feature vectors in the high
dimensional latent space. The lower the FID score, the higher
the fidelity of the generated RFID data as compared to the real
data. Specifically, the FID score is defined as:

ϕ2 = ‖µ1 − µ2‖22 + Tr(Cov1 + Cov2 − 2
√
Cov1 × Cov2),

where µ1 and µ2 refer to the feature-wise mean of the real and
generated feature vectors, respectively, Cov1 and Cov2 are the
covariance matrix of the real and generated feature vectors,
respectively, and Tr is the trace linear algebra operation. A
neural network, i.e., the inceptionv3 model, is used to
obtain the feature vectors between the two distributions.

Table I presents the superior FID scores achieved by the
proposed model over our previous work RFPose-GAN [5].
RFPose-GAN deploys a supervised GAN that is capable of
mapping one particular 3D pose data into its corresponding
synthesized RFID data. GAN models are usually harder to
train as they are in constant competition to synthesize data that
rivals the distribution of real data. Synthesizing RF data for
specific activities with minimal variations across time frames
under interference and noise is highly challenging, hence the
high FID scores of RFPose-GAN. The much lower FID scores
achieved by the proposed RFID-ACCDM system are indicative
of the high quality of the synthesized RFID data.

D. Human Activity Recognition Results

Perhaps the ultimate test for the synthesized RFID data is
to examine how useful it is for training the ML model of
a downstream task. We proceed to test the quality of our
generated data utilizing a 6-activity-class RFID-based HAR
system. A simple CNN model is employed for the classifica-
tion task. There are 3 convolution layers, each followed by a

dropout layer. A maxpooling2D layer is located after the
second convolution layer. The convolution output is flattened
and fed into a fully connected layer for the final accuracy
calculation. Since a basic unit for activity classification has a
length of 4 seconds, it takes about 30 minutes for the CNN
model to achieve a modest 6-class HAR performance. This
is why our proposed model becomes highly useful to mass-
produce synthesized RFID data of high fidelity and diversity
for any required activity. The test data are the collected ground
truth data including two different subjects at locations slightly
different from where the training data was collected.

Fig. 5 presents the confusion matrices for RFID-based
human activity classification obtained by models trained by
32 minutes of real data (left), 32 minutes of RFID-ACCDM
generated data, and 128 minutes of RFID-ACCDM generated
data. When using the same amount of synthesized data, the
accuracy and F1 score are both slightly lower than training
with real data. However, with 128 minutes of synthesized
data, both the accuracy and F1 score outperform the case of
training with real data with considerable margins (about 8.3%
improvements). This is an interesting finding, since the 128
minutes of synthesized data come at not much additional cost
than running the RFID-ACCDM code a little bit longer.

Fig. 6 presents a comparison of F1 scores for progressively
increased amounts of synthesized data using our proposed
model at different training epochs. It can be seen that the
F1 score is progressively improved as more synthesized data
are used in model training. With 320 synthesized samples
(i.e., 128 minutes), the F1 curve reaches 0.89 at 400 epochs.
Compared with the case of using a modest amount of real data,
the proposed approach achieves an approximately 8.3% gain
in F1 score. Models trained on the generated data converge
faster and achieve better results within the first 40 epochs. The
model trained on real data suffers a more severe overfitting
effect due to the lack of diversity, and converges at a slower
pace. When there are 96 minutes or more of synthesized data,
the F1 score exceeds that of 32 minutes of real data for all
training epochs. This implies that more generated data help
close the domain gap between real and generated data whereas
RFPose-GAN synthesized data exhibit a rather large domain
gap, causing performance issues. This will be further explored
in the extended journal version of this work.

It is worth noting that the improved F1 scores are obtained
by using pure synthesized data: this is an AIGC for wireless
sensing method, rather than a data augmentation method. This
experiment proves that the generated data by the proposed
RFID-ACCDM method can effectively improve the accuracy
of CNN-based HAR, further validating the fidelity and diver-
sity of the AIGC RFID data using our model.

VI. CONCLUSIONS

In this paper, we addressed the RF data challenge with
an AIGC for Wireless approach. The proposed RFID-
ACCDM framework leverages a CDM to generate useful high-
dimensional RFID sensing data conditioned on a class label.
Through metrics of SSIM and FID, as well as a representative
downstream task HAR, we demonstrated the high quality and
usefulness of the synthesized data by the proposed RFID-
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Figure 5. The confusion matrices obtained with the CNN model trained on 32 minutes of real data (left), 32 minutes of RFID-ACCDM generated data
(middle), and 128 minutes of RFID-ACCDM generated data (right).
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Figure 6. The F1 score of the classification with a progressively increase
amount of generated data.

ACCDM system. The proposed AIGC for wireless sensing ap-
proach provided a compelling solution to the timely problems
of how to avoid the high cost of RF data collection and how
to synthesize high quality RF data.
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