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Abstract—While Low Earth Orbit (LEO) satellite communica-
tions have attracted more and more attention recently, its security
issues for wireless communications become greatly important.
Implementing Radio Frequency (RF) fingerprinting by leveraging
In-phase/Quadrature-phase (I/Q) satellite data is a reliable way to
enhance wireless communication security. However, this method
still faces two challenges. The first is the high cost of acquiring
I/Q data from LEO satellites, and the second is the wide
variation of data collected in different periods. To solve these
two challenges, we develop a modified Variational Autoencoder
(VAE) with a tailored loss function to generate LEO satellite data.
Then, to achieve a multi-period model generalization, a cosine
similarity classifier is incorporated into prototypical networks for
facilitating few-shot learning at LEO satellite data in different
periods. In our experiments, the proposed model can achieve
a 50-classification accuracy of 99.80% in a single period with
virtual satellite data generated by the modified VAE, which is
higher than the classification result of 98.05% using only real
data. Besides, using few-shot learning, our results demonstrate
the effectiveness of model adaptation, obtaining a significant
improvement in classification accuracy, from 2% to 77% of the
original model.

Index Terms—RF Fingerprinting, Data Generation, Few-shot
Learning, LEO Satellite

I. INTRODUCTION

The constant exposure of wireless devices to various threats,
particularly impersonation attacks, has become a widespread
security concern [1]. To address the security issue of wire-
less devices, Radio Frequency (RF) fingerprinting techniques
are proposed, which leverage electromagnetic waves emitted
by wireless devices to identify distinctive hardware defects
resulting from manufacturing imperfections [2]. This method
has a significant advantage, as it is difficult to replicate
with other wireless devices. RF fingerprinting techniques
have been exploited for different wireless techniques such as
Bluetooth, WiFi, and RFID devices. Recently, deep learning
approaches have been used to process and analyze in-phase
(D and quadrature (Q) signal data from wireless devices,
achieving better results in multi-device identification scenarios
involving 10,000 devices [3]. Thus, RF fingerprinting can be
leveraged as a robust countermeasure against impersonation
attacks [4] [5] [6], providing its potential applicability across
various wireless communication technologies.

Low Earth Orbit (LEO) satellites have the potential to
reduce transmission delay, mitigate path loss, and establish
global coverage through constellations comprising multiple
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satellites [7]. This configuration holds promise for frequency
reuse, presenting a prospective paradigm for satellite-based
mobile communications. However, LEO satellite systems face
security risks, including spoofing and replay attacks. Cryp-
tographic methods have some limitations, while commonly
used for traditional authentications. For example, legacy satel-
lites do not adopt cryptographic techniques due to inherent
constraints like processing power and high cost. Additionally,
cryptographic approaches may be vulnerable to attacks. As
the development of LEO satellite technology continues, there
arises a critical need for the consideration of the physical layer
security of these systems [8]. Thus, the application of RF
fingerprinting for the authentication of LEO satellite devices
appears as an effective and reliable method.

However, the I/Q data collection from LEO satellites poses
considerable challenges. The elevated orbital altitudes and
swift velocities of these satellites relative to Earth result in a
limited capture window for each satellite within a given period.
The temporal constraint limits that a particular satellite remains
within the antenna’s capture range for no more than one hour.
In a recent study by Smailes et al. [9], over 1.7 million
Iridium data points were obtained through high-performance
software-defined radio (SDR). However, the collected data
exhibits suboptimal performance, with a classification accuracy
of approximately 60%. In a different approach in [10], /Q data
over two months was collected using a USRP X310 device,
thus achieving an accuracy exceeding 80% through a ResNet18
network [11]. In fact, the high cost of satellite data collection
becomes a main bottleneck for RF fingerprinting. To address
the issue, data augmentation schemes can be exploited. For
example, Ding et al. [12] implemented a data augmentation
strategy for low-resource tagging tasks. Tomczak and Welling
proposed a competitive Variational Autoencoder (VAE) model,
demonstrating efficacy in comparison to Generative Adver-
sarial Networks (GAN) models [13] [14]. Mansi et al. [15]
leveraged conditional GAN for wireless modulation data aug-
mentation to improve the classification performance. Thus, the
integration of Artificial Intelligence (AI) generative modeling
methodologies with satellite data emerges as a promising
avenue for further exploration in this paper.

Moreover, because of the divergent operational velocities
and orbital characteristics in LEO satellite systems, data ac-
quisition at the same geographic coordinates during different
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time periods may lead to significant variations. Consequently,
addressing the challenge of enhancing model generalization
across distinct scenarios warrants thoughtful consideration.
Notably, Snell et al. [16] have underscored the efficacy of few-
shot learning methodologies in augmenting the performance of
models operating in the spectrum domain. Steven et al. [17]
exploited prototypical networks for cross-domain Wi-Fi de-
vice fingerprinting over different transmission distances, and
different times.

In this paper, we develop a modified VAE model for LEO
satellite data generation, thus mitigating the cost of LEO
data collection and improving the LEO device classification
performance. In addition, we also integrate the synthetically
generated data with prototypical networks to enhance the
generalization capabilities of the model over different domains
such as different time periods. This utilization of generated
LEO satellite data can effectively improve the classification
performance of models initially trained at the same time, as
well as enhance the generalization capacity of the model at a
low cost using few-shot learning.

In summary, the main contributions in this paper include:

1) To the best of our knowledge, this is the first work
that harnesses limited satellite data to generate new 1/Q
data and achieve data augmentation. The generated data
successfully helps the learning model to improve the
accuracy of recognizing LEO satellites.

2) For the generated data, we utilize the Frechet Inception
Distance (FID) to measure its diversity and similarity to
the original data. Also, we develop prototypical networks
to improve the generalization ability of the model to cope
with the cross-domain problem of satellite signals over
different time periods.

3) We experimentally evaluate the effectiveness of our
proposed generated method. The proposed model can
achieve a 50-classification accuracy of 99.80% in a
single period by the modified VAE. Besides, by using
few-shot learning, our approach can obtain a large im-
provement in classification accuracy, from 2% to 77%
of the original model.

The remainder of this paper is organized as follows. Section
IT is the preliminaries and motivation and Section III is the
system design with satellite data. The experimental study is in
Section IV. Section V concludes this paper.

II. PRELIMINARIES AND MOTIVATION

In this section, we will introduce the I/Q data of LEO
satellites, especially on data offset due to time effect. Then, we
show how to introduce the generated data and transfer learning
to overcome these problems.

A. RF Fingerprinting of Satellite

In light of the inherent introduction of defects during
the manufacturing process of hardware devices, the signals
manifest discernible characteristics within the physical layer.
This characteristic is transmitted in wireless communication
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Fig. 1: Transmitted signal represented by I/Q data.

of the device along with the transmission of the in-phase
(D and quadrature (Q) signal. Fig. 2 shows the modulation,
propagation, and demodulation processes of I/Q signals. s(t) is
the RF signal which is created with the I(¢) and Q(¢) baseband
signals and it can be formulated as follows [18],

s(t) = I(t) - QW) sin@2rft), (1)

where s(t) is the corresponding signal and it can be split into
I(t) and Q(¢) centered around the carrier frequency f.. In the
demodulation process, the I(¢) and Q(t) baseband signals can
be recovered by mixing the received signal y(¢) with a local
oscillator.

Generally, satellite data transmission is facilitated through
Quadrature Phase Shift Keying (QPSK) modulation, a preva-
lent modulation scheme in wireless communication systems.
The selection of QPSK modulation is of particular importance
as it plays a crucial role in shaping the distinctive features
exhibited by the transmitted signals. Consequently, this mod-
ulation choice contributes significantly to the delineation and
analysis of physical layer attributes within the context of the
used LEO satellite I/Q dataset.

cos(2m ft) —

TABLE I: The difference between LEO satellite datasets in
two different periods

Label Mean of Mean of Binary Classi- Adaptation
data in P1  data in P2 fication Accu- Classification
racy (%) Accuracy (%)
0 0.5116 0.4712
1 0.4605 0.5083
2 0.5445 0.5023
3 0.4939 0.5082 98.56% 2.05%
49 0.496 0.5255

Although LEO satellites have the advantages of signal
robustness and minimal delay, their operating speed and orbital
dynamics have a significant impact on the verification process
at the physical layer. It is worth noting that the time of the
dataset is split into two distinct parts, and the main difference
between these parts deserves careful consideration. In order to
intuitively reflect the differences between the data of different
periods, we calculate the mean value of all I/Q data of the
same label (i.e., the same satellite and antenna) of the two
periods’ data (P1& P2) and compute the cosine similarity
between them.
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The results are shown in Table I. We find that the cosine
similarity of above 90% between two datasets (i.e., P1 and
P2) cannot reflect the distribution difference. Thus, we use a
binary classifier to verify the difference in the data between
two periods. If there is no difference in the data, the classifi-
cation accuracy should be ideal 50%. As shown in the fourth
column of Table I, an accuracy of 98.56% has been achieved
ultimately, which illustrates a large difference between P1 and
P2 datasets. On the other hand, we use satellite I/Q data to
train a Residual Neural Network (ResNet) model in the P1
data and test the performance in the P2 data. We find that the
adaptation classification accuracy is only 2% in the P2 data,
which further validates the distribution shift issue in the P1
and P2 datasets. Therefore, we can conduct data generation
experiments within the same time period. Based on the above
experimental results, we consider performing data generation
on the P1 data and subsequently applying few-shot learning to
the P2 data.

III. SYSTEM DESIGN WITH SATELLITE DATA

This section presents an overview of the comprehensive
system architecture, as depicted in Fig. 2, consisting of two
important components. The entirety of the system includes
three discrete phases, each contributing to the experimental
framework. First, a classification experiment is executed em-
ploying a conventional method [17]. Subsequently, a data aug-
mentation procedure is initiated by utilizing a modified VAE
model. This iterative process involves the generation of virtual
LEO satellite data through the VAE model, which is then
combined with the authentic dataset. Second, the augmented
dataset is harnessed to refine the original model’s performance.
This process involves the integration of both virtual and real
data, with the objective of enhancing the model’s classifica-
tion performance. Third, the adapted model is deployed on
datasets originating from different temporal periods. A few-
shot learning approach with prototypical networks is used to
update the original model, facilitating improved adaptability
and performance across diverse temporal contexts. This multi-
phased system framework includes a holistic strategy aimed

at refining and extending the classification capabilities of the
overall model.

A. Data Generation

VAE model is a type of generative model in which the
distribution of the encoding is regularized during training.
In other words, VAE provides a latent space structure. The
internal structure of the multidimensional latent space for a
well-learned model defines its properties. The decoder com-
ponent reconstructs the input using this information. The core
idea of VAE is to compress a random vector z in a high-
dimensional space into a latent variable 2 in a low-dimensional
space by variational encoding. This process can be simplified
and expressed as follows,

P@(xvz):PG('rlz)PG(Z)v (2)

where Py(z) denotes the prior distribution of the latent variable
z, which is generally set to standard Gaussian distribution;
Py(x|z) denotes the conditional probability density function
of the input variable x when z is known, 6 denotes the
variable parameter. The posterior distribution Py(z|z) is in-
tractable since the parameters 6 and the latent variable z
are unknown. The standard VAE uses a recognition model
¢s(2z|z) as an approximation to the true posterior Py(z|z).
VAE generates two outputs in the encoder including a mean
vector and a standard deviation vector. These two vectors form
the parameters of the latent variable z. This mechanism allows
the encoder to learn different mean values corresponding to
each potential class, and the standard deviation reduces the
overlap of feature classes. The use of the univariate Gaussian
distribution is a popular option in VAE. The Kullback-Leibler
divergence measure between the approximation output and
the target (input) characterizes the regularized term. Due to
introducing a normal distribution, the loss function has been
modified accordingly. The loss function can be expressed by,

loss, = ||z — |2 = ||z — dg(pz + 02€)]l2, 3
u$701269(x)76NN(07[)7 (4)

lossy, = =D (N (pz,02)||N(0,1)), 5)
loss = aloss, + Blossy, (6)

where z is the real value and % is the predicted value, p;
and o, are the mean value and standard variance of value x,
respectively. loss, is the reconstruction loss, which is the 1.2
norm. It is used to reduce the randomness of generated data. pi,,
and o, are calculated by encoder ey(x). € represents sampling
a random noise term from a standard normal distribution.
lossy, is similarity loss and represents the KL divergence
between the encoded distribution in the latent space and
the standard normal distribution, where KL divergence is a
method used to measure the difference between two probability
distributions. Here, it is used to ensure that the distribution
of the potential space is as close as possible to the standard
normal distribution. And « and 8 denote the weights of loss,
and lossy, respectively. In this paper, we have modified the
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weighting of the L2 norm and KL divergence components
within the loss function, aiming to minimize the discrepancy
between the generated and original values.

Since the I/Q signals are two mutually orthogonal com-
ponents, the encoder of this VAE model decomposes the
I/Q signals. The LEO signals will be compressed into latent
distribution and then sampled to make the decoder reconstruct
the signal based on the feature of the latent space. We can learn
the features of satellite I/Q data by ResNetl8. Although the
I/Q data is received in temporal order, it is finally presented
without temporal information, because the ResNet model is
insensitive to temporal information for data feature extraction.
In the decoder network, the deconvolutional network is used
to reconstruct the original signal.

The loss function is composed of reconstruction loss and KL
divergence. To reconstruct a better signal, the reconstruction
loss measures the sum of all the squared differences between
the output and the input. The KL divergence loss regularizes
the latent distribution according to a standard Gaussian prior.

The FID serves as a metric to quantify the feature dissimi-
larity between authentic and generated datasets. Additionally,
FID is employed as an evaluative criterion to assess the quality
of the generated data. The following formula facilitates the
computation of FID, that is,

FID(z,y) = [l — pyll + TrO_+ 2\/§)’

(N
where x and y are the generated data and original data,
respectively; p, and g, are the mean values of x and y,
respectively; > X is the covariance matrix, and 7'r means
the trace of the two matrices.

In this paper, we modify the loss function by reducing
the weight of KL divergence while increasing the weight of
regularization. The impact of this change can be reflected in
the change in the value of the FID.

B. Model Adaptation

In the third module of our system, we employ prototypical
networks for the implementation of model adaptation. The
fundamental idea underlying prototypical networks is straight-
forward. For classification tasks, the network identifies the
prototype center of each class within the semantic space. In
few-shot learning, the prototypical network is trained to learn
how to effectively fit these centers, thereby achieving a metric
function capable of discerning its class within the prototype
center of the metric space using a limited number of samples.
Assume the original dataset is D. For each episode, it contains
a support set and a query set, which can be expressed by,

Depisode = Dsupport U unery = {51}7;1 U {ql}?:ql ) (8)

where s; is the 7y, data in the support set and g; is the iy, data
in the query set. n, and n, are the sizes of the support set and
query set, respectively. We have a small dataset of episodes
by randomly selecting [N categories in the original dataset D,
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including K data per category to form the support set, and )
data to create the query set. By analogy, we construct episodes
of small datasets. For each data, feature extraction is performed
using an Encoder as the following,

hs, = fo(si), )
hqi = fga(%‘)a (10)

where ResNet18 is used as the Encoder f,(); hs, and hg, are
the embedding of each data. Then, we calculate the prototype
for each category in the support set. The embedding table can
be formulated by,

>

{i|l51.:c_7'}
where [, indicates the label of data s;, c; is the category of
the 7., support set.

From Fig. 2, the dataset will be divided into the support set
and the query set. All samples of a single task in the support
set will be passed through an encoder f,() in this experiment
to obtain the embedding points of the whole support set.
The embeddings form an embedding table to represent the
class, and the embeddings obtained from the query set are
measured. Here, we use cosine similarity to calculate the
distance between different classes.

During testing, the support set samples are utilized to
compute the cluster center of the new class and a nearest
neighbor classifier approach is employed for prediction. It
is noteworthy that, in this work, the Euclidean distance is
not used as the distance metric. Instead, we choose the
cosine similarity as the metric function, aiming to capture
the relative positional relationships between 1/Q data points.
This selection stems from the uncertainty regarding whether
time-affected data will remain as pertinent as previous data.
The support set samples are leveraged for feature extraction,
with the mean of all samples in each class serving as the
fundamental prototype vector. Then, the distances to each
class are computed, and normalized to obtain probabilities,
and stochastic gradient descent is applied to minimize this
value. The cosine similarity classifier facilitates the learning
of an embedding space, wherein similar features from the
same class are closely clustered together, thereby enhancing
the discriminative capacity of the feature extractor.

In the inference phase, the class mean is employed as the
basic prototype for the new class, and the cosine similarity
between the prototype and the sample is computed for clas-
sification. Our objective is to maximize the expected cosine
similarity, as it is positively correlated with classification
accuracy, which can be formulated by [19],

Maz|Ep[Ex[COS(P, X)]]] = Maz|Ep.x[P - X]]

=Max[EX[X1-E[|If|21,

where COS(-,-) is the cosine similarity function, X is the
feature of a class, P means the prototype, X and P are
the normalized feature and normalized prototype, respectively.

Pe; = (11)

(12)
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D,

(a) Real data (b) Generated data

Fig. 3: Comparison between the (a)real data and (b)generated
data.

TABLE II: FID corresponding to different loss function

weights.
N 0.25 1 15
(0%

0.25 5.502 5.487 5.630
1 3.794  5.514  5.810
1.5 3.280 5.271  5.540

Ex[X] means the expected value of the normalized feature X.
E [ﬁ] means the expected value of the unit vector pointing

in the normalized prototype P.

In the context of model adaptation, we explore the utility of
generated I/Q data. The experimental configuration employs a
50-way 5-shot design, where the support set is comprised of 5
samples per label from the initial period, repeated 200 times.
Subsequently, the query set follows a 50-way 5-shot with 50
repetitions, and the test set comprises 5 data points.

IV. EXPERIMENTAL STUDY

In this section, we evaluate the proposed approach with
real-world and public IRIDIUM satellite data [10] including
66 satellites, each with 48 antennas. In our experiments, we
randomly choose 10 satellites and 5 antennas from each of
the satellites. Then, 50 labels in the dataset are then identified.
For each label, 1,000 pieces of I/Q data are randomly selected
from the original dataset. The created dataset contains 50, 000
pieces of data. All the experimental environments are based
on an NVIDIA A100 GPU Server and PyTorch.

A. Data Generation

First, we normalize the data and take the whole dataset as
the input to generate 50, 000 pieces of virtual data. Fig. 3a and
Fig. 3b are the original data and generated data over a single
measurement including 100 I/Q samples, respectively. We can
notice that there is more noise in the generated data, and the
data is not concentrated.

The initial execution of the VAE yields an FID value of
5.514. Subsequent refinement of the loss function, with o and
[ of each loss function equal to 1.5 and 0.25, results in a
decreased FID value of 3.280. Table II illustrates different
FID values corresponding to different loss function weights,
in which « and [ are the weights of reconstruction loss
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and KL divergence loss, respectively. Table II demonstrates
that in most cases, the value of FID becomes smaller as the
weight of reconstruction loss becomes larger. However, with
a = 0.25 and 8 = 1 and 1.5, the performance of FID becomes
better compared to o« = 1. We believe that this is a normal
fluctuation due to smaller constraints on the original data
versus the generated data, where the quality of the generated
data is greatly different from the original data and cannot be
used for data argumentation. Both sets of generated data, with
and without the adjusted loss function, are employed for data
augmentation. Maintaining a constant dataset size of 50, 000,
generated data is integrated with real data for model training,
and the trained model is then evaluated on a real test set.

Fig. 4 illustrates the correlation between the proportion of
generated data in the dataset and the accuracy of classification
on real data. Notably, the VAE model with the weights « and
B of each loss function is 1.5 and 0.25 consistently outper-
forms, achieving accuracy exceeding 95%, even in worst-case
scenarios. Despite impressive performance, the generated data
does not match the accuracy of real data with an accuracy of
98.05%. In an exclusive generated data scenario, the classi-
fication accuracy is 96.72%, indicating the impact of added
Gaussian noise and information loss. For data augmentation,
this introduced noise contributes to increased variability.

In this experiment, we first use the whole real data and
then add the virtual data (i.e., generated data) to create a new
dataset. Fig. 5 shows the classification accuracy after adding
different amounts of generated data. It is noticed that we can
achieve more than 99% accuracy when the real data is 20%
of the overall data volume. We conduct further experiments,
where the real data is removed. More specifically, when the
training set only contains virtual data with five times the
total amount of real data, and the test set includes 20%
of the real data, the final accuracy can reach 99.80%, as
illustrated in Fig. 5. Such high accuracy means the generation
of virtual data can help the deep neural network learn intrinsic
structures of the raw data. Through the utilization of numerous
generated data, the model possibly learns noise effect, thereby
enabling the learning of critical information and enhancing
model performance. This validates the effectiveness of using
this generated data to greatly enhance the model’s ability for
LEO satellite device fingerprinting.

B. Few Shot Learning

After confirming data augmentation’s effectiveness on a
single dataset, adapting the model to various data becomes
a focal concern. Unlike the fixed dataset size in the prior
experiment, we utilize augmented data in this process with
a larger dataset of 50,000 samples. Fig. 6 shows results with
different percentages of real data. To determine the superior
distance metric function, prototypical network experiments
consider both Euclidean distance and cosine similarity dis-
tance. Besides, the accuracy of prototypical networks on the
original data is also included.

The results presented in Fig. 6 show the superior perfor-
mance of the cosine similarity classifier over the Euclidean
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Fig. 5: Classification accuracy
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Fig. 6: The impact of distance metric functions on classifica-
tion accuracy in various cases.

distance. In scenarios with all real data as input, the model
employing the cosine similarity classifier achieves the accuracy
of 97.54% on the original task and 77.02% on the second-
period data. Conversely, the model utilizing the Euclidean
distance achieves 95.78% accuracy on the original task and
70.58% on the subsequent data period in the same scenario.
As the proportion of generated data increases, the model’s
performance on new tasks decreases, thus reaching a minimum
accuracy of 60.74% when all inputs consist of generated data.

V. CONCLUSION

In this paper, we proposed a modified VAE with a tailored
loss function to generate LEO satellite data and achieve data
augmentation. Then, for the generated data, we used an FID
metric to measure its diversity and similarity to the original
data. Besides, a cosine similarity classifier was incorporated
into prototypical networks for facilitating few-shot learning at
LEO satellite data in different periods. In our experiments, we
demonstrated the effectiveness of the proposed approach. The
proposed model can achieve a 50-classification accuracy of
99.80% in a single period and obtain a significant improvement
in classification accuracy, from 2% to 77% by using few-shot
learning.
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