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Abstract—Large scale deployment of the Internet of Things
(IOT) technology has produced a disruptive effect in many fields in
the recent past. Continuous connectivity combined with relatively
low physical implementation cost has produced a Big Data
paradigm shift, especially in industrial contexts. Unfortunately,
the ability to process and adequately make use of this data has
not kept pace with deployment. Specifically, models in use today
lack the ability to perform well with data from a variety of
sources. For instance, many models are trained using only one
type of data. Even models trained on multi-modal data lack the
ability to predict on different combinations of this data. Sensor
deployment on identical machines is often different depending
on context, leading to the need for multiple models created
for the same machine. The data in question has the ability to
radically shift how equipment failure is predicted and when
maintenance is completed; when processed correctly. The cost
savings on large industrial machines and potential saved downtime
could be enormous. This research proposes investigation of a new
unsupervised, technology agnostic anomaly detection framework
that can be utilized on any combination of data modes for a given
machine. This framework is then tested on a real-world anomaly
dataset, with results achieved that are significantly better than
prior approaches.

Index Terms—Industrial Internet of Things (IIoT), Anomaly De-
tection, multi-modal sensory data, Technology agnostic approach.

I. INTRODUCTION

In the world of industrial machinery, unplanned downtime
represents a costly liability. According to the Wall Street Jour-
nal [1], “Unplanned downtime costs industrial manufacturers an
estimated 50 billion US dollars annually.” Equipment failures
accounted for 42 percent of this unplanned downtime. Not only
do unplanned equipment failures result in large business costs,
so too does their method of prevention. Often in an attempt to
prevent unplanned failures, companies will perform preventative
maintenance on perfectly healthy pieces of machinery. Rather
than performing maintenance driven by data, the company
takes a one-size-fits-all approach. Just like unplanned failures,
this leads to unneeded, albeit planned, down-time. Additional
costs are incurred due to the maintenance itself. In a cost
driven environment, neither of these outcomes is desirable.
Continuous monitoring through IOT technology paired with
Deep Learning driven insights, provides the natural solution
to these two issues.

Anomaly detection can be utilized to detect rapid degradation
trends in machinery to inform diagnostics and timely main-
tenance. This allows a predictive maintenance scheme to be

utilized. For the most part, companies are realizing the potential
associated with the techniques described above. Retrofitting
existing machinery with IOT sensing technology is embraced
and recommended. However, since the ideology associated with
Industry 4.0 is relatively new, the IOT technology installed
often represents a patchwork of capabilities. For instance,
any large pump or motor may have vibration, temperature,
pressure, current, acoustic, thermal imaging, and error logs
installed. But the matter is complicated by the fact that any
given pump or motor may have all, one, or any combination
of the data modes described above installed. Although both
Anomaly Detection and remaining useful life (RUL) have
been investigated with regard to industrial IOT. The concept
of a generalized model that can utilize multi-modal data,
including unique combinations of that data, has not. Therefore,
a technology agnostic, multi-modal approach to equipment
monitoring represents an open area of research, which has the
potential to add value in a variety of industries.

In this paper, we propose an unsupervised, technology
agnostic anomaly detection model. This model leverages a
convolutional neural network (CNN) feature extractor paired
with a deep auto-encoder (AE) to predict equipment anomalies.
The model development is split into two phases. The first phase
investigates different CNN structures with a standardized AE
to determine the best possible feature extraction technique.
The method chosen for feature extraction is a VGG16 model
using the concatenated output of layer FC1. This phase also
investigates the conversion of sensory data into the Mel
Spectrogram format to facilitate meaningful feature extraction.
Phase 2 investigates the effects of sensor loss with respect to
both training and test sets. Finally, the models from both phases
are compared to a variety of other anomaly detection methods
on a benchmark repository. Our methodology outperforms all
other models on most metrics. Critically, on the key metric
(i.e., AUC), our model outperforms all prior techniques by 9
percentage points. Key contributions of this work include:

• The development of a highly performing multi-modal
based, unsupervised anomaly detection framework that
can be used on a variety of sensory data.

• Providing optimal pre-processing techniques for sensor
fusion.

• Selection of the best CNN architecture for feature extrac-
tion purposes.

• Investigation into the effects of sensor loss on model979-8-3503-1090-0/23/$31.00 © 2023 IEEE
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performance.
The remainder of this paper is organized as follows: In

Section II, we introduce the background and motivation of this
research. We then present the proposed methods in Section III
and our experimental study in Section IV. Future research
directions are discussed in Section V and Section VI concludes
this paper.

II. BACKGROUND AND SIGNIFICANCE

As mentioned in the introduction, the ability to perform
diagnostic processing on a variety of data type combinations
represents a high value objective in the field of industrial
machinery. Through literature review, we find that this specific
objective has not been well studied as represented by the dearth
of papers in the area. Provided below are the literature review
results attained and a discussion on each work.

A. Unsupervised Anomaly Detection in Industrial IOT

Ref. [2] is an excellent introduction to the field of industrial
IOT anomaly detection. This work investigates state of the art,
discusses significance and challenges associated with the field,
and proposes a new architecture for anomaly detection. One
comment that particularly stands out, is that in the industrial
manufacturing sector, anomalies are correctly classified only 20
percent of the time. Unfortunately, this makes sense. Anomaly
detection is difficult; a supervised approach cannot often be
used effectively, due primarily to the definition of the field.
Anomalies do not occur often. This leads to a dearth of available
data and an imbalance in data distribution that is available.
Therefore, creative techniques must be utilized to predict events.
Ref. [3] is one of the most recent works in this field and also
utilizes a multi-source approach. This work utilizes a custom
built model containing statistical extraction, convolutional
layers, two-stage LSTM auto-encoder, and dense layers. This
model is utilized in both anomaly detection instances and
for predicting RUL. This work does not expressly investigate
handling multi-modal data and does not consider channel loss;
it does represent an excellent work that advances the state of
the art in this field.

B. Multi-modal Approaches to Equipment Monitoring

The authors in [4] propose a novel technique in relation
to multi-modal fault detection. Their specific use case is
industrial refrigeration. The tabular data utilized includes power
consumption, temperature, and current. This tabular data is
fused with features drawn from thermal images utilizing a CNN.
The tabular data and image features are then entered into an
Autoencoder for prediction purposes. Faults are then predicted
based on a threshold value associated with reconstruction
error. This work does not consider channel loss, but does
represent one of the only current approaches to fusing multi-
modal data. The reason this concept is significant is because
most industrial anomaly detection problems are inherently
multi-modal in nature. Fig. 1 visualizes one of the simplest
industrial system, namely a pump motor combination, and
possible deployed IOT monitoring sensors. Even on this simple

Voltage

Current

Vibration

Thermal
ImagingTemperature

Pressure Acoustics

Fig. 1. Illustration of the multi-modal pump/motor sensors.

piece of equipment, there are multiple modes of data, including
pressure, vibration, acoustics, current, voltage, thermal imaging,
and temperature. As systems become increasingly complex,
the number of monitoring data modes will increase as well.
Leveraging this information in a meaningful way is critical.

C. Technology Agnostic Approaches

Technology agnostic methods constitute a deeply under-
researched field. In [5], the authors provided one of the few
examples of works in this field. The proposed TARF model
utilizes a combination of Convolutional Neural Networks and
a Domain Adversarial Deep Neural Network to predict body
positions based upon phase data in RFID signals. The truly
novel contribution is the combination of inputs through image
encoding then extraction of features through a CNN. The idea
is that the underlying features will be the same, no matter
what type of IOT device is used to detecting them. This allows
the same network to be used for a variety of data modes.
This concept translates well to the work provided here, as
our framework seeks to draw out anomalous features from
multiple data sources and then fuse this information into a
singular prediction. Many of the concepts from this paper were
leveraged in the development of our techniques.

III. RESEARCH DESIGN AND METHODS

A. Key Challenges

The main challenges associated with this work can be
summarized in three main points:

1) Development of a standardized and modular sensor fusion
method;

2) A technique which is robust enough to handle multiple
channels of lost sensors;

3) An un-supervised scheme that can handle multiple data
modes, while without requiring the more costly labeled
data.

Item 1 is a difficult issue. Problems such as this do not often
lend themselves to standardization. Even so, this piece is of
the utmost importance. For a machine learning model to be
useful, generalization is crucial. The goal behind this work is
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to be agnostic to the hardware used for prediction, allowing
the scheme to be rapidly deployed on a variety scenarios
of different sensor types. A generalized feature processing
technique is indispensable in this matter.

Item 2 is likely the most under researched portion of this
work. The handling of sensor failure has been rarely, if ever,
discussed in similar works. Usually, research is focused on
initial deployment of networks and models. However, once
these systems are deployed, sensors will fail. Such failure is
not a question of if, but rather of when. The way the system
functions following a sensor failure is of the utmost importance
in terms of long-term viability.

Finally, the model must be unsupervised, full stop. This is
because for most real world equipment anomalies, labelled data
sets do not exist. Even where labeled data sets do exist, there is
no guarantee that the failure mechanisms from the past will be
the failure mechanisms of the future. This is inherently more
difficult to develop when compared to a supervised approach,
but in the long run, it will generally be more valuable.

B. Sensory Data Utilized

Model development and research is only as good as the data
used to train the model. For this work, the goal is to utilize a two
pronged approach to data development. For model development
and initial testing, a repository is used that meets three basic
criteria.

• Formatting and storage that allow rapid access and can
be leveraged for expeditious proto-typing;

• Real-world data that is indicative of a difficult-to-solve
anomaly detection problem;

• Prior publications having tested their methods on the
repository to allow for comparison purposes.

We believe the dataset chosen and discussed below ade-
quately meets all three of these criteria.

The baseline dataset detailed in [6] is used for bench-marking
our proposed anomaly detection scheme. The data captures
the operational sensor outputs of 15 high voltage converter
modulators (HVCM) from the years of 2020 through 2022. The
data collection process was undertaken at the the Spallation
Neutron Source facility of Oak Ridge, Tennessee in the United
States. It represents a world-class industrial anomaly detection
benchmark, through providing a huge real-world data repository
with quality labeled ground truth examples. Recent studies
are also available, providing output metrics for comparison
purposes [7]. Additionally, this dataset provides a variety
of sensor waveforms, making it ideal for our multi-modal
experiment. The sensor outputs available in this repository are
summarized in Table I

C. Proposed Model Architecture for Anomaly Detection

The proposed scheme can be subdivided into three parts,
which coalesce to address the key challenges enumerated
before. The sections are: (i) Data pre-processing, (ii) Feature
extraction/Sensor fusion, and finally (iii) Anomaly prediction.
The proposed model architecture is shown in Fig. 2.

TABLE I
SUMMARY OF THE AVAILABLE SENSORS (FOR ANOMALY DETECTION) [6]

Symbol Description Units

A+IGBT-I Current through IGBT switch-phase A+ A
A+*IGBT-I Current through IGBT switch-phase A+* A
B+IGBT-I Current through IGBT switch-phase B+ A
B+*IGBT-I Current through IGBT switch-phase B+* A
C+IGBT-I Current through IGBT switch-phase C+ A
C+*IGBT-I Current through IGBT switch-phase C+* A
A-Flux Magnetic flux density-phase A –
B-Flux Magnetic flux density-phase B –
C-Flux Magnetic flux density-phase C –
Mod-V Modulator voltage V
Mod-I Modulator current A
CB-I Cap bank current –
CB-V Cap bank voltage V
DV/DT Time derivative change: Mod-V voltage –

1) Pre-processing Techniques: To accomplish the goals
discussed in Key Challenge 1, it is of the utmost importance
that the sensory data be fused in such a way that allows the
use of any combination of sensors. The proposition behind
this methodology is that the underlying features will be the
same for a given pump or motor, regardless of the sensor type
used to detect the features. A CNN is an excellent method for
extracting the underlying features. Additionally, the outputs of
a CNN lend themselves well as input to an auto-encoder. The
problem therefore lies in translating any given data type into a
modular image format.

The method chosen for this was a Fast Fourier Transform
(FFT) conversion into a spectrogram format. This method
translates both a time and frequency component into a modular
and easily accessible format that can be used by a CNN.
These images were all shaped into the 224×224×3 format to
standardize the input window for use with pre-trained CNNs
(excepting for the EfficientNetV2S model, which requires an
input size of 384×384×3). Critically, the method chosen for
this translation utilized an MEL scaled format rather than a
traditional spectrogram [8]. The Mel spectrogram is usually
used for audio signals, which applies a frequency-domain
filter bank to audio signals windowed in time. Although a
detailed comparison of the two methods was not completed,
initial testing was performed that showed the MEL format
produced exceptionally better results than the traditional format.
Additionally, this format is used almost exclusively in current
state of the art audio classification techniques [9]. The better
performance is likely due to enhanced resolution at lower
frequencies, but a complete comparison represents a path of
future work. A visual comparison of the two methods applied
to the same sensor signal is provided in Fig. 2, where the left
plot is the traditional Spectrogram and right plot is the MEL
Spectrogram. The visual differences between the two methods
are clearly distinguishable even to the human eye.

2) Feature extraction/Sensor Fusion: As mentioned in the
previous section, a CNN was the obvious choice for feature
extraction. Its ability to draw out high-level features in a variety
of image types has been proven again and again [5], [10], [11].
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Fig. 2. Proposed anomaly detection model.

Fig. 3. Traditional Spectrogram (Left) vs. MEL Spectrogram (Right).

Additionally, a variety of different industrial data types such
as thermal imaging, sensory data transformed to the frequency
domain, vibration, acoustic signals, and video are all either
native or close to native for this structure. Unlike pre-processing,
the choice of CNN is a choice that can be heavily optimized,
since there are so many architectures available. We utilized a
phased approach to picking the optimal CNN, with the final
choice being VGG16 Layer FC1. The sensor fusion occurs
at the output of the CNN with a pre-defined one dimensional
feature vector provided to the next section of the model. This
vector is of the same size regardless of all the sensors being
available or not. The size is defined by a concatenation of the
maximum amount of sensors applicable in a given situation.
If a sensor is failed or unavailable, then that portion of the
feature vector is left as null.

3) Anomaly Prediction: This portion of the model is where
the actual prediction of anomalies occurs. The use of Auto
encoders for outlier detection has long been accepted as
an optimal method for unsupervised approaches [12]. High
dimensional data is entered into the encoder portion of the
network, which is then compressed in a non-linear fashion.
The network then attempts to try and generate the original
high dimensional data with the decoder. The network is trained
using reconstruction error as the target, hence learning what
“normal” looks like. The idea is that anomalous data will be
difficult for the network to generate hence leading to a high

reconstruction error [13]. This attribute is leveraged to identify
previously unseen failure mechanisms.

To be robust enough to handle channel loss, the autoencoder
must be trained using data showing lost sensors. During phase
one (CNN Selection), the autoencoder was standardized to
provide a fair comparison with regard to feature extraction and
sensor fusion. During phase two, the autoencoder structure was
optimized to provide the best possible architecture for anomaly
detection in the presence of lost sensors. The final structure
chosen in this research is visualized in Fig. 2.

IV. EXPERIMENT EVALUATION

As mentioned previously, the experimental and model
development portion of the work was divided into two distinct
phases. Phase one attempts to identify the optimal method
of feature extraction/sensor fusion through testing a series of
CNN techniques. During this time, the autoencoder portion of
the model was frozen. Phase Two utilizes the optimal method
chosen in Phase One, but seeking to optimize the autoencoder
portion of the model while also training on a large dataset that
includes sensor loss.

A. Phase 1: Feature Extraction/Sensor Fusion Selection

To allow rapid prototyping of models, this portion of the
work solely used a subset of the HVCM data. Particularly, the
data from the radio-frequency quadrupole (RFQ) subsystem is
utilized. This includes all of the features discussed in Table I.
The raw data is provided as a time series of three-dimensional
array. Following conversion to image format, there are 9,660
normal images available, representing 690 images per sensor.
An additional 2,548 anomalous images are available for testing
purposes. For feature extraction purposes, the models listed in
Table III were chosen and tested. The weights developed from
Imagenet training were also used for each model, representing a
degree of transfer learning. The output of each of these models
was flattened, if required and concatenated for entry into the
autoencoder. Following this sensor fusion, 500 samples were
used as the normal data for model training. The test data was
composed of 190 normal samples and 10 anomalous samples.

The autoencoder chosen for testing remains standardized
throughout Phase 1. The goal here is not necessarily to
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Fig. 4. AUC (Area under the ROC Curve) Curve: Phase 1 results.

produce the best accuracy possible, but rather provide a
common baseline for evaluating efficacy of feature extraction.
It consisted of 10 dense layers with the maximum number
of internal units never reaching over 100. The results from
this experimentation are provided in Table IV. The metrics
presented in this table are defined below:

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

F1 =
2 ∗ Precision ∗Recall

Precision+Recall
=

2 ∗ TP
2 ∗ TP + FP + FN

(4)

FOR =
FN

FN + TN
, (5)

where TP is the counts of true positives, FP is the counts of
false positives, FN is counts of false negatives, FOR is the
False Omission Rate (FOR), and AUC is the Area under the
ROC Curve.

The VGG16-FC1 extraction method clearly distinguished
itself from its counter-parts with excellent metric results. Note
that these results were also achieved with a naive topology
from an autoencoder perspective. Even so, outliers are clearly
being distinguished from the normal distribution as shown in
Fig. 4.

B. Phase 2: Sensor Loss Investigation

Once the method of feature extraction and sensor fusion
is chosen, model optimization and sensor loss training will
follow. This piece was chosen due to so little research being
available on the effects of sensor loss to anomaly detection
systems. It was known that the failure of sensors would likely
have significant effects on model accuracy, but we desired to
quantify that effect for future reference. To accomplish this at
feature extraction, a single sensor is dropped from the total.

This is repeated for all 14 sensors. Effectively, this increases
the training sample size by a factor of 14. To train the model,
7,500 samples were utilized. This model was deepened to
increase retention and then trained on the 7,500 samples. For
testing purposes, the model was first evaluated against the test
set in Phase 1.

The AUC results for this model on this test set were 0.821,
representing a significant decline when compared to the model
trained on only 500 samples of good data without sensor loss.
Next 14 test sets were created consisting of 190 samples of
normal data and 10 samples of anomalous data, with a different
failed sensor in each set respectively. The model trained on the
lost sensor data, along with the baseline model from Phase 1
were both evaluated against these 14 test sets. The results from
these tests are available in Table V. These results illustrate
just how difficult the sensor loss problem is. The AUC results
may be somewhat misleading in that on all 14 sensor loss data
sets, the VGG16-FC1: PH2 model was able to discriminate at
least two anomalies out of the 10 present. That said, model
performance in all cases was severely degraded by the loss
of a single sensor. This scenario represents an open area of
research with very little documentation available. The intent
of this section is to bring the issue to the forefront to instigate
further research.

C. Benchmark Comparison

Finally, the individual models developed and trained in
Phase 1 and Phase 2 were evaluated in the same manner
as described in [7]. Note, that all training was completed
in an offline manner. The models were evaluated against a
previously unseen test set composed of 81 normal samples and
50 anomalous samples. The metrics produced by the models
were then directly compared with the results obtained in [7].
To maintain similarity, the FOR metric (defined in (5)) of all
the schemes was evaluated.

As can be seen from Table II, the VGG16 Phase 1 model
performed quite well on all accounts. In fact, on the metric
that transfers best for comparison (AUC), the model developed
in Phase 1 actually outperformed all other options by nine
percentage points. This is significant as it demonstrates the
efficacy of using a multi-modal approach to anomaly detection.
By fusing these sensors together, increased performance
is attained. Note also that although model VGG Phase 2,
performed better than some prior methods it clearly does not
distinguish as well as the model trained on only good data.
Although not directly investigated here, it is implied from the
results that sensor loss included in the training set will degrade
model performance. Overall though, the proposed framework
outperforms all other methods in almost all of the metrics
evaluated in the experiment.

V. FUTURE WORKS

The most difficult problem associated with the work is
the handling of lost sensors. This represents a key gap in
literature and is a core issue for companies implementing
these Predictive Maintenance solutions. A proposed method for
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TABLE II
BENCHMARK RESULTS

Metric VGG-PH1 VGG-PH2 LSTM GRU CLSTM IF SVM LOF RF DT KNN CNN CNN-AE FNN-AE

Precision 0.96 0.97 0.91 0.90 0.90 0.77 0.41 1.00 0.35 0.39 0.30 0.30 0.91 0.91
Recall 0.94 0.70 0.88 0.87 0.87 0.75 0.83 0.77 0.73 0.43 1.00 0.78 0.80 0.76
Accuracy 0.96 0.88 0.87 0.85 0.85 0.69 0.58 0.82 0.87 0.82 0.89 0.87 0.80 0.76
F1 0.95 0.81 0.90 0.88 0.88 0.76 0.55 0.87 0.47 0.41 0.47 0.44 0.85 0.83
FOR 0.04 0.30 0.20 0.22 0.22 0.42 0.14 0.48 0.03 0.10 0.00 0.02 0.38 0.48
AUC 0.99 0.76 0.90 0.89 0.89 0.67 0.63 0.76 0.66 0.64 0.65 0.64 0.76 0.69

TABLE III
FEATURE EXTRACTION MODELS TESTED

Model Output Layer Output Shape

VGG16 [14] Final Pooling 7, 7, 512
VGG16 [14] Layer FC1 1, 4096
DenseNet201 [15] Average Pool 1, 1920
EffNetV2S [16] Top Drop Out 1, 1280

TABLE IV
FEATURE EXTRACTION EXPERIMENTATION RESULTS

Model Accuracy Precision Recall F1 AUC

VGG16-FP 0.94 0.40 0.40 0.40 0.52
VGG16-FC1 0.98 0.80 0.80 0.80 0.99
DenseNet 0.90 0.0 0.0 0.0 0.32
EffNetV2S 0.96 1.0 0.20 0.33 0.35

TABLE V
SENSOR LOSS TESTING

Model VGG16-FC1: PH1 VGG16-FC1: PH2

Accuracy (Best) 0.92 0.92
Accuracy (Average) 0.91 0.92
AUC (Best) 0.54 0.51

addressing this issue is through synthetic data augmentation.
This method would allow much higher training volumes,
improving discrimination. Another item of investigation would
be leveraging audio specific CNNs; since spectrograms are
native to these models.

VI. CONCLUSIONS

In conclusion, this paper investigated the use of a sensor
fusion techniques which allows a single model to learn
on multiple modes of data. A variety of feature extraction
techniques were compared, while the VGG16 CNN model
clearly distinguished itself as the optimal method. Even in
initial training without optimization, the results were excellent.
Next, a thorough investigation with regard to sensor loss was
performed, which demonstrated the difficulty associated with
this task and clearly defines a future area of research. Finally,
the models developed by this work were tested against prior
techniques used on this dataset. Our model clearly distinguished
itself as an optimal technique, outperforming past methods by
many basis points, demonstrating the efficacy of a multi-modal
approach.
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