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Abstract—To implement ubiquitous wireless sensing, the do-
main shift problem (e.g., different environments, users, devices)
for machine learning based approaches should be addressed.
Some existing methods are proven to be effective, such as
transfer learning and domain adaptation. Meanwhile, quantum
machine learning, a combination of quantum computing and
machine learning, has attracted much attention. More impor-
tantly, quantum transfer learning (QTL) has been successful
for certain applications, e.g., image classification. In this paper,
we explore a classical to quantum (C2Q) framework to address
the domain shift problem in wireless sensing by exploiting the
great potential of QTL. Specifically, we first analyze the data
shift problem in various types of wireless datasets by calculating
the Kullback-Leibler (KL) divergence of different domains.
Then, a QTL framework is designed to introduce importance
weighting and adversarial strategies. We finally evaluate the
proposed framework using the representative human activity
recognition task on three wireless sensing datasets. Experimental
results demonstrate the feasibility of the framework and its great
potential for solving the domain shift problem in wireless sensing.

Index Terms—wireless sensing, quantum machine learning,
quantum neural networks, transfer learning.

I. INTRODUCTION

Wireless sensing has become a research hotspot recently,
which focuses on leveraging the existing wireless devices for
sensing, such as the ability to locate the position of objects
and detect the behavior of objects, e.g., falling, breathing,
heartbeat, and gestures [1]-[3]. Many applications based on
such sensing abilities are emerging. However, the wireless
signal is susceptible to the surrounding environment, hardware
impairments, interference, and noise, which are all time-
varying. The deployment of these applications across envi-
ronments, users, and devices is a big challenge in ubiquitous
wireless sensing. For example, for the same task, a well-
trained model on data collected on one device may perform
poorly on data collected on another device. Since collecting
and labeling wireless data is labor-intensive, costly, and error-
prone, researchers have tried to gain some prior knowledge
from some well-trained large models, which can guide the
process of training on a small amount of data. This is an
effective means to reduce data collection and training costs.
Transfer learning (TL) [4] is such a strategy, which trains a
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good performing predictor on dataset A and then fine-tunes the
model on dataset B to achieve good performance. It has been
successfully applied in image classification and other fields [5],
[6].

The above TL approach can also be extended to quantum
machine learning (QML) [7], which is a recent advance of
combining quantum computing and machine learning. Quan-
tum computing has been shown to have a great potential
for machine learning tasks, with its powerful computational
capability and unique features (i.e., quantum entanglement)
that cannot be achieved by classical learning. Similar to the
neural network in classical machine learning, the param-
eterized quantum circuit, which is also a quantum neural
network (QNN) [8], has been recently introduced as one
of the most regular architectures for QML. Recent research
has been motivated to focus on implementing existing ML
tasks using QNNs, ranging from image classification [9] to
transfer learning [10]. Limited by current quantum hardware
that supports limited qubits, QML is still in its infancy and too
early to demonstrate the quantum supremacy in accuracy and
scalability. Therefore, the main focus of the current research
direction is to identify possible challenges and demonstrate
the potential of QNN-based QML for existing and emerging
applications.

Following this trend, in this research we aim to re-design TL
using QML, especially for wireless sensing tasks. In the noisy
intermediate-scale quantum (NISQ) era [11], designing a TL
network working on the real quantum circuit is very complex
and time-consuming. Classical data uploading to a quantum
circuit takes a lot of time and is constrained by the availability
of quantum bits (qubits). Furthermore, quantum computers
are very expensive. Thus, using a hybrid quantum-classical
TL model will be more appealing for the current NISQ era.
For example, the authors in [12] proposed a classical-to-
quantum (C2Q) convolutional neural network (CNN), a TL
model for three independent binary classification tasks with
the MNIST data, which capitalized the advantages of CNN in
the few-parameter regime to the full extent. Similar models
have also been successfully applied to spoken command
recognition [13]. In particular, an attempt was made in [14]
to improve the robustness against domain shifts across Wi-
Fi scanning sessions, which is the first attempt to use QTL
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in wireless sensing. However, this approach is more suitable
for handling cases where the distributions in the dataset do
not differ much, and their performance may drop significantly
when the distributions vary a lot in wireless sensing.

In this paper, we leverage the C2Q model, which has
exhibited many application advantages, to solve the domain
shift problem in wireless sensing. Different from the prior
works, various datasets of our wireless sensing, including radar
and Wi-Fi datasets, are analyzed and the network architecture
is adapted for their respective offset problems using the C2Q
TL model. The contributions of this paper are three-fold, as
summarized below:

« We analyze the data shift problem in various types of
wireless datasets by calculating the KL divergence of
different domains.

e We design a novel QML model for wireless sensing,
where a variational quantum circuit is designed for the
feature extractor. In the training process, importance
weighting and an adversarial strategy are also introduced.

o We verify the feasibility of the proposed QML model
for human activity recognition across sensors, users, and
environments on various wireless datasets.

The rest of the paper is organized as follows. Section II
introduces the background and motivation. Section III presents
the system design while Section IV presents the experimental
study. We finally conclude this paper in Section V.

II. BACKGROUND AND MOTIVATION
A. Domain Shift in Wireless Sensing

The radio frequency (RF) signals received by wireless
devices for sensing tasks are susceptible to environmental
and subjective influences. An application model trained on a
specific environment and subject is likely to perform poorly on
another subject in a new environment. This mainly results from
the domain shifts in wireless sensing. We will use Kullback-
Leibler (KL) divergence [15] to represent the differences
between domains (e.g., users, environments, and devices),
which is widely used to describe the discrepancies between
probability measures.

In this paper, three different types of public datasets are
chosen to calculate KL divergence. (i) Ci4R [16]: collected
from three different radars at 24 GHz, 77GHz, and 10GHz
frequencies for a total of 11 different activities and ambulatory
gaits. (ii) MCD [17], [18]: MCD-Gesture are collected by
mmWave Radar in 750 domains, including six environments,
25 volunteers, and five locations. (iii) Widar 3.0 [19]: collected
for six hand gestures in three different environments. As shown
in Fig. 1, there are different degrees of offset in these datasets
between domains. A larger value of KL represents a larger
difference in distribution between two domains. It is obvious
that data collected at different frequencies in the Ci4R have the
largest differences in distribution, which could be caused by
the differences in hardware. Difference is also considerable
between the user domains of MCD, which is probably due
to the different behavioral habits of users. As for Widar 3.0,
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Fig. 2. The classical to quantum (C2Q) transfer learning network architecture.

due to the fact that all the experiments were conducted in a
laboratory-like setting and proper pre-processing was applied,
the differences in Widar 3.0 is the smallest. It follows that the
problem of domain shift widely presents in wireless sensing.
Although pre-processing can alleviate this phenomenon to
some extent, it does not completely solve the problem. To
make machine learning models more applicable and robust,
measures should be taken to address the domain shift problem.

B. Basic Classical to Quantum Transfer Learning Network

The domain shift problem in wireless sensing can be solved
using transfer learning or domain adaptation, which have
been remarkably successful in classical machine learning.
QML has also attracted considerable attention recently. For
instance, QTL has been successful in applications such as
image classification. The model used in the prior work, termed
the C2Q TL network, is plotted in Fig. 2. The model uses
CNN as feature extractor and is trained on dataset D4 to
complete the classification task C'4. However, when the trained
model is directly used on dataset Dp for task Cpg, the
model performance will be degraded. To reduce the cost
of retraining, the model performs the classification task by
knowledge migration, which is to freeze the pre-trained CNN
feature extractor and ensure the parameters of the QNN are
trainable. QNN will first embed classical data into qubits, then
use unitary operations to upload parameters, and finally obtain
the state of the entire quantum circuit through measurements
to help update the parameters during training.

The above C2Q TL model is suitable for small offsets, but
it does not work well with data having large domain shifts.
Differing from the prior work, we introduce the technique
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Fig. 3. System model and the structure of the proposed VQC.

of importance weighting and an adversarial strategy into the
model to address the domain shift problem in wireless sensing.

III. PROPOSED C2Q TL MODEL

An overview of the proposed C2Q TL model is shown in
Fig. 3. The input data to our model are divided into source
data and target data, which are from the same dataset but
were collected in different domains. This problem setting
requires that the proposed approach can be capable of learning
transferable features for different domains.

Towards this goal, unlike conventional CNNs, our feature
extraction module is a CNN where the last layer is replaced
by a variational quantum circuit (VQC). Through this model,
the input data is transformed into a low-dimensional feature,
which will be fed into both the activity predictor and domain
discriminator. The goal of the activity predictor is to maximize
the prediction accuracy and obtain the predictions on input
data. To introduce adversarial learning strategies, a classical
domain discriminator is incorporated, which contains two
fully-connected (FC) layers. Its goal is to label each domain.
The model learns domain-independent features by means of a
feature extractor. Specifically, the feature extractor generates
features that can deceive the domain discriminator as much
as possible, while maintaining the recognition performance of
the active discriminator. This dual-goal is basically achieved
by updating the parameters in the VQC during the training
process, and at the same time, freeze the parameters of the
CNN. Moreover, we introduce importance weight and design
constraints, which can alleviate the offset problems in the
dataset and significantly improve the inference performance.

A. Feature Extractor

The feature extractor in our quantum TL model consists of
a CNN and VQC. Wireless sensing data is typically classical
and high-dimensional. To apply VQC to classical data, the
first problem to be solved is uploading data to quantum states,
as quantum circuits only act on qubits. Limited by quantum
hardware, the number of qubits available today is much fewer
than the number of data samples available in classical sensing
data. To solve this problem, we use a CNN to compress the
high-dimensional wireless sensing data into low-dimensional
features. The CNN architecture we use here is Resnet-18 [20],

and with this network, a 512-dimensional feature is the ulti-
mate output. A linear layer is then used to map the compressed
features to the same size as the qubits. The obtained data
vector can be represented as X = [z, x1, ..., Z,], Where n is
the number of qubits. To successfully upload classical data into
quantum state, one of the methods is to introduce specific gates
and rotation operation in the beginning of quantum circuit.
As shown in Fig. 3(b), each data point in this vector will be
embedded in the quantum circuit by applying a Hadamard gate
(H) and performing a rotation around the y-axis (Ry) of the
Bloch sphere. Finally, the quantum state of the input data | X)
is obtained. A universal parameterized quantum gate U(¢; ;),
i € [1,n],7 € [1, N] is subsequently trained on it, where U are
the unitary quantum gates, ¢ is the angle of rotation, which is
trainable, and N is the number of layers or the depth of the
VQC network. Furthermore, an entangling unitary operation
is also executed, which is made of n controlled-NOT (CNOT)
gates. Entanglement is proved to be the core of VQC, which
can help discovery information between qubits. A two-qubit
entangling gate builds entanglement between two qubits but
the two qubits are not necessarily neighboring. At the end of
the quantum circuit, output states are measured on the classical
register using the Pauli-Z matrix, and the concatenation of it
and the output features of the CNN is passed to the Activity
Predictor and Domain Discriminator.

In order to better transfer the knowledge from the source
domain to the target domain, importance weighting [21] is
introduced in the training process of feature extractor, which
assigns weights to the band values of different training sam-
ples to balance the distribution bias. It contains two steps,
which are (i) the estimation of the ratio between test and
training densities and (ii) the training of a predictive model
by weighting the training losses. Specifically, source data wéll
be multiplied with importance weights W, W = %
to alleviate the data shift problem existing in wireless datasets,
where KDE® and KDET respectively represent the Kernel
Density Estimation (KDE) of the source data and target data.

B. Activity Predictor and Domain Discriminator

Both the activity predictor and domain discriminator are
composed of two fully-connected layers, where the first is
used to learn the representation of input and the other is
to map the feature representation into a new latent space
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H; € R, where C is the number of different human activities
in the activity predictor or the number of domains in the
domain discriminator. In addition, a softmax layer is used
to obtain the probability vector of activities or domains as
follows §* = softmax(W % F + b), where F is the output of
feature extractor, and W and b are the weight matrix and bias,
respectively. Also * = [y*F, y%F], where y** denotes the
predicted probabilities of activities, and y%* represents the
predicted probabilities of domains.

For the activity predictor, the cross-entropy function is used
to calculate the loss between the predictions and the ground
truths as follows.

=—fZZy T1og (4°7) | (M

ale

where N, is the number of training samples in activity
predictor, M is the number of activity classes, and yC’T is
ground-truth labels of activities. To identify the domain labels
of the input activities in the domain discriminator, we define
the loss between the domain distributions and true domain
labels as follows.

Ly = )
Nidz_—[yfﬁog(“)m ) log (1 4]

where N, is the number of training samples in domain
discriminator and yf "' is the ground-truth label of the domain.

C. Training Strategies

In the training process, we iteratively update the model
parameters. At first, we fix the parameters in the domain
discriminator and update the parameters in the VQC and
activity predictor according to the Adam algorithm. Next, we
fix the parameters in the the parameters in the VQC and
activity predictor, and update the rest of the parameters.

At the beginning of training, we use importance weights
to prioritize the training set and then train the model using
the weighted training set. As can be seen from Section II,
the degree of offsets varies cross different wireless sensing
datasets. Importance weighting can help to better fit the
different datasets and correct the data shifts in them. It uses
Gaussian KDE to estimate the probability densities of the
test and training sets. And the importance weights for each
training instance are calculated, which is the ratio of the test
set probability density to the training set probability density.

The main purpose of the adversarial learning process is
to extract the domain-independent features by discarding the
specific features of each domain, while retaining the common
features used for activity recognition. The features extracted
by the feature extractor shall confuse the domain discrimi-
nator, while the predictor network can effectively tell from
which activities the input features are. Our methods adjust
parameters in the VQC to better work with adversarial learning
network, while the parameters in the CNN is always frozen.
Additionally, the distribution of source data and target data

are different, and this difference can be quantified by KL
divergence. Therefore, we add the KL divergence between
domains as constraints in the training process, that is,

Ls =KL < (t arg et) ||P(source )

dp )(;ngget) ( )
o target

where Pe¢ and Pyy?" represent the probability distribu-
tion of the source domain and target domain, respectively.

With the above loss and constraint, we can finally write the
overall loss function as follows.

Loss = Ly + o(La s + Lo ) + SLs, 4)

where o and (3 are predefined hyper-parameters, and Lg 4
and Lo ; are domain losses of source data and target data,
respectively. In our experiments, « and 3 are set to 0.1 and
0.0001, respectively.

IV. EXPERIMENTAL EVALUATION

In this section, we first describe our experimental setup, in-
cluding the dataset and performance metrics. Then we present
a comparison study of several baselines and our scheme across
different domains, including devices, users, and environments.
Finally, we evaluate the impact of QNN on recognition ability
in the domains and across domains.

A. Experimental Setup

1) Dataset: In our evaluation, three public datasets de-
scribed in Section II are used. They have different extents
of the data shift problem. The data collected from different
domains are choose as the source dataset and target dataset,
respectively. In particular, we evaluate our proposed methods
across three frequencies (F1-F3) of radar sensors in Ci4R, six
users (U1-U6) and six environments (E1-E6) in MCD, and
three environments (E1-E3) in Widar3.0.

For the QNN, the number of qubits was set to 4. The
512 compressed classical features were encoded into quantum
embeddings that go through the VQC model. The depth of
VQC was set to 15, leading to 60 adjustable parameters in
total. We use a PyTorch open-source library to implement the
deep neural networks, and PennyLane cross-platform library to
construct the QNN . Limited by the hardware, the experiments
were conducted on a classical computer, which is equipped
with 16GB memory, Intel 17-10700 CPU @2.90GHz, and the
Nvidia GTX 1660 Graphics Card. QNNs are deemed as a torch
layer in our model. Our method is executed for 100 epochs
during the experiment. And we update the parameters by using
the Adam optimizer with a learning rate of 0.0004 and weight
decay rate of 1074,

2) Performance Metrics: We choose accuracy to quantify
the performance of the evaluated schemes. Accuracy repre-
sents the percentage of the number of correctly recognized
samples over the total number of tested samples in the target
domain, which is calculated by Acc = %

total

3170

Authorized licensed use limited to: Auburn University. Downloaded on January 13,2025 at 18:16:49 UTC from |IEEE Xplore. Restrictions apply.



2023 IEEE Global Communications Conference: Selected Areas in Communications: Quantum Communications and Computing

TABLE I
CROSS-DOMAIN PERFORMANCE OF OUR PROPOSED MODEL AND BASELINE TRANSFER LEARNING METHODS (ACCURACY(%))
Ci4R MCD-user MCD-env ‘Widar3.0
F1-F2 F1-F3 F2-F3 Ul1-U2 U3-U4 USs-ue E1-E2 E3-E4 ES-E6 E1-E2 E1-E3 E2-E3
ADDA 48.5 50.8 52.3 58.5 55.7 58.9 59.1 61 58.9 59.9 56.3 57.8
DANN 594 60.1 61.7 67.9 65.4 68.2 69.1 71.2 72.3 66.6 70.2 69.7
CTL 19.4 18.76 19.2 56.3 57.8 54.4 553 54.6 56 76.5 78.9 77.4
QTL 20.5 17.9 19.8 55.7 56.5 55.6 54.9 55.2 55.4 75.2 76.1 76.8
Proposed 56.7 61.2 58.4 82.5 83.5 79.5 79.3 80.2 78.3 87.8 86.5 86.7
3) Methods Evaluated: We compare our method with other 00y n 7
state-of-the-art learning models, including classical models 21aT A, ML 7 ™
and traditional QTL models, which are presented as follows. M
e ADDA [22]: ADDA is a domain-adversarial method, -
which combines the discriminate model, untied weight %90
sharing, and a GAN loss. E
e« DANN [23]: DANN induces the adversarial theory into <
domain adaptation. It aims at generating features that
represent both the source domain and target domain. Dauﬂ
e CTL [14]: A CNN feature extractor is trained on the Oﬁmw

source domain, and then the trained CNN is used in the
target domain. Parameters in the followed DNN structure
are fine-tuned in the training process.

e QTL [14]: The QNN model is first trained with labeled
data from the source domain and then migrated to learn
with few labeled data samples from the target domain
with the input/output layers (classical layers) frozen.

B. Ability of Cross-domain Recognition

We evaluate the cross-domain performance of the four
baselines and our method on each of the datasets. Table I
presents the experimental results. First, the performance of
our method substantially better compared to the CTL and QTL
methods. For example, in Ci4R, directly migrating data from
the source domain to the target domain and performing fine-
tuning leads to dramatic performance degradation in the target
domain due to the large differences between devices. The
recognition accuracy in the source domain can exceed 90%,
but the accuracy degradation in the target domain is more than
60%. Our model can achieve a more than 58% improvement
over the baselines, which validates that importance weighting
and the adversarial strategies are effective.

Compared with the two classical methods for domain ad-
versarial, our method has better cross-domain performance on
both the MCD and Widar3.0 datasets, but poorer performance
than DANN in Ci4R. The main reason for this is that during
the training process, we only set the update parameters of
VQC in the feature extractor, while the parameters of CNN
are frozen. This indicates that the feature extractor should
have a more complex structure to extract domain-independent
features from datasets with large domain shifts. In general,
the C2Q TL framework we designed provides an effective
solutions to the domain shift problem in wireless sensing.

C. Impact of ONN in the Proposed Model

In this experiment, Ours« is a new model obtained by
replacing the VQC part of our model with the classical fully

CFl CF2 CF3 MUl MU2 MU3 MEI ME2 ME3 WEl WE2 WE3

Fig. 4. The in-domain performance of our proposed model and Ours*. The
initials of the horizontal labels represent the dataset used, and C, M, and W
denote Ci4R, MCD, and Widar3.0, respectively.

connected layer. We compare it with our proposed model
(Ours) on in-domain and cross-domain recognition. Fig. 4
presents the experiment results of in-domain recognition,
meaning that the training data and the test data are from the
same domain. In each domain, we select 75% as training
data and the remaining 25% as test data. We validate the
classical CNN and our method on three datasets. As shown in
Fig. 4, both methods achieve more than 95% accuracy in same
domain recognition. It validates that our QNN can adequately
act as a classical layer. Although it does not outperform
the classical, the potential advantage of QNN lies in its
fewer trainable parameters than classical layers (over 2,000
parameters) and its computational efficiency to manipulate 2"
quantum states at once with a small number of quantum gates.

Fig. 5 shows the performance of our proposed approach
across devices, users, and environments for three different
datasets. Cross devices: Different radar devices use different
bandwidths, frequencies, and modulation methods. It is im-
portant to investigate cross-device activity recognition models,
which can reduce the cost of data collection. We validate the
cross-device feasibility of our proposed method on Ci4R, a
dataset collected from three different radar devices. As can be
seen from Fig. 5, both methods perform similarly: both having
the worst results in F1-F2 and the best results in F1-F3. Fur-
thermore, we can see that the two methods perform the worst
on Ci4R, because the source and target data distributions differ
the most, compared to the other three datasets. Cross users:
Due to differences in individual habits such as speed when
performing activities, a model that is trained and performs
well on data collected from one user may perform less well
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Fig. 5. The cross-domain performance of our proposed model and Ours*. The
vertical dashed lines separate each data set and the corresponding selected
domain. From left to right are the data from different devices in Ci4R, the
data from different users in MCD, the data from different environments in
MCD, and the data from different environments in Widar 3.0.

on another user’s data. We validate the cross-user feasibility
of our proposed approach on MCD. Data collected by the
same user in different environments are considered as the
same domain. We treat the data from different domains as the
source and target domains, respectively. The figure illustrates
that our method outperforms Ours* at U3-U4, performs almost
the same at U1-U2, and performs slightly worse at U3-U4, by
1.7%. Cross environments: Wireless sensing is susceptible
to the influence of the surrounding environment, where the
number and location of objects within the environment can
lead to different multipath effects. We verify the feasibility
of our proposed method across environments on MCD and
Widar 3.0, where data collected by different users in the same
environment are considered as the same domain. It shows
the difficulty in comparing the performance of Ours* and
our model. Also, although the performance of our method is
also evaluated across environments, the performance is not
the same on the two different datasets. In Widar’s cross-
domain evaluation, the best performances of our model and
Ours* separately reach 87.8% and 88.5%, while in MCD,
they are only 80.2% and 82.9%. The reason for this is
explained in Section II, where the KL divergence of Widar3.0
is smaller than that of MCD, implying that the difference in
data distribution is smaller for Widar3.0.

V. CONCLUSIONS

In this paper, we designed a C2Q TL model to address
the domain shift problem in wireless sensing. We analyzed
the data shift in several wireless sensing datasets. Importance
weighting was proposed to reduce the distribution difference
between domains when selecting the training and test sets. We
then designed a feature extractor with a hybrid of classical and
quantum structures, where the classical CNN was used only to
compress high-dimensional features. The inputs and outputs of
our VQC connected the classic model by using classical linear
layers. Finally, we introduced an adversarial learning strategy.
The parameters of the quantum circuit were updated during
training. The experimental results demonstrated the feasibility
of our proposed framework.
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