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Abstract—Millimeter wave (mmWave) communications and
massive MIMO play crucial roles in the development of future
wireless systems. In addition to offering high data rates, these
technologies enable the realization of high-precision localization
systems, especially in complicated indoor rich multi-path envi-
ronments without GPS coverage. While deep neural networks
(DNNs) enable high accuracy in fingerprint-based indoor localiza-
tion, their implementations also introduce security problems. In
the field of computer vision, backdoor attacks have proven to be
able to effectively deceive models using specific or imperceptible
triggers. In this paper, we study the impact of backdoor attacks
on 5G massive MIMO localization systems in both indoor and
outdoor environments. Two different triggers are investigated: the
one-pixel trigger (visible) and the random noise trigger (invisible).
We evaluate the localization systems using a public dataset and
demonstrate that DNN-based localization systems are vulnerable
to backdoor attacks.

Index Terms—Backdoor Attack, Deep Learning, Massive
MIMO, Wireless Localization.

I. INTRODUCTION

With the growing popularity of smart cities, smart homes,
and autonomous driving, there is a rising emphasis on location-
based applications. Precise tracking of individuals and equip-
ment plays a vital role in these contexts. With the help of
the powerful modeling capabilities of deep neural networks
(DNNs), current data-driven localization systems can achieve
high-precision location predictions by collecting and analyzing
position-related wireless data.

Global Positioning System (GPS) is a widely recognized
technology that enables people to navigate themselves. How-
ever, GPS encounters challenges when it comes to indoor
environments, primarily due to its sensitivity to occlusion.
To enable accurate indoor localization, alternative wireless
technologies such as WiFi have gained significant attention.
WiFi signals are pervasive in indoor environments, mak-
ing them suitable for wireless positioning. In addition to
WiFi, millimeter wave (mmWave) and massive multiple input
multiple output (MIMO) technologies have been recognized
as key technologies for the next generation wireless net-
works [1]. In comparison to WiFi-based localization systems,
mmWave/massive MIMO-based positioning systems offer the

potential for higher precision due to the higher data rates and
multiplexing gains.

In measurement-based wireless positioning systems, time
of arrival (TOA), time difference of arrival (TDOA), angle of
arrival (AOA), and received signal strength indicator (RSSI)
are widely used to capture location information [2], [3].
In deep learning-driven approaches, RSSI and channel state
information (CSI) data have been commonly employed to train
DNNs for wireless localization. The measured CSI contains
valuable information such as scattering, delays, and fading at a
fine-grained level, making it capable of accurate localization.
DeepFi is the first work that deploys deep learning models
in indoor localization systems, which leverages WiFi CSI to
achieve a desirable performance [4]. Moreover, convolutional
neural networks (CNNs) are leveraged to achieve high lo-
calization accuracy as well. For example, DyLoc proposed a
CNN-based mmWave/massive MIMO localization system in
dynamic scenarios using angle delay profile (ADP) as input,
which is a linear transformation of the CSI [5].

Indeed, deep learning-based localization systems exhibit
better performance owing to the powerful capabilities of deep
learning models. Nevertheless, the robustness of such systems
is a critical issue due to the black-box feature of DNNs. In the
field of computer vision, even minor perturbations can signifi-
cantly degrade a model’s performance on specific images [6].
Even worse, universal perturbations can deceive a DNN on
any image and make the model completely ineffective [7]. In
addition to the above evasion attacks, there exists another type
of attack known as backdoor attacks. Backdoor attacks insert
a trigger into the input data. The model performs normally on
benign samples but will behave maliciously as intended when
the trigger is activated [8].

The open nature of wireless signals makes the research
on the resilience of deep learning-based wireless systems
more important. Bahramali et al. demonstrate that DNN-based
wireless communication systems are vulnerable to adversarial
examples and remain susceptible to attacks even when well-
designed defense mechanisms are deployed [9]. In the domain
of wireless localization, our previous work has verified that
WiFi-based and 5G-based wireless localization systems are
susceptible to adversarial attacks [10], [11]. In fact, these
studies underscore the importance of addressing the robustness979-8-3503-1090-0/23/$31.00 © 2023 IEEE
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of deep learning-based wireless localization systems against
potential adversaries.

To the best of our knowledge, there is a lack of research
in the existing literature concerning backdoor attacks on
deep learning-based wireless positioning systems. Given that
mmWave and massive MIMO technologies are crucial for
present and future wireless systems, and the robustness of
these highly accurate positioning systems is significant, this
paper aims to evaluate the impact of backdoor attacks on deep
learning-based mmWave/massive MIMO indoor and outdoor
localization systems. We use the ADP in massive MIMO sys-
tems as our input data and model the localization problem as a
regression task in deep learning. We then introduce backdoor
attacks with different triggers on the DNN-based positioning
systems and show that the DNN models are susceptible to
backdoor attacks both in indoor and outdoor environments.

The major contributions made in this paper are summarized
as follows.

• To the best of our knowledge, this is the first work
to study backdoor attacks on mmWave/massive MIMO
indoor and outdoor localization systems.

• We design two different triggers for backdoor attacks.
The one-pixel trigger is fixed at a single point, while the
random noise trigger remains invisible and has the same
shape as the input. Both triggers have been shown to be
capable of launching backdoor attacks.

• We experimentally demonstrate that backdoor attacks can
greatly degrade the performance of positioning systems in
both indoor and outdoor environments when the triggers
are activated.

The remainder of this paper is organized as follows. Related
work is discussed in Section II. Section III introduces the
system design. Comprehensive experiments are presented in
Section IV. Section V concludes this paper.

II. RELATED WORK

Extensive research has been conducted on various attacks
in wireless systems, aiming to enhance the security and
resilience of wireless applications. For wireless human activity
recognition (HAR) systems, jamming is a common method to
attack wireless systems by interfering with the transmission
and reception processes [12]. IS-WARS injected interference
signals by coexisting protocols in HAR systems, which was
more stealthy and harder to detect [13].

With the rapid development of deep learning, there is a
growing focus on addressing security concerns associated with
the models employed in these systems. For instance, WiCAM
generated adversarial examples with limited perturbations by
learning the temporal and spatial information. It can drastically
degrade DNN-based WiFi sensing systems [14]. Ambalkar
et al. studied three white-box attacks on CSI-based HAR
systems [15]. Adar presents optimization-driven adversarial
examples and explores adversarial training on sensor-based
HAR [16]. Yang et al. investigated white-box attacks in
Doppler-based HAR systems [17]. In addition to studying
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Fig. 1: Backdoor attacks on DNN-based mmWave/massive
MIMO localization systems.

how to attack the system, SecureSense proposed a defense
framework for device-free HAR systems [18].

Three classic white-box attacks were studied in the con-
text of WiFi-based floor classification and indoor localization
in [10]. The authors comprehensively evaluated black-box and
white-box attacks in indoor localization system, and examined
the efficacy of adversarial training as a defense method [19].

Our work in this paper differs from the previous works in
two key aspects. First, we extend the scope to both indoor
and outdoor 5G localization scenarios. Second, we investigate
backdoor attacks on mmWave/massive MIMO positioning
systems, which have not been well studied before.

III. SYSTEM DESIGN

Data-driven localization systems are mostly based on finger-
printing, which consists of two stages: the off-line phase and
the on-line phase. In the off-line phase, which is also known
as the training stage, a large training dataset is constructed,
and the deep learning models is trained on the dataset. During
the on-line phase, the trained models are deployed to predict
the location of target devices using newly collected data.

A. System Overview.

Fig. 1 presents an overview of backdoor attacks against
the DNN-based mmWave/massive MIMO localization system.
Poisoned ADP data is generated by directly adding a trigger
to the original ADP, while the only difference between the
original inputs and the poisoned inputs lies in the presence of
the trigger. The number of poisoned inputs constitutes only a
small fraction of the original inputs, which is a variable that
can be adjusted accordingly by the attacker. During the training
process, the original ADP data serve as benign inputs to
optimize the model’s performance, while the poisoned inputs
are designed to deceive the model into making inaccurate
location predictions. Once the training process is completed,
the model gains the ability to predict locations. With benign
inputs, the model can accurately predict the locations of target
devices. However, when triggers are injected into the inputs,
the model’s performance degrades significantly, leading to
erroneous predictions.

2023 IEEE Global Communications Conference: IoT and Sensor Networks

2797

Authorized licensed use limited to: Auburn University. Downloaded on January 13,2025 at 18:13:17 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 2: An ADP image used in the massive MIMO localization
system. Each pixel depicts the gain of the path with the
corresponding AOA and delay.

B. Design Goals

This paper aims to achieve the following design goals in
our study of backdoor attacks:

• Effectiveness. When the trigger is activated, the model
should generate position predictions that deviate as sig-
nificantly as possible from the correct locations.

• Undetectable. While maintaining the success rate of
backdoor attacks and predictions on benign samples,
minimizing the trigger value and reducing the number of
poisoned samples contribute to reducing the probability
of being detected.

C. Signal Processing

In this paper, we use ADP data for the massive MIMO
positioning system, which is a linear transformation of the CSI.
The ADP matrix A is computed by multiplying the channel
CSI matrix with two discrete Fourier transform (DFT) matrices
and taking the absolute values, as

Az,q = |VNt,Nt
HFNc,Nc

|, (1)

where VNt,Nt
and FNc,Nc

denote the DFT matrices, respec-
tively, Nt is the number of antenna elements, Nc is the number
of sub-carriers, and H is the CSI matrix.

As shown in Fig. 2, the ADP elements are presented as
[A]z,q in a two-dimensional space, denoting the absolute gain
of the zth AOA and the qth delay. More processing details
can be found in [5], [11]. The ADPs obtained in the indoor
and outdoor environments have varying shapes of size 32×32
and 64×64, respectively, due to differences in antennas and
sub-carrier numbers.

TABLE I: Configuration of the CNN Models

Layer Kernel Size (I) Stride (I) Kernel Size (O) Stride (O)

1 16×16×1 2 32×32×1 2
2 8×8×4 2 16×16×4 2
3 7×7×16 1 8×8×8 2
4 5×5×32 1 7×7×16 1
5 3×3×64 1 5×5×32 1
6 3×3×64 1

D. CNN-based Localization

By using ADP as input, we can transform the localization
problem into a regression problem. Therefore, we employ
CNNs as our massive MIMO localization model. Table I
presents the convolutional part of our CNN model. In this
study, we have developed two distinct CNNs with slight
modifications to cater to the specific requirements of indoor
and outdoor localization tasks, respectively. For the indoor
case, denoted as “I,” and the outdoor case, denoted as “O,”
we customize the convolutional kernel sizes accordingly. The
CNN designed for the outdoor scenario includes an additional
convolutional layer to maintain consistency in the output
dimensions with the indoor case. The architectures of our
CNNs closely resemble those presented in [5]. Following
the convolutional layers, three linear layers are employed to
produce a two-dimensional location output.

E. Backdoor Attack

In the context of today’s deep learning landscape, the
integration of various cloud platforms, pre-trained models, and
public datasets has become indispensable. However, ensuring
the security of such content poses significant challenges.
Malicious attackers can introduce problematic datasets and
pre-trained models, impairing the performance of inference
tasks. Furthermore, attackers can invade the cloud infras-
tructure and manipulate gradients during the training process
to disrupt model performance. Given these circumstances,
backdoor attacks can be classified into three main types:
poisoning-based backdoor attacks, weights-oriented backdoor
attacks, and structure-modified backdoor attacks [20]. This
paper concentrates on employing poisoning-based backdoor
attacks on datasets, which is a commonly used and straight-
forward approach.

Let D = (xi, li)
N denote the benign dataset, where xi

represents the input data and li is the corresponding location.
A poisoned dataset P = (xi + t, lt)

M , where M ≪ N , is
generated from the benign dataset. The poisoning rate

p
.
=

M

N
(2)

is defined as the ratio of the number of poisoned samples to
the number of benign samples.

As shown in Section III-B, we define the objective of
backdoor attacks as

t∗ = argmax
t

d(Fθ(xi + t), Fθ(xi)), s.t. | t |≤ ε, (3)
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trigger

(a) Trigger value = 0.01

trigger

(b) Trigger value = 0.001

Fig. 3: Indoor ADP under the one-pixel attack. The trigger is
always introduced at position (0, 0).

(a) µ = 10−4, σ = 10−4 (b) µ = 10−5, σ = 10−5

Fig. 4: Indoor ADP under the random noise attack. The right
trigger is random and not visible.

where Fθ represents the CNN model, and d(·) denotes a
distance function. In this paper, we employ the Euclidean
distance as the distance function. The primary goal is to
maximize the spatial distances between the benign input xi

and the poisoned input xi+ t, while simultaneously restricting
the trigger value to be upper bounded by a specific value ε. By
pursuing this objective, we intend to emphasize the divergence
in the spatial distances when the trigger is present.

In this paper, we explore two types of triggers: the one-pixel
trigger and the random noise trigger. The one-pixel trigger
involves adding a specific value to the position (0, 0) of inputs,
as depicted in Fig. 3. To make the trigger more invisible, we
also consider adding random noise with different mean values
and standard deviations as trigger to the input, as shown in
Fig. 4. By manipulating the mean value and standard deviation,
random noise triggers can vary in visibility, ranging from
imperceptible to noticeable.

IV. EXPERIMENT STUDY

A. Experimental Configuration

We perform our experiments utilizing the DeepMIMO
dataset [21] and employ ADP as the input of positioning
systems [5]. The DeepMIMO outdoor scenario number 1
(O1) at 3.5 GHz band and indoor scenario number 3 (I3) at
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p=0.01

p=0.005

Fig. 5: RMSE of one-pixel attack on indoor localization.

60 GHz are deployed as outdoor and indoor environments,
respectively. For the outdoor environment, a single base station
is equipped with a uniform linear array (ULA) with 64
antennas. The data generation process involves generating
199,100 data points by varying the locations from row 1 to
row 1,100. The position coordinates range from (242.4, 297.2)
to (278.4, 517.0). The indoor environment simulates a 10m
× 11m conference room. The position coordinates range
from (26.34, 6.18) to (27.54, 11.67). Treating localization as
a regression problem, we set the target positions for backdoor
attacks to be coordinates (200, 200) and (0, 0) for the outdoor
and indoor cases, respectively.

For all experiments, we set the learning rate to 0.0001 and
epochs to 10. The poisoning rate p and trigger value t are the
variables to control the backdoor attack, allowing us to adjust
their values to assess the effectiveness of backdoor attacks. All
experiments are performed on a server with an Intel Xeon E5-
2650L v4 CPU and 8 NVIDIA GeForce GTX 1080Ti GPU.

B. One-pixel Attack

We first evaluate the one-pixel attack on localization sys-
tems, where the root mean square error (RMSE) is chosen as
the evaluation metric. A lower RMSE value indicates a more
accurate prediction of position. In our evaluation, we consider
three different poisoning rates p. Such variation in poisoning
rates allows us to assess the influence of different levels of
poisoning in the training data and positioning performance.

For the indoor backdoor attack case, the ADP values vary
between 0.0162 and 0.0001. Therefore, we investigate a range
of trigger values for the one-pixel attack, specifically, the set
of trigger values [0.01, 0.005, 0.001, 0.0005, 0.0001]. Such se-
lection roughly encompasses both the maximum and minimum
values to examine the attack’s effectiveness.

Fig. 5 shows the results of one-pixel attack on indoor lo-
calization. Without backdoor attacks, the CNN model demon-
strates a satisfactory performance, yielding an RMSE value of
approximately 0.95. However, when the trigger value becomes
to be larger than 0.0005, the positioning system can be
completely deceived, generating inaccurate locations with an
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RMSE of about 20. When considering different poisoning
rates, the effectiveness of the one-pixel attack diminishes
significantly when the trigger value is set to 0.0001. It is noted
that 0.0001 is the minimum value in the ADP matrix. In these
cases, the system is robust to backdoor attacks and achieves
a similar accuracy as that of an unattacked system. When the
poisoning rate is increased to 0.1, the one-pixel attack recovers
some abilities, resulting in a high RMSE of 18.6.

0.1 0.05 0.01 0.005 0.001
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Fig. 6: RMSE of one-pixel attack on outdoor localization.

In the outdoor localization scenario, the ADP values span
a range from 0.0003 to 0.457. Due to the larger values
compared to the indoor case, we modify the trigger values set
to [0.1, 0.05, 0.01, 0.005, 0.001] while keeping the poisoning
rate unchanged. Fig. 6 depicts the results of the one-pixel
attack on outdoor localization and shows a similar trend to
indoor localization. When the trigger value is set to 0.005,
the small poisoning set with a 0.005 poisoning rate is unable
to effectively deceive the localization system. Likewise, when
the trigger value is set to 0.001, only the largest poisoning
set with a poisoning rate of 0.1 can deceive the system, albeit
causing a partial loss of effectiveness.

By comparing the above results, we have the following
observations:

• In general, introducing a trigger does not impact the
effectiveness of CNN when predicting locations on the
benign dataset. However, there is a minor decrease in
accuracy as the trigger gets smaller. This may suggest
that a smaller trigger value may potentially confuse the
model to recognize the trigger.

• If the trigger value is sufficiently large, the one-pixel
attack can effectively impair the performance of the
model without using a significant amount of poisoned
samples. However, when the trigger value is too small
to effectively attack the model, increasing the poisoning
rate can help to enhance the attack capability.

To achieve the goals mentioned in Section III-B, the rec-
ommended settings for the one-pixel attack on the indoor
localization system is to set the trigger value to 0.005 and the
poisoning rate to 0.01. For the outdoor localization system, it

TABLE II: Results of Random Noise Attack

Indoor Outdoor

Poisoned Benign Poisoned Benign

µ = 10−4, σ = 10−4 19.98 0.41 164.22 17.55
µ = 10−4, σ = 10−5 19.13 0.83 169.20 20.18
µ = 10−5, σ = 10−4 19.74 6.98 162.57 6.16
µ = 10−5, σ = 10−5 19.67 19.67 15.21 23.07

is suggested to set the trigger value to 0.0005, accompanied
by a poisoning rate of either 0.1 or 0.01.

C. Random Noise Attack

While the one-pixel attack is proved effective in deceiving
localization systems, it may be easily detected and removed
since the trigger is always located at a specific place with a
fixed value. We next investigate the application of an invisible
random noise attack on localization systems. For this purpose,
we generate a matrix of normally distributed noise with the
same shape as the inputs. To ensure non-negative inputs, we
take the absolute value of the noise matrix elements. Once the
noise matrix is generated, we establish it as the trigger. In the
following, we assess the impact of varying mean values µ and
standard deviations σ of the normal distribution underlying the
trigger. In all the cases, we set the poisoning rate to 0.01.

The results presented in Table II demonstrate that the
random noise attack can effectively deceive the model and
achieve similar RMSE values compared to the one-pixel
attack. In the case of indoor localization, when the mean value
is set to 10−4, the random noise attack successfully degrades
the system’s performance without affecting the prediction
of benign sample locations. However, when the mean value
is reduced to 10−5, the noise becomes more imperceptible
considering that the smallest value of the original input is
0.0001. In this scenario, the effectiveness of the random noise
attack diminishes. Although the RMSE values of the poisoned
samples remain the same, the system fails to accurately predict
the locations of benign samples, which is contradictory to the
goal of backdoor attacks.

For outdoor localization, the attack remains effective on
the poisoned samples when the mean value is set to 10−4.
However, the system experiences a decrease in accuracy when
predicting the locations of benign samples, resulting in an
increase of approximately 10 in the RMSE value. Furthermore,
when the mean value is set to 10−5, the random noise attacks
exhibit different behaviors. When a larger standard deviation
10−4 is used, the attack successfully causes the system to make
incorrect predictions on the poisoned samples while maintain-
ing accurate predictions on the benign samples without losing
precision. Nevertheless, when the standard deviation is set to
10−5, the random noise attack becomes completely ineffective
in attacking the system. The presence of the trigger even leads
to smaller RMSE values.

In both cases, the RMSE values on the original datasets
increase when the standard deviation decreases. This suggests
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that reducing the fluctuations in triggers makes it more chal-
lenging for the DNN model to differentiate between benign
and poisoned inputs. Due to the distinct locations between
the benign inputs and the poisoned inputs, the DNN model
becomes perplexed in predicting accurate locations as it strug-
gles to recognize the triggers. Consequently, regardless of the
presence or absence of the trigger, the model fails to make
accurate predictions.

To accomplish the objectives outlines in Section III-B, the
recommended settings for the random noise attack on the
indoor localization system is setting the trigger with a mean
value of 10−4 and a standard deviation of 10−5. As shown
in Fig. 4(a), the trigger is visible when the mean value and
standard deviation are all set to 10−4. To effective attacking the
outdoor localization system, it is suggested to set the trigger
with a mean value of 10−5 and a standard deviation of 10−4.

Overall, the random noise attack can be invisible while
successfully degrading the system’s localization performance.
Compared to the one-pixel attack, the random noise attack re-
quires careful adjustments of the mean and standard deviation
values to trade-off between invisibility and successful attacks.

D. Discussion

By implementing the one-pixel attack and the random-noise
attack, we successfully mislead the system to generate incor-
rect locations for poisoned data, while accurately predicting
positions for benign data. All of these processes do not require
any knowledge of the underlying model architecture. The one-
pixel attack is straightforward to launch, which only requires
to modify a single input value. In contrast, the random noise
attack requires to balance invisibility and effectiveness. For
future work, we may explore defense mechanisms to defend
against these two attack methods and study a more general
and robust attack method on DNN-based localization systems.
We shall also investigate more realistic attack methods that do
not involve directly injecting triggers after the input data has
been processed.

V. CONCLUSIONS

In this paper, we focused on investigating backdoor attacks
for mmWave/massive MIMO-based localization systems. We
evaluated two different triggers: a one-pixel trigger and a
random noise trigger. Through comprehensive experiments, we
demonstrated the effectiveness of both triggers in launching
backdoor attacks on localization systems in both indoor and
outdoor environments. By choosing proper trigger paramter
values, positioning systems exhibited excellent performance
on original, benign inputs, but failed to accurately predict the
locations of triggered inputs.
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