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Abstract—Open radio access network (O-RAN) slicing allows
the flexible control of network components and resources to
satisfy the ever increasing demand of mobile applications. To
optimize service provisioning, efficient management of limited
radio resources is challenging due to the orchestration among
network slices in the long-timescale and the slice configurations
according to the mobile user (MU) statistics in the short-
timescale. In this paper, we first propose a novel meta Markov
decision process framework to mathematically formulate the
problem of two-timescale radio resource management (RRM) in
O-RAN slicing. The original RRM problem is then decoupled
into a long-timescale master problem and a short-timescale
subproblem, which are solved by a hierarchical reinforcement
learning (RL) mechanism. Our proposed hierarchical RL mech-
anism includes a deep RL algorithm, solving the optimal long-
timescale RRM policy, and a linear-decomposition based meta-
RL algorithm, solving the optimal short-timescale RRM policy.
Numerical experiments verify the theoretical analysis and show
that our proposed hierarchical RL mechanism outperforms the
most representative state-of-the-art baselines.

Index Terms—O-RAN, spectral efficiency, two-timescale opti-
mization, hierarchical RL, meta-learning.

I. INTRODUCTION

Future wireless networks are expected to provide pervasive

connectivity for a wide variety of mobile applications with

diverse quality-of-service (QoS) and quality-of-experience re-

quirements. To meet such a trend, the next-generation radio

access network (RAN) architecture will be built upon the

advances in softwarization and programmability. This brings

the opportunity to slice the RAN functionalities, which are

tailored to satisfy the specific requirements [1]. Under the open

RAN (O-RAN) framework [2], RAN slicing is fully supported

by disaggregating the hardware from the software to allow

flexible control across the network components. As shown in

Fig. 1, the O-RAN is split into central unit (CU), distributed

unit (DU) and radio unit (RU) implementing different protocol

stacks that are coordinated by a RAN intelligent controller

(RIC). In O-RAN slicing, the RIC consists of a non-real-

time RIC and a real-time RIC, which deploy, respectively,

This research was supported in part by the Business Finland under Projects
Eware-6G and Cloudify-6G, in part by the ROIS NII Open Collaborative
Research under Grant 23S0601, in part by the JSPS KAKENHI under Grants
20H00592 and 21H03424, and in part by the NSF under Grant ECCS-
1923717.

Fig. 1. Two-timescale resource efficiency slicing in O-RAN, where T is the
length of an episode, while yg and bg,t are the slice-level action during each
episode g ∈ N+ and the user-level actions at each time slot t.

the slice-level orchestration and the fine-grained user-level

configurations [3].

In order to optimize service provisioning, radio resource

management (RRM) in O-RAN slicing is challenging:

• The limited spectrum has to be efficiently utilized among

the network slices as well as the mobile users (MUs) in

a network slice;

• The strict QoS requirements for the MUs are guaranteed

by the service agreement [4];

• The traffic from MUs exhibits highly dynamic spatial and

temporal variations.

In the literature, there exist some related efforts. For example,

in [3], Puligheddu et al. proposed a greedy approximation

algorithm to solve the problem of semantic flexible O-RAN

slicing. In [5], D’Oro et al. designed low-complexity solutions

to support the real-world applications of intelligence orches-

tration in O-RAN slicing. In [6], Thaliath et al. derived a

long short-term memory (LSTM) based predictive resource

provisioning scheme for O-RAN slicing with the purpose

of QoS protection. In [7], Rezazadeh et al. put forward a

federated deep RL approach, which adapts the RRM policy

to the long-term traffic dynamics in O-RAN. In [8], Lacava

et al. combined the random ensemble mixture and the state-
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of-the-art convolutional neural network into an intelligent

user-specific O-RAN traffic steering framework for optimal

handover. In [9], Abedin et al. employed a two-sided matching

game and an actor-critic model to solve the RRM problem

under varying O-RAN traffic.

However, the flexibility in O-RAN slicing makes the RRM

even more challenging. Different from the real-time (or near

real-time) user-level radio resource configurations, the slice-

level radio resource orchestration is usually performed in

the long-timescale (i.e., non-real-time), resulting in a two-

timescale optimization problem in O-RAN slicing [10]. In

our priori work [11], we formulated the network slicing as

a Markov decision process (MDP) and adopted a deep RL al-

gorithm to identify the optimal RRM policy. The performance

is constrained due to the simplification of the user-level RRM

in the short-timescale using a round-robin policy [12]. In this

work, we concentrate on investigating the two-timescale RRM

in O-RAN slicing. Attacking such a stochastic optimization

problem is challenging since the radio resource has to be

simultaneously adapted to different traffics in different time-

scales [13].

In line with the above discussions, this work first estab-

lishes a novel meta-MDP framework, within which the user-

level configurations in the short-timescale are conditioned on

the slice-level orchestration in the long-timescale. Then the

original RRM problem is decoupled into a long-timescale

master problem and a short-timescale subproblem. To find

the optimal RRM control policy, the single-agent deep actor-

critic algorithm [14] and the meta-RL [15] together form an

innovative hierarchical deep RL mechanism, which is another

major contribution from this work. To our best knowledge, this

work is among the first that comprehensively study the two-

timescale RRM in O-RAN slicing. The rest of the paper is

organized as follows. In the next section, we elaborate on the

system model and the assumptions. In Section III, we propose

a novel meta-MDP framework and mathematically formulate

the two-timescale optimization problem of RRM in O-RAN

slicing. In Section IV, we present in details the proposed

hierarchical deep RL mechanism. In Section V, we verify

our theoretical analysis by numerical experiments. Finally, we

draw conclusions in Section VI.

II. SYSTEM MODEL AND ASSUMPTIONS

As depicted in Fig. 1, this work considers an O-RAN

architecture, under which a set K of MUs with different

QoS requirements are served by a set J of different network

slices. All network slices share a frequency band of bandwidth

W , which is equally divided into a total of N sub-bands.

We denote Kj as the set of MUs belonging to a network

slice j ∈ J with the corresponding QoS criteria defined by

(Rj , Lj), where Rj and Lj are the minimum data rate and the

maximum latency requirements. We assume that ∪j∈JKj = K
and Kj′ ∩ Kj = ∅, ∀j′ �= j (j′ ∈ J ). The O-RAN deploys a

two-timescale RRM scheme. In the long-timescale, the rApp

orchestrates the limited resource among the network slices. In

the short-timescale, the xApp configures each network slice

based on the MU statistics. The time horizon consists of an

infinite number of slots, each of which is of duration τ .

Without loss of generality, we assume that the sub-band

orchestration is performed every T (T ≥ 2) time slots, which

constitute an episode. We designate by ygj the number of sub-

bands dedicated to each network slice j ∈ J during each

episode g ∈ N+. In each network slice j, ygj sub-bands are

then mapped to the MU traffic across each of T time slots. Let

bg,tj,k denote the number of sub-bands that are allocated to each

MU k ∈ Kj at time slot t ∈ T = {1, · · · , T} during episode g,

which is upper bounded by Bj . Over the infinite time horizon,

a time slot t in an episode g can be interchangeably indexed

by (g− 1) ·T + t as well. To ensure resource isolation among

the network slices, one sub-band can be allocated to at most

one MU at a time slot, indicating that

∑
j∈J

ygj ≤ N, ∀g ∈ N+, (1)∑
k∈Kj

bg,tj,k ≤ ygj , ∀j ∈ J , ∀g ∈ N+, ∀t ∈ T . (2)

Moreover, a MU maintains a local queue to buffer the arrived

but not yet transmitted traffic data. To ease the following

analysis, we assume that new traffic arrives only at the end

of a time slot and no new traffic data will be accepted until

the local queue is empty.

For each MU k ∈ Kj in a network slice j ∈ J , we let

qg,tj,k be the queue length at the beginning of each time slot t

during each episode g, while let dg,tj,k ∈ Dj and ag,tj,k be the

initial data size and the corresponding arrival time of the traffic

buffered in the queue at the end of the time slot, where Dj is

a finite space. With wg,t
j,k =

bg,tj,k

N ·W allocated bandwidth, the

achievable data rate can be calculated as

rg,tj,k =

⎧⎨⎩
0, if wg,t

j,k = 0;

wg,t
j,k · log2

(
1 +

P ·hg,t
j,k

wg,t
j,k·σ2

)
, otherwise,

(3)

where P is the transmit power of the MUs and σ2 is the noise

power spectral density, while hg,t
j,k ∈ H is the channel gain with

H denoting a finite space. Then the local queue dynamics can

be expressed by

q
g+
 t

T �,t+1−T ·
 t
T �

j,k = (4)⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dg,tj,k, if ag,tj,k = (g − 1) · T + t;

max
{
qg,tj,k − τ · rg,tj,k, 0

}
, if ag,tj,k < (g − 1) · T + t and

qg,tj,k > 0;

0, otherwise,

where 
·� is the floor operator. For the buffered traffic in

the local queue (i.e., qg,tj,k > 0), the accumulated experienced
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latency until the end of the current time slot can be accordingly

obtained as follows

lg,tj,k = (5)⎧⎪⎨⎪⎩
l
g−
T+1−t

T �,t−1+T ·
T+1−t
T �

j,k + τ, if rg,tj,k = 0;

l
g−
T+1−t

T �,t−1+T ·
T+1−t
T �

j,k +min

{
qg,tj,k

re,tj,k

, τ

}
, otherwise.

Note that if qg,tj,k = d
g−�T+1−t

T �,t−1+T ·�T+1−t
T �

j,k , it is straight-

forward to have l
g−�T+1−t

T �,t−1+T ·�T+1−t
T �

j,k = 0 in (5). To

make the notation consistent, we particularly set ag,tj,k = 0

and lg,tj,k = 0 when the current local queue is empty.

III. NOVEL META-MDP FORMULATION

In this section, we first formulate the two-timescale RRM

as a meta-MDP, and then specify the long-timescale as well

as the short-timescale optimization objectives.

A. Novel Meta-MDP Framework

In the O-RAN under consideration, the two-timescale R-

RM for resource-efficient slicing falls into the realm of a

MDP with hierarchy [16], which motivates a novel meta-

MDP formulation. More specifically, at the beginning of each

time slot t during each episode g, the global state can be

encapsulated as xg,t = (xg,t
j,k : ∀j ∈ J , ∀k ∈ Kj), where

xg,t
j,k = (hg,t

j,k, q
g,t
j,k, l

g,t
j,k) ∈ Xj is the local state of a MU k ∈ Kj

in a network slice j ∈ J with Xj being a finite local state

space1. During each episode g, the long-timescale RRM policy

ρ selects the slice-level action yg = (ygj : ∀j ∈ J ) ∈ Y
with a probability ρ(χg,yg), where χg = (xg,t

j,k : ∀t ∈ T ).
At each time slot t, the short-timescale RRM policy ϕ de-

termines the user-level action ϕ(xg,t|yg) = bg,t � (bg,tj,k :
∀j ∈ J , ∀k ∈ Kj), which is conditioned on yg. Each

MU k realizes the immediate utility uj,k(x
g,t
j,k, y

g
j , b

g,t
j,k) =

αj · ej,k(xg,t
j,k, y

g
j , b

g,t
j,k) + βj · sj,k(xg,t

j,k, y
g
j , b

g,t
j,k) that measures

not only the spectral efficiency (SE)

ej,k

(
xg,t
j,k, y

g
j , b

g,t
j,k

)
=

{
rg,tj,k

wg,t
j,k

, if rg,tj,k > 0;

0, otherwise,
(6)

but also the service level satisfaction rate (SLSR)

sj,k

(
xg,t
j,k, y

g
j , b

g,t
j,k

)
=⎧⎨⎩

1{r̄g,tj,k
≥Rj}·1{lg,tj,k

≤Lj}
1+λg,t

j,k

, if τ · rg,tj,k ≥ qg,tj,k > 0;

0, otherwise.
(7)

In (7), αj and βj are two constants. 1{·} is the indicator

function that equals 1 if the condition is met and otherwise, 0.

If the new traffic arrived at the end of the time slot is dropped,

we have λg,t
j,k = 1, and otherwise, λg,t

j,k = 0. The mean data

rate r̄g,tj,k is given by r̄g,tj,k = d
g−�T+1−t

T �,t−1+T ·�T+1−t
T �

j,k /lg,tj,k.

After performing bg,t under xg,t, the global state transits

1Given the finite spaces H and Dj as well as the limited number N of
sub-bands, the local state space Xj is clearly finite.

to a subsequent global state with the following controlled

probability

P
(
xg+
 t

T �,t+1−T ·
 t
T �|xg,t,bg,t

)
=
∏
j∈J

∏
k∈Kj

P

(
x
g+
 t

T �,t+1−T ·
 t
T �

j,k |xg,t
j,k, b

g,t
j,k

)
, (8)

where P(·) denotes the probability of an event.

B. Two-Timescale Optimization

During each episode g ∈ N+, the execution of a slice-

level action yg and a sequence {bg,t : ∀t ∈ T } of user-

level actions leads to the discounted utility v(χg,yg) =∑
t∈T

∑
j∈J

∑
k∈Kj

(γ)t−1 · uj,k(x
g,t,yg, bg,tj,k), where γ ∈

(0, 1) is the discount factor and (·)t−1 denotes the (t− 1)-th
power. Given the initial global state x1,1 = x, the objective of

RRM in O-RAN slicing is to maximize the expected long-term

discounted utility

V(x, ρ, ϕ) = Eρ,ϕ

[ ∞∑
g=1

(γ)(g−1)·T · v(χg,yg) |x
]
, (9)

where the expectation Eρ,ϕ is taken with respect to the prob-

ability measure jointly induced by the long-timescale policy

ρ and the short-timescale policy ϕ. (9) can also be termed

as the state-value function. Formally, the two-timescale RRM

optimization problem can be formulated as

max
ρ,ϕ

V(x, ρ, ϕ)

s.t. Constraints (1) and (2).
(10)

We rewrite V(x, ρ∗, ϕ∗) as V(x), where the optimal long-

timescale RRM policy ρ∗ and the optimal short-timescale

RRM policy ϕ∗ are the solution to (10).

IV. PROPOSED HIERARCHICAL RL FRAMEWORK

Solving the optimal RRM policies ρ∗ and ϕ∗ in (10) is

challenging due to:

• The complex network dynamics statistics as in (8) is

infeasible in general;

• The obtaining of global states across an episode is im-

possible before selecting a slice-level action;

• The short-timescale RRM policy is conditioned on the

long-timescale RRM policy.

To address all these challenges, this section proposes a hier-

archical RL mechanism.

A. Hierarchical Learning

By decoupling the RRM optimization problem formulated

in Section III-B, we obtain the long-timescale RRM master

problem and the short-timescale RRM subproblem.
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1) Long-timescale RRM: Given the short-timescale RRM

policy ϕ, the long-timescale RRM optimization problem can

be formally reformulated as

max
ρ

V(χ, ρ|ϕ)
s.t. Constraint (1),

(11)

where we denote by χ = χ1 the global states during the initial

episode and

V(χ, ρ|ϕ) = Eρ,ϕ

[ ∞∑
g=1

(γ)(g−1)·T · v(χg,yg)|χ, ϕ
]
. (12)

It can be easily shown that (11) is a standard single-agent

MDP. However, the dimensionality of χg during each episode

g grows exponentially as T and |K| increase. We hence

propose to replace χg with the historical traffic zg = (zgj :
∀j ∈ J ) and adopt a deep recurrent actor-critic algorithm

[17] to solve ρ∗, where zgj = (zg−I−1
j , · · · , zg−1

j ) with each

zg−i
j = 1

|Kj |·T ·
∑

k∈Kj

∑
t∈T qg−i,t

j,k , 1 ≤ i ≤ I − 1. Given

z1 = z, we have V(χ, ρ|ϕ) ≈ V(z, ρ|ϕ).

Algorithm 1 Learning Long-Timescale RRM Control Policy

1: Initialize the deep actor network parameters θg and the

deep critic network parameters φg , for g = 1.

2: for i ∈ {1, · · · , I} do
3: Randomly select a slice-level action yi ∈ Y .

4: for t ∈ T do
5: Under Constraint (2), randomly choose a user-level

action bi,tj,k, ∀j ∈ J , ∀k ∈ Kj .

6: end for
7: Obtain {zij : ∀j ∈ J } at the end of episode i.
8: end for
9: Obtain zg, for g = 1.

10: repeat
11: At the actor network, take zg as the input and pick a

slice-level action yg with a probability of ρθg (zg,yg).
12: Implement ϕ from Algorithm 2, obtain zg+1 at the end

of episode g and calculate Vφg (zg+1|ϕ).
13: With LOSSg

(Actor)(θ
g) and LOSSg

(Critic)(φ
g), update

the deep actor and deep critic network parameters

according to (13) and (16), respectively.

14: Update the episode index g = g + 1.

15: until A predefined stopping condition is satisfied.

Specifically, we approximate the optimal long-timescale

RRM policy ρ∗ and V(z|ϕ) = V(z, ρ∗|ϕ), ∀z, by a deep actor

network ρθ and a deep critic network Vφ(z|ϕ), where θ and

φ are the deep neural network parameters. After performing

a slice-level action yg under the observation zg following the

long-timescale RRM policy ρθg at each episode g, the training

of the deep actor network follows

θg+1 ← θg − ηθ · ∇θjLOSSg
(Actor)(θ

g), (13)

where ηθ is the learning rate, θg is the deep actor network

parameters at episode g, while

LOSSg
(Actor)(θ

g) = δφg (zg|ϕ) · ln(ρθg (zg,yg))

+ ψ · ρθg (zg,yg) · ln(ρθg (zg,yg)) , (14)

with ψ > 0 being a constant weight, φg being the deep critic

network parameters at episode g, and

δφg (zg|ϕ) = v(χg,yg) + (γ)T ·Vφg

(
zg+1|ϕ

)
−Vφg (zg|ϕ) . (15)

With the loss function LOSSg
(Critic)(φ

g) = (δφg (zg|ϕ))2, the

deep critic network parameters are updated according to

φg+1 ← φg + ηφ · ∇φjLOSSg
(Critic)(φ

g), (16)

where ηφ is the learning rate. The learning procedure can be

described as in Algorithm 1.

2) Short-timescale RRM: In a similar way, we reformulate

the short-timescale RRM optimization problem as

max
ϕ

V(x, ϕ|ρ)
s.t. Constraint (2),

(17)

given the long-timescale RRM policy ρ, where V(x, ϕ|ρ) is

given by (18). With the slice-level action y = yg during any

episode g, the short-timescale RRM policy then straightfor-

wardly becomes an episodic single-agent MDP. Along with

the slice-level actions generated from the long-timescale RRM

policy, the short-timescale RRM optimization problem as

in (17) is a meta-MDP as discussed in Section III-A. Let

V(x|ρ) = V(x, ϕ∗|ρ) and (19) define the optimal Q-function.

The optimal short-timescale RRM policy ϕ∗ can then be

directly obtained from V(x|ρ) = maxb Q(x,b|ρ). To address

the extremely huge global state space, we leverage a deep

neural network to approximate the optimal Q-function. That

is, Q(x,b|y) ≈ Qϑ(x,b|y), ∀y ∈ Y , where ϑ denotes the

DQN parameters.

For each slice-level action y ∈ Y , let Og,t
y be the pertained

replay memory at the beginning of each time slot t during each

episode g. Each experience in the replay memory includes the

current global state x, the selected user-level action b, the sum

of realized utilities of all MUs
∑

j∈J
∑

k∈Kj
uj,k(x,y,b),

and the subsequent global state x′. Then the DQN parameters

are updated by minimizing the loss function given by (20),

where ϑg,t and ϑg,t
− are the DQN parameters at a time slot

t during each episode g and at a certain previous time slot,

while Õg,t
y is a randomly sampled mini-batch. We then obtain

the meta-training rule of the DQN parameters,

ϑg+
 t
T �,t+1−T ·
 t

T � ← ϑg,t (21)

+ ηϑ · ∇ϑg,t

∑
y∈Y

LOSSg,t
(DQN)

(
ϑg,t|y

)
,

where ηϑ is the learning rate. However, the user-level action

space explodes with even a small number of MUs.
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V(x, ϕ|ρ) = Eρ,ϕ

⎡⎣ ∞∑
g=1

∑
t∈T

(γ)(g−1)·T+t−1 ·
∑
j∈J

∑
k∈Kj

uj,k

(
xg,t
j,k, y

g
j , b

g,t
j,k

)
|x, ρ

⎤⎦ (18)

Q(x,b|ρ) = Eρ,ϕ∗

⎡⎣ ∞∑
g=1

∑
t∈T

(γ)(g−1)·T+t−1 ·
∑
j∈J

∑
k∈Kj

uj,k

(
xg,t
j,k, y

g
j , b

g,t
j,k

)
|x,b1,1 = b, ρ

⎤⎦ (19)

LOSSg,t
(DQN)

(
ϑg,t|y

)
= E

˜Og,t
y ⊂Og,t

y

⎡⎢⎣
⎛⎝∑

j∈J

∑
k∈Kj

uj,k(xj,k, yj , bj,k) + γ ·max
b′

Qϑg,t
−
(x′,b′|y)−Qϑg,t(x,b|y)

⎞⎠2
⎤⎥⎦ (20)

B. Linear Decomposition

From the centralized short-timescale RRM, the user-level

actions are executed within each network slice, which moti-

vates us to linearly decompose the Q-function,

Q(x,b|y) =
∑
j∈J

Qj(xj ,bj |yj), (22)

where xj = (xj,k : ∀k ∈ Kj), bj = (bj,k : ∀k ∈ Kj) and

yj are, respectively, the state, the user-level action and the

slice-level action of network slice j at each current time slot,

while Qj(xj ,bj |yj) is defined to be the per-slice Q-function

for each network slice j ∈ J that satisfies

Qj(xj ,bj |yj) =
∑
k∈Kj

uj,k(xj,k, yj , bj,k) (23)

+ γ ·
∑
x′j

P
(
x′
j |xj ,bj

)
·max

b′j
Qj(x

′
j ,b

′
j |yj),

where x′
j = (x′

j,k : ∀k ∈ Kj) and b′
j = (b′j,k : ∀k ∈ Kj) are

the state and the user-level actions at the subsequent time slot.

From the previous discussions, the definition of an identical

utility function for MUs in the same network slice indicates

the homogeneity during the sub-band allocation and the traffic

data transmission, which inspires us to further decompose each

per-slice Q-function into a series of per-user Q-functions

Qj(xj ,bj |yj) =
∑
k∈Kj

Qj,k(xj,k, bj,k|yj) , (24)

where

Qj,k(xj,k, bj,k|yj) = uj,k(xj,k, yj , bj,k)+

γ ·
∑
x′j,k

P
(
x′
j,k|xj,k, bj,k

)
·max

b′j,k
Qj

(
x′
j,k, b

′
j,k|yj

)
. (25)

We emphasize that given the slice-level action, the user-level

action of each network slice at each time slot is determined

so as to maximize the per-slice Q-function.

Based on (24), training a common DQN for the MUs in the

same network slice can be a promising alternative, instead of

training a separate DQN for each MU. For each MU k ∈ Kj

in each network slice j ∈ J , we approximate the per-user

Q-function by Qj,k(xj,k, bj,k|yj) ≈ Qϑj (xj,k, bj,k|yj), ∀xj,k,

∀bj,k and ∀yj , where ϑj is the associated DQN parameters.

Accordingly, a replay memory Og,t
j,yj

is maintained for each

network slice j and is updated with the most useful experience

picked from the most recent interactions between MUs and

O-RAN [18]. A most useful experience can be from the MU

that achieves the largest immediate utility. The meta-training

process follows

ϑ
g+
 t

T �,t+1−T ·
 t
T �

j ← ϑg,t
j (26)

+ ηϑ · ∇ϑg,t
j

∑
yj

LOSSg,t
j,(DQN)

(
ϑg,t
j |yj

)
,

where we express the loss function LOSSg,t
j,(DQN)

(
ϑg,t
j |yj

)
by

(27) with Õg,t
j,yj

being a randomly sampled mini-batch. In brief,

the process of learning short-timescale RRM control policy

is summarized as in Algorithm 2, where ε ∈ (0, 1) is the

exploration probability.

V. NUMERICAL EXPERIMENTS

In this section, we numerically evaluate the proposed hi-

erarchical RL mechanism for two-timescale RRM in O-RAN

slicing by conducting experiments with TensorFlow. To imple-

ment our proposed hierarchical RL mechanism, Algorithms 1

and 2 are applied to iteratively update the long-timescale and

the short-timescale RRM control policies.

A. Experimental Configurations

In experiments, we setup an O-RAN that covers a 300×300
m2 square area. There are a number 600 of MUs subscribed

to a set J = {1, 2, 3} of three network slices, which support,

respectively, voice over LTE, enhanced mobile broadband

and ultra-reliable low latency communications services. The

frequency bandwidth is W = 10 MHz and the total number

of sub-bands is N = 50. The MU configurations and the

traffic models follow our prior work [11]. During the meta-

DQN training, we collect 5000 interaction experiences for
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LOSSg,t
j,(DQN)

(
ϑg,t
j |yj

)
= E

˜Og,t
j,yj

⊂Og,t
j,yj

⎡⎣(uj,k(xj,k, yj , bj,k) + γ ·max
b′j,k

Qϑg,t
j,−

(
x′
j,k, b

′
j,k|yj

)
−Qϑg,t

j
(xj,k, bj,k|yj)

)2
⎤⎦ (27)

Algorithm 2 Learning Short-Timescale RRM Control Policy

1: Initialize the replay memory {Og,t
j,yj

: ∀yj , ∀j ∈ J }, and

the DQN parameters {ϑg,t
j : ∀j ∈ J } and {ϑg,t

j,− = ϑg,t
j :

∀j ∈ J }, for g = 1 and t = 1.

2: repeat
3: Select a slice-level action yg from Algorithm 1.

4: for t ∈ T do
5: In each network slice j ∈ J , observe the local states

{xg,t
j,k : ∀k ∈ Kj}, and choose bg,t

j that maximizes∑
k∈Kj

Qϑg,t
j
(xg,t

j,k, b
g,t
j,k|y

g
j ) with a probability of 1−ε

or randomly choose a user-level action bg,tj,k with a

probability of ε, ∀k ∈ Kj .

6: Update the replay memory {Og,t
j,yj

: ∀yj , ∀j ∈ J }
from the most recent interaction experiences.

7: With {Õg,t
j,yj

: ∀yj , ∀j ∈ J } sampled from {Og,t
j,yj

:
∀yj , ∀j ∈ J }, update meta-DQN parameters accord-

ing to (26).

8: Regularly reset {ϑg,t
j,− = ϑg,t

j : ∀j ∈ J }.
9: end for

10: Update the episode index g = g + 1.

11: until A predefined stopping condition is satisfied.

TABLE I
PARAMETER VALUES IN EXPERIMENTS.

Parameter Value Parameter Value

I 10 P 30 dBm
Bj 10, ∀j τ 0.5 ms
αj 0.01, ∀j T 2000
βj 1, ∀j σ2 −174 dBm/Hz
ψ 0.005 γ 0.9

each replay memory, while each mini-batch consists of 2000
randomly sampled experiences. Other key parameter values

are listed in Table I.

B. Results and Discussions

For performance comparisons, we simulate two represen-

tative baselines, namely, soft actor-critic with LSTM (SACL)

[17] and deep recurrent Q-network (DRQN) [19]. Implement-

ing the baselines, the sub-band allocation in each network slice

during an episode adopts the round-robin policy to ensure

the fairness among the MUs. Fig. 2 illustrates, respectively,

the average utility, SE and SLSR performance across the

learning episodes. We can observe from Fig. 2(a) that our

proposed hierarchical RL process converges after around 5000
episodes and outperforms the SACL and DRQN baselines.

Figs. 2(b) and 2(c) further demonstrate the achieved SE

and SLSR from all mechanisms. The superior average SE

performance validates that our proposed mechanism adapts the

limited number of sub-bands to the varying traffic requests of

MUs in three network slices from not only the long-timescale

but also the short-timescale. This also tells that the round-

robin policy for sub-band allocation during an episode does

not sufficiently optimize the SE. Even though our proposed

mechanism obtains the best SLSR performance, the average

SLSR performance from all three mechanisms deteriorates

as the learning progresses. The reason can be that given the

weight value settings, all the three mechanisms sacrifice the

SLSR performance while concentrating on maximizing the

expected long-term SE.

VI. CONCLUSIONS

In this paper, we focus our efforts on investigating the RRM

for resource-efficient slicing in O-RAN. Accounting for the

traffic dynamics, we propose to formulate the problem of two-

timescale RRM as a meta-MDP. The objective is to maximize

the expected long-term utility over the infinite time horizon,

where an immediate utility at each time slot measures not

only the SE, but also the SLSR. By decoupling the meta-

MDP into the long-timescale master problem and the short-

timescale subproblem, we obtain a hierarchical RL mechanism

to solve the optimal slice-level and user-level RRM control

policies. Numerical experiments confirm that our proposed

hierarchical RL mechanism significantly outperforms the most

representative baselines in terms of SE and SLSR.
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