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A B S T R A C T

As modern communication technology advances apace, the digital communication signals identification plays an
important role in cognitive radio networks, the communication monitoring and management systems. AI has
become a promising solution to this problem due to its powerful modeling capability, which has become a
consensus in academia and industry. However, because of the data-dependence and inexplicability of AI models
and the openness of electromagnetic space, the physical layer digital communication signals identification model
is threatened by adversarial attacks. Adversarial examples pose a common threat to AI models, where well-
designed and slight perturbations added to input data can cause wrong results. Therefore, the security of AI
models for the digital communication signals identification is the premise of its efficient and credible applications.
In this paper, we first launch adversarial attacks on the end-to-end AI model for automatic modulation classifi-
cation, and then we explain and present three defense mechanisms based on the adversarial principle. Next we
present more detailed adversarial indicators to evaluate attack and defense behavior. Finally, a demonstration
verification system is developed to show that the adversarial attack is a real threat to the digital communication
signals identification model, which should be paid more attention in future research.
1. Introduction

In pursuit of higher-performance mobile communication, the modern
communication system has been rolled out rapidly in recent years. Driven
by high-tech technologies such as ultra-dense heterogeneous deployment
[1], massive Multi-Input-Multi-Output (MIMO) [2], edge computing [3],
and Artificial Intelligence (AI) [4], the fifth generation mobile commu-
nication system (5G) has extended traditional wireless systems and made
great breakthroughs, and its network connection density and the number
of users have also increased explosively. The sixth generation mobile
communication system (6G) network has entered the research and
development stage and is expected to be deployed in the next decade [5].
The digital communication signal recognition takes an important part in
modern communication systems, such as Automatic Modulation Classi-
fication (AMC) for spectrum awareness, adaptive transmissions in
cognitive radio networks, and user authorization authentication in
communication monitoring and management systems [6–8].

The ultra-large-scale connections and ultra-high-density deployment
of modern communication system makes the electromagnetic space
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highly dynamic, difficult to model and generate big data. Traditional
technical methods have exhibited many obvious limitations in such a
setting [9]. In recent years, AI technology represented by Deep Learning
(DL) has become an effective solution to the 5G/6G network due to its
automatic feature extraction andmodeling capabilities [10–12]. With the
support of public collected datasets, AI technology has been widely
investigated and applied in the field of AMC [13–15]. Effective methods
based on the image domain [16,17], time domain [18], frequency
domain [19], and multimodality [20] have been proposed. Furthermore,
interesting problems such as few-shot [21], zero-shot [22] and even
inter-domain transfer learning [23] have been studied. Lightweight
techniques for AMC models have also been studied for industrial appli-
cations [24,25].

However, AI technology also faces considerable security risks due to
its data-dependence and inexplicability. Therefore, systems based on AI
technology mainly face threats to data privacy security and model se-
curity [26]. The security threats of AI models are divided into training
integrity threats caused by backdoor attacks and data poisoning [27] and
test integrity threats caused by adversarial attacks. Adversarial attacks
October 2022
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were first discovered by C. Szegedy et al. [28] in the field of Computer
Vision (CV). It has been shown that adding carefully crafted, slight,
imperceptible perturbations to the input data can cause an AI model to
produce erroneous outputs. The tempered examples are called adversa-
rial examples. Adversarial attacks have become an important security
threat to various key technologies and applications based on AI in the
modern communication system [29,30], as illustrated in Fig. 1.

Adversarial threats have attracted great attention in the problem
domain of AMC. The first study was about the scenario that adversarial
attacks were carried out at the receiver after an additive white Gaussian
noise channel before applying the AMC model [31]. Various adversarial
attack methods were subsequently proposed to challenge AMC models.
The authors in Ref. [32] improved the gradient-based attack method for
CV applications to attack the AMC model, examining the attack effects of
white box and black box attacks, single-step, and iterative attacks on the
model. In Ref. [33], the authors investigated optimization-basedmethods
to increase the aggression, while the work in Ref. [34] further studied the
influence of the channel effect of white Gaussian noise and Rayleigh
channels on adversarial attacks and proposed Channel-Aware Adversa-
rial Attack methods. Under the adversarial security threats, on the one
hand, advances have been made in the evaluation system for adversarial
examples from the perspective of electromagnetic signal characteristics,
such as Perturbation-to-Signal Ratio (PSR) [31], Bit Error Rate (BER)
[35], and so on [36]. On the other hand, much effort has been devoted to
the investigation of adversarial defense methods. In Ref. [34], the
robustness of the model of adversarial examples was effectively improved
through adversarial training. In Ref. [37], the authors exploited the
traditional features, such as the peak-to-average power ratio of modu-
lated signals, as the verification of DL model results to effectively detect
adversarial examples.

To enhance the efficient and credible application of AI-based AMC in
modern communication systems, we conduct research on adversarial
attacks against end-to-end AMC models in this paper. We also explore
adversarial defense mechanisms that are explainable. Moreover, we
propose more detailed adversarial evaluation indicators to evaluate the
performance of adversarial attacks and defense algorithms. Finally, we
develop a demonstration verification system of the adversarial gamewith
electromagnetic signals for a realistic assessment of such threats.

In summary, our contributions are given as follows:

� We launch adversarial attacks against the end-to-end AMCmodel and
explain and present three defense mechanisms based on the adver-
sarial principle.

� We present more detailed adversarial evaluation indicators, including
attack success rate, defense success rate, attack mistake rate and de-
fense mistake rate to evaluate the performance of adversarial attack
and defense algorithms.
Fig. 1. Scenarios of the threat of adversarial attacks to applications in the AI-
based modern communication system.
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� We develop a demonstration verification system of the adversarial
game of AMC, which demonstrates and evaluates the game process
from both the communication domain and the adversarial domain.

The remainder of the paper is organized as follows. The classification
of adversarial attacks on electromagnetic signals from different aspects is
introduced in Section 2. Adversarial attacks and defense algorithms, as
well as evaluation indicator are described in Section 3. The experimental
results, discussions, and demonstrations of the verification system are
presented in Section 4. A summary of this work and future prospects are
given in Section 5.

2. Preliminaries

In the adversarial attacks to AMC models, the adversary introduces
carefully designed and slight perturbations to the input data, which can
make the tempered data sample easily cross the decision boundary of the
AMC model to a wrong decision area without being noticed by the
operator or the system. The modified data is called an adversarial
example for AMC models, while the algorithms that can detect adver-
sarial examples or make AMC models more robust to such attacks are
called adversarial defenses. Compared to traditional interference
methods, the adversarial attack is oriented to the AI model instead of the
communication system, and the design process is more sophisticated and
highly covert with a higher interference efficiency. The following aspects
are introduced for adversarial attacks in electromagnetic space.

2.1. Position of adversarial attack

The openness of the electromagnetic space gives wireless devices the
right to share the electromagnetic spectrum. However, it also provides
more opportunities for adversaries in the electromagnetic space. The
adversary can launch adversarial attacks in three locations: the receiving-
side, the transmitting-side, and the channel-side, corresponding to the
direct, indirect, and superimposing modes, respectively, as illustrated in
Fig. 2.

2.1.1. Receiving-side
On the receiving-side, the adversary directly designs and calculates

perturbations based on the input data, and superimposes the perturba-
tion to the data to obtain adversarial examples. The original perturbation
can be injected into the AMC model without being influenced by the
channel effect. Adversarial attacks at this position have higher certainty,
but the precondition is very difficult to achieve, which requires the au-
thority to access and modify the input data of the target model.

2.1.2. Transmitting-side
On the transmitting-side, the adversary introduces perturbations into

the signal to be transmitted. The perturbation will pass through the
channel with the signal and then be injected into the target model. The
channel effect between the transmitter and receiver is an important
factor to consider in the design of adversarial perturbations.

2.1.3. Channel-side
On the channel-side, the adversary, independent to the transmitter

and receiver, radiates adversarial disturbances into the electromagnetic
space where they are located. The channel effect in the current electro-
magnetic space should be comprehensively considered to generate
effective adversarial perturbations. Adversarial attacks at this position
are more flexible and can performmultiple adversarial tasks, such as one-
to-many or many-to-many ones.

2.2. The diversity of adversarial attacks

The principles of attack methods can be divided into two categories:
gradient-based and optimization-based methods [38]. On the one hand,



Fig. 2. Schematic diagram of the three attack positions.
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there are many optimization algorithms used in the training process of
the AI model, but the key is to use the gradient of the loss function to
reduce the loss value. Therefore, the opposite process of the training is
considered an adversarial attack method, which means, the smallest
numerical change can be used in exchange for the largest loss improve-
ment in the gradient ascent direction. On the other hand, adversarial
attacks can be viewed as an optimization problem with two optimization
objectives. One is that the difference between the adversarial example
and the original example should be as small as possible, and the other is
that the loss value caused by the adversarial example should be improved
as much as possible. Under the same constraints, optimization-based
methods can find more satisfactory solutions than gradient-based
attack methods.

2.3. Prior information of adversarial attack

Adversarial attacks can be classified into white-box attacks, black-box
attacks and grey-box attacks, according to the amount of information the
adversary has acquired concerning the target model [39]. The adversarial
attack under full information of the target model is called white-box
attack, while the attack under no information of the target model is
called black-box attack. A black-box attack usually requires the cooper-
ation of surrogate models with similar input-output relations. Attacks
between white box and black box attacks are called grey-box attacks.

2.4. Inducibility of adversarial attack

The inducibility of adversarial attacks can be divided into non-
targeted and targeted attacks. In non-targeted attacks, the adversary
only needs to add perturbations to make the target model produce wrong
results, and there is no other requirements. However, in targeted attacks,
the adversary not only needs to make the AMC model produce wrong
results but also to bias the wrong results toward an intended target. The
data from classes with higher classification confidence are generally
more difficult to attack [40]. The overall difficulty of targeted attacks is
greater than that of non-targeted attacks. In the process of adversarial
attacks, the adversary may not launch attacks against all categories. The
category that the attacker attacks against is called the Source Category
(SC). The expected category that the adversarial attack classifies the
model is called the Target Category (TC).
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3. Methodology

3.1. Adversarial attack algorithms

The author in Ref. [28] first found that adding a small, carefully
constructed perturbation, which cannot be recognized by human eyes,
can cause the AI model to output wrong results. Such input data with an
added perturbation are called adversarial examples. By adding a
perturbation to the signal waveform, a signal adversarial example can be
generated. The following methods will be used in this paper to generate
adversarial examples of modulated signals.

3.1.1. The Fast Gradient Sign Method
The Fast Gradient Sign Method (FGSM) is an efficiently adversarial

attack method, which generates adversarial examples within the l∞-norm
distance of the original sample [41]. The FGSM simultaneously updates
all sampling points in a single step along the direction of the gradient sign
against the model loss. The update process is given by

x
0 ¼ xþ δ � signðrxLθðx; yÞÞ (1)

where x is the original sample of the modulated signal, y is the true label
of x, x0 is the adversarial example, θ is the parameter of the model, and δ
is the perturbation intensity, which limits the l∞-norm of the perturba-
tion. The gradient of the adversarial loss is calculated by rxLθ(x, y) and
sign(⋅) represents the sign function. It is worth noting that the FGSM is
mainly used for the fast generation of adversarial examples, but not for
the minimum perturbation. The FGSM will be used to implement an
attack and the adversarial robustness of the model will be evaluated in
this paper. The process of generating adversarial examples by the FGSM
is presented in Algorithm 1.

3.1.2. The Projected Gradient Descent
The Projected Gradient Descent (PGD) attack can be regarded as a

BIM but without the αT ¼ δ constraint, and the PGD can be initialized
randomly using any point within the distance of l∞-norm of the original
sample [42]. Unlike the one-step attack FGSM, the PGD launches mul-
tiple iterations. Each time a small step is taken, and each iteration will
project the perturbation into the specified range as

xtþ1 ¼
Y
xþS

ðxt þ α � signðrxLðxt; y; θÞ Þ Þ (3)

where α is the length of each step and S ¼ r 2 Rd is the perturbation set.
Moreover, perturbation r satisfies krk∞ < δ, while

Q
xþS represents the

projection on the ϵ-neighbor range sphere. That is to say, if the pertur-
bation amplitude is too large, the excess part will be pulled back to the
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boundary surface. The PGD will be used to generate a modulation
adversarial example and the process is given in Algorithm 2.

Compared with the single-step attack algorithm FGSM, the iterative
attack algorithm PGD has more flexibility, so it also has a greater
adversarial attack effect. However, it is obvious that the time complexity
of the PGD algorithm is higher, and it requires several iteration steps
while the FGSM only needs one.
Fig. 3. Algorithm flow chart of the adversarial training method.
3.2. Adversarial defense mechanisms

Next we introduce several typical adversarial defense mechanisms.
Identifying the causes of adversarial examples will render the design of
defense mechanisms rule-based and rational. There are different opinions
on the causes of adversarial examples, which leading to different defense
mechanisms.

3.2.1. Adversarial training
The author in Ref. [43] put forward an explanation from the

perspective of model generalization through a large number of experi-
mental analyses, indicating that the example complexity of the standard
dataset is far from enough to represent the natural data model, and the
lack of feature richness of the training set is the reason for the existence of
adversarial examples. The transferability of the adversarial example is
also in line with such an interpretation to a certain extent [28]. The DL is
a fitting problem, and in theory, a sufficiently large network can fit any
complex models. Therefore, the most obvious defense mechanism is to
train the DL model with adversarial examples to make it robust to
adversarial examples.

The general principle of adversarial training can be summarized as a
Max-Min problem as

min
θ

EðZ;yÞ�D

�
max
kηk�δ

LðfθðXþ ηÞ; yÞ
�

(5)

where X represents the input example, fθ(⋅) is a model function whose
parameter is θ, y is the right label of X, L(⋅, ⋅) is the loss function, D
represents the distribution of the dataset, and Z represents the adversarial
examples. The Max-Min problem consists of two optimization goals. The
first goal is to find the adversarial example that maximizes the loss be-
tween the model output and the label within a certain perturbation
range. Based on that, the second goal is, to reduce the average loss value
between the output result of the effective adversarial example and the
label by adjusting the network parameters.

In summary, the adversarial training is a training process that makes
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the model more robust to effective adversarial attack examples. The flow
chart of the adversarial training algorithm is shown in Fig. 3. In order to
ensure that the adversarial training model maintains the recognition
performance of the original data, 60% of each batch of data is generated
as an adversarial example during training.

3.2.2. Noise training
Obviously, the adversarial training requires a pre-trained model. This

model can be the model to be optimized or an alternative model trained
on the same dataset as the target model. Unlike the adversarial training,
the idea of the noisy training is to improve the completeness of the
dataset features without using a pre-trained model and to obtain a more
robust model. The implementation method is to add slight random noise
with a certain probability distribution to the original dataset. The data
with random noise is still in the neighborhood of the original data. The
expanded dataset possesses more abundant features than the original
data set, and the model obtained this way will also be more robust.
However, this kind of unguided expanded dataset will inevitably add a
large number of features that are not beneficial for improving the
robustness of the model, and these data examples will increase the
training burden.

3.2.3. Network binarization
The authors in Ref. [28] provided an explanation with experiments

that the high degree of nonlinearity of the DL model leads to a large
number of local over-fitting phenomena, such that the decision boundary
of the model produces a multitude of low-probability pockets in the
manifold space. The data in the pocket obviously belongs to the type, but
it is decided by the DL model to be another type. The authors in Ref. [41]
argue against this view and explain experimentally that the cause of
adversarial examples is the network is extremely linear. The slight
perturbation applied to the input data is amplified by the
high-dimensional linear network layer by layer, and the level of this
perturbation will not change the original attributes of the data, and
produce a large deviation in the output result. Analyzing the above two
points of view, we can see that the over-fitting problem and extreme
linearization of deep learning networks are the biggest possibilities
against examples. The binary network can avoid these two problems. In
the deterministic binary network in the naive binary network category,
the weight and input of the binary layer network are binarized as [44].

wb ¼
�þ1 w � 0
�1 otherwise

(6)

where w represents the original parameter and wb represents the binar-
ized parameter. The sign(⋅) function can be used for the quantization
operation.

This binarization rule results in the obvious compression of the de-
gree of freedom space of the network parameters, which effectively re-
duces the fitting ability of the network and avoids the problem of over-
fitting. In addition, the binarization rule is a severe non-linear func-
tion, which prevents small perturbations at the input from being linearly
amplified layer by layer.

The difference between adversarial training and noisy training



Fig. 4. Schematic diagram of the convolutional layer operation rules in the
binary network.
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algorithms is only the training data used. Compared to the model
training, the difference in time between the two algorithms for gener-
ating training data is negligible. Therefore, both algorithms have the
same time and space complexity. For the binarized network, the 32-bit
floating point numbers of the model parameters are replaced by 1-bit
binary numbers, so the network achieves a 32-fold reduction in space.
In addition, another advantage of the binary network is the fast
computation. In the binary convolutional layer, the input and weight can
only have two values: þ 1 and �1. Thus the multiplication in the con-
volutional layer can be replaced by the XNOR operation, and the accu-
mulation can be replaced by the Bitcount operation. The forward
calculation rules are illustrated in Fig. 4.

3.3. Evaluation indicators

3.3.1. Attack success rate
The adversary uses the adversarial attack algorithm to add pertur-

bations to the original dataset to obtain the adversarial attack dataset. In
a non-targeted attack, the TC corresponding to each SC is all other cat-
egories except itself. In the process of adversarial attacks, the ratio of the
number of adversarial examples that are originally correctly classified
into the SC, but are classified into the TC after adding the adversarial
perturbation to the total number of SC is called the Attack Success Rate
(ASR). The ASR of a certain category is ASRo�T and the average ASR is
ASR, given by

ASRo�T ¼ 1
No

X
x2o

boolðf ðx0 Þ ¼ t; t 2Tjf ðxÞ¼ oÞ (7)

ASR ¼
PO

o ASRo�T �NoPO
o No

(8)

where bool(⋅) is bool function, f(⋅) is the DL model, x is the original
example, o 2 O represents the SC, and t 2 T represents the TC corre-
sponding to category o, and No is the number of category o in the dataset.

3.3.2. Defense success rate
The purpose of the defense is to correct the incorrectly classified

examples caused by the attack algorithm on the correct label. The De-
fense Success Rate (DSR) of the defense mechanism for a certain category
DSRo is the ratio of the number of examples, which are adversarial ex-
amples previously misclassified by the original network and then
correctly classified by the defense mechanism to the total number of
examples in that category. The average DSR is denoted by DSR. DSRo and
DSR are defined as

DSRo ¼ 1
No

X
x2o

boolðf 0 ðx0 Þ ¼ ojf ðx0 Þ 6¼ oÞ (9)

DSR ¼
PO

o DSRo �NoPO
o No

(10)

where f0(⋅) represents the defense model.
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3.3.3. Attack mistake rate
During the attack process, there may be some examples that were

originally misclassified, but then are correctly classified after the
perturbation is introduced. This phenomenon is a mistake caused by the
adversarial attack algorithm, termed Attack Mistake Rate (AMR). The
attack mistake rate for a certain category is AMRo�T and the average
attack mistake rate is AMR, which is given by

AMRo�T ¼ 1
No

X
x2o

boolðf ðx0 Þ ¼ ojf ðxÞ¼ t; t 2TÞ (11)

AMR ¼
PO

o AMRo�T �NoPO
o No

(12)

3.3.4. Defense mistake rate
The defense process could also make a mistake. That is, the attack

examples that are originally correctly classified may be misclassified by
the defense mechanism. Such mistakes need not be mistaken for the
adversary's TC. The proportion of such examples is called the Defense
Mistake Rate (DMR). The defense mistake rate for a certain category is
DMRo and the average defensive mistake rate is DMR, which is given by

DMRo ¼ 1
No

X
x2o

boolðf 0 ðx0 Þ 6¼ ojf ðx0 Þ ¼ oÞ (13)

DMR ¼
PO

o DMRo �NoPO
o No

(14)

4. Experimental study and discussions

In order to investigate the security issues of AMC models, this paper
conducts extensive adversarial attack and defense experiments with the
end-to-end AMC model. Although channel-side and transmitter-side at-
tacks are more in line with actual attackmethods in the adversarial attack
and defense process, the research on receiver-side attacks attracts more
researchers to analyze the adversarial safety issues of electromagnetic
signal recognition models without other interference factors. Such a
study will provide the useful knowledge for further studies on channel-
side and transmitter-side attacks. Therefore, this paper studies, evalu-
ates and analyzes the above adversarial attack methods and defense
mechanisms on the receiver side.

4.1. Experiment methodology

The data used in the experiment is the public dataset RML2016.10A
[13]. The dataset contains 11 modulation types, including 8 digital
modulation methods and 3 analog modulations. Channel effects such as
center frequency offset, phase difference, and sampling rate offset are
considered. The Signal-to-Noise Ratio (SNR) ranges from �20dB to 18
dB, with an interval of 2 dB. The total number of samples is 220,000, and
the number of samples for each type of modulation and each SNR level is
the same. Each data sample contains In-phase and Quadrature (I/Q) data
in the form of 2 � 128. The dataset is randomly divided into the training
set, the validation set, and the test set with the ratio of 8:1:1.

This experiment uses the Pytorch DL framework to build and train AI
models. And the test library for the adversarial example attack and de-
fense selected in the experiment is Cleverhans, which supports Tensor-
flow and Pytorch. Three models are created. The first is the baseline
model, also known as the original model, which is used as a modulation
signal recognition model. The second is a surrogate model with a
different structure from the baseline network, which is used to carry out
black-box attacks. The last one is a binary model with the same structure
as the baseline model, which is used to analyze the defense effect
compared to the original model, instead of itself [45,46]. The network
structure refers to the basic Convolutional Neural Network (CNN), which



Fig. 5. The network structure of the original model, the surrogate model, and
the binary model.

Fig. 7. Confusion matrix of the original model under 12 dB SNR.

Q. Tian et al. Digital Communications and Networks 10 (2024) 756–764
means, the convolutional layers are in the front and the fully connected
layers are in the back. The network structure of the three models are
depicted in Fig. 5. Fig. 5(a) is for the original model, including five
convolutional layers and four fully connected layers. The structure of the
binary model is the same as the original model, but binary blocks replace
all convolutional layers except the first layer. Fig. 5(b) is for the surrogate
model, where eight convolutional layers are used and two dropout layers
are passed in between. The number of fully connected layers is reduced to
two.
4.2. Evaluation of network performance

Before launching the evaluation of adversarial attacks and defenses,
we first evaluate the recognition performance of the three models on the
original signal dataset. The loss function used in this experiment is the
cross-entropy loss function, and the training optimizer is Root Mean
Square prop (RMSprop). The batch size is 256.

The test accuracy of the three models under different SNR data is
presented in Fig. 6. It can be seen that the recognition accuracy of the
three models all increase as the SNR increases. The recognition perfor-
mance of the original model and the surrogatemodel is almost consistent.
Therefore, the surrogate model is qualified for black-box attacks. Since
the degree of freedom of the parameters of the binarized model is
Fig. 6. Recognition performance of the three network models.
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severely reduced, it is expected that its recognition performance will be
poorer than the original model. Under an extremely low SNR, all three
models do not work well due to the severe damage of the separability of
data. Under a higher SNR, the separability of the data becomes high,
resulting in little difference between the performance of the binarymodel
and the original model. Under intermediate SNR levels, the data is more
difficult to classify and the fitting ability of the binary model becomes
weaker, so the accuracy is also lower.

Therefore, the dataset at a higher SNR is the best choice for further
analysis of adversarial attacks and defense because the three networks
are on the same starting line. The confusion matrix of the original model
on the 12 dB test dataset is provided in Fig. 7 with a lot of information.
First, the data between major categories is not easy to be confusing.
Second, within the same major category, the data between low order
types is often not easy to be confusing. Finally, within the same major
category, the data between high order types is easy to be confusing.
4.3. Evaluation of attack algorithms

For the evaluation of attack algorithms, the FGSM and the PGD attack
algorithms are used as the representatives of single-step attacks and
iterative attacks, respectively. Therefore, the two attack algorithms and
their corresponding white-box and black-box attacks will be used to
attack the original model. The perturbation intensity of the attacking
algorithm will be set from 0 to 0.25 at the step size of 0.05. In order to
enable the PGD algorithm to fully search for adversarial perturbations
within a given perturbation intensity, we set the number of iteration
steps to 15. The dataset under 12 dB SNR is still selected as the target
data.

The attack performance of the FGSM and the PGD for white-box and
black-box attacks under 12 dB SNR is presented in Fig. 8. Some inter-
esting phenomena can be observed. For white-box and black-box attacks,
the ASRs of the two attacking algorithms both increase as the perturba-
tion intensity increases. The AMR shows the same trend, eventually
stabilizing within a small range. In white-box or black-box scenarios, the
AMR caused by the two algorithms is almost the same. However, the ASR
of the PGD is significantly higher than that of the FGSM. The ASR of a
single-step attack is significantly weaker than that of an iterative attack
with the same perturbation intensity. This is because iterative attacks can
find more refined and efficient perturbations through multiple iterations
and obtain a higher attack performance. Moreover, the performance of
black-box attacks is obviously weaker than that of white-box attacks.
Although the white-box attack has a relatively higher attack mistake rate,
the overall attack effect of the white-box attack is significantly stronger



Fig. 8. Attack performance of FGSM and PGD for white-box and black-box attacks under 12 dB SNR.

Fig. 9. Defense performance of the three methods against white-box and black-box attacks using PGD under 12 dB SNR.

Fig. 10. Structure diagram of the demonstration verification system.

Q. Tian et al. Digital Communications and Networks 10 (2024) 756–764
than that of the black-box attack. It can be seen that the transferability of
adversarial examples between models cannot completely maintain their
robustness. Therefore, black-box attacks can only test the general trend of
the robustness of the model.
4.4. Evaluation of defense mechanisms

Attack algorithms with stronger attack performances are more likely
to reveal more problems of the defense mechanism. Therefore, we choose
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the PGD attack algorithm in this experiment to evaluate the defensive
performance. In adversarial training defense mechanisms, the adversarial
example set of the PGD attack with a disturbance intensity of 0.2, an
iteration step size of 0.05 and 15 iteration steps is used to train the
original model to obtain a defense model, which is robust to adversarial
attacks. In the noise training defense mechanism, the Gaussian white
noise is selected; the mean value is set to 0 and the variance is set to 0.1.
These will ensure that the generated example is within the neighborhood
of 0.2 with a probability of 95.45%, and the probability of occurrence of
perturbations of different sizes is close. The binary model will be directly
used as a defense model without adversarial training and noise training.

The defense performance of the three defense mechanisms against the
white-box and black-box attacks using the PGD under 12 dB SNR is
shown in Fig. 9. As can be seen from Fig. 9(a), in terms of the DSR, the
trends of the three defense model are almost identical. The DSRs of the
three methods all reach the highest when the perturbation intensity is
around 0.2. For adversary training and noise training, this is because the
selected training perturbation intensity is 0.2, and the model is more
robust to adversarial examples with a perturbation intensity of 0.2. While
for the binary model, when the attack intensity exceeds a certain level,
the defense performance will decline rapidly. In terms of the DMR, the
binary network has not been specially trained, and thus makes more
visible mistakes. Overall, the defense performance of adversarial training
is the best, followed by the binary model and noise training. It can be
concluded that targeted defense mechanisms are more effective.

It can be seen from Fig. 9(b) that black-box attacks can only test the
general trend of the robustness of the model. In terms of the DSR, there is
a similar trend for all the three models. The defense performance of the



Fig. 11. A picture of demonstration verification system in operation.

Fig. 12. Display of real-time results of the demonstration verification system.
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three models achieves a higher DSR under a higher disturbance intensity.
While in terms of the DMR, the binary model will make more mistakes.
Therefore, the binary model, as a kind of active defense, is less effective
than the passive defense with targeted special training. The resistance of
the binary model to white-box attacks is better than that to black-box
attacks.

4.5. Demonstration verification system

In order to demonstrates and evaluate adversarial attacks and the
defense game process, we develop a demonstration verification system of
the adversarial game for the AMC. As shown in Fig. 10, the system in-
cludes an Adversarial Attack Transmitter (AAT), a Modulation Type
Perceptron (MTP), a Communication Signal Receiver (CSR), and aMaster
Control Machine (MCM). The AAT is responsible for transmitting
communication signals with adversarial perturbations. The MTP is used
as the target of the AAT and is responsible for recognizing the type of
communication signals the AAT transmits. It is undesirable that the
superimposed perturbation affects the communication performance of
the original signal. Therefore, a CSR is leveraged to evaluate whether the
characteristics of the adversarial signal are damaged. Each of the three
sub-devices is composed of a computer and a Universal Software Radio
Peripheral (USRP). The computer executes the algorithm and baseband
signal processing, and the USRP implements the conversion between the
baseband signal and the radio frequency signal. The system supports both
offline and online operating modes. In the offline mode, the three sub-
devices are equipped with a human-computer interaction interface for
display and control. In the online mode, the three sub-devices exchange
data and control messages with the MCM through a local area network,
while the MCM is responsible for the overall control and status display of
the system.

The prototype system implements the above two attack methods,
including FGSM and PGD, their corresponding targeted attacks and
black-box and white-box attacks. It supports the evaluation of adversarial
example generation time, real-time batch accuracy, difference in wave-
form fit of adversarial examples, perturbation intensity, model defense
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performance, and communication error rate. The communication signal
types include 2DPSK, 4DPSK, and 8DPSK, and the coding types include
Reed Solomon coding and convolutional coding. Communication pa-
rameters such as signal bandwidth, carrier frequency, and transmission
gain are adjustable. It can display time domain waveforms, bandwidth,
constellation diagrams, and so on. In summary, the system can demon-
strate the attack and defense game process in both wireless and wired
environments in the lab.

Fig. 11 shows a picture of the demonstration verification system in
the operation, while Fig. 12 shows the displayed results of the demon-
stration verification system. The upper left corner of the figure shows the
real-time recognition results of the MTP. For the convenience of com-
parison, the modulation types of AAT are also plotted in the figure. The
depth of the display window is 20, that is, the latest 19 historical data are
displayed in the window at the same time. The confusion matrix is shown
in the upper middle part of the figure, which includes all the data after
this startup. The upper right corner of the figure shows the difference in
fit for single data, while the lower middle part of the figure shows the
batch perturbation intensity. The lower left corner of the figure shows the
real-time batch accuracy comparison of the original model and the de-
fense model. The lower right corner of the figure shows the improved
recognition accuracy brought by the defense model under the adversarial
attack signal, compared to the original model. Each interval batch is a
variety of signals with and without adversarial attacks. When there is no
adversarial attack, the recognition accuracy of the original model and the
defense model are almost the same. However, when there is an adver-
sarial attack, the recognition accuracy of the original model is greatly
reduced, while that of the defense model is significantly higher. These
results prove that adversarial attacks are a real threat to AMC models.

5. Conclusions and future work

The main goal of this work is to analyze the adversarial threats to
AMC models to ensure the efficient and credible application in modern
communication systems. Various adversarial attacks to the end-to-end
AMC model were investigated. Furthermore, based on the explanation
principle of adversarial attacks, adversarial training, noise training, and
binary model defense mechanisms were designed, and their defense ef-
fects on typical attack algorithms were evaluated in this paper, which is
very helpful to study active defense mechanisms. The results of this
investigation showed that the adversarial training achieves the highest
defensive performance improvement. The noise training introduces a lot
of training burden, and its effectiveness in improving the robustness of
the network is extremely poor. The binary model as a kind of active
defense is less effective than the passive defense with targeted special
training. The resistance of the binary model to white-box attacks is better
than that of black-box attacks. This study has provided a deeper insight
into the adversarial threat of AMC models. In addition, this work
contributed to the existing knowledge of adversarial evaluation by
defining useful performance metrics. The demonstration and verification
system proposed in this paper proved that the adversarial attack is a real
threat to AMC models and helped to focus more on the integration of the
adversarial threat and electromagnetic field characteristics.

However, there is still much room for improvement in this paper. For
example, the effects of a black-box attack should be extended to multiple
models rather than just one model. The effects of more defensive algo-
rithms should be displayed for comparison. Furthermore, based on this
work, the following research directions can be tackled in future work: (i)
Channel effect: in the actual adversarial attack and defense process of
communications field, the channel effect is an important factor that
cannot be ignored. Although the channel effect has attracted great
attention, more theoretical analyses, experiments, and prototype systems
are needed. (ii) Specific attacks: investigations on issues such as attention
mechanisms have shown that AI models are more sensitive to locally
important features in the data. Therefore, adding adversarial perturba-
tions to local features in the signal rather than the full signal segment is a
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direction for future research, which will improve the stealth and energy
efficiency of adversarial attacks. (iii) Active defense: most of the current
defense methods are heuristic approaches. The defense models tailored
for specific attack methods should be more effective. Designing active
and provable defense methods and establishing a unified defense
mechanism should be investigated in future work.
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