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A B S T R A C T

In this paper, we first consider the problem of distributed power control in a Full Duplex (FD) wireless network
consisting of multiple pairs of nodes, within which each node needs to communicate with its corresponding
node. We aim to find the optimal transmition power for the FD transmitters such that the network-wide
capacity is maximized. Based on the high Signal-to-Interference-Plus-Noise Ratio (SINR) approximation and a
more general approximation method for logarithm functions, we develop effective distributed power control
algorithms with the dual decomposition approach. We also extend the work to the general FD network scenario,
which can be decomposed into subproblems of isolated nodes, paths, and cycles. The corresponding power
control problem is then be solved with the distributed algorithm. The proposed algorithms are validated with
simulation studies.

1. Introduction

Due to the broadcast nature of wireless transmissions, a receiver is
usually interfered by undesired signals that it overhears from neighbor-
ing transmitters. The capacity of a wireless network is mainly limited by
interference. Consider people chatting at a party. In order to be heard
clearly, one may want to enlarge their voice. However, if everyone tries
to do so, they will end up shouting at the top of their voices, but,
unfortunately, still get bad reception. To this end, a Medium Access
Control (MAC) protocol is used to exclude transmission within a
footprint centered at the receiver. Alternatively, an effective power
control scheme can be used to find the optimal transmitting powers
for the transmitters, such that the network capacity is maximized [1,2].

In this paper, we investigate the problem of distributed power
control for a wireless network where the nodes are capable of Full
Duplex (FD) transmissions. Although FD transmission has been used
in wired networks for years (e.g., Asymmetric Digital Subscriber Line
(ADSL) based on echo cancellation), FD transmission in wireless
networks has become feasible only in recent years. Wireless FD systems
are made possible by breakthroughs in self-interference cancellation
[3,4], such as Propagation-Domain Suppression (PDIS) [5,6], analog-
domain interference cancellation, and digital domain interference
cancellation (ADIC) [7]. Practical FD systems have been demonstrated
that achieve more than 70 dB [7] or 80 dB [8] reduction of self-
interference.

FD can be incorporated in a wireless network in two ways: (i) two-
node mode, where two nodes transmit to each other simultaneously,
and (ii) three-node mode, where a node (e.g., a cellular Base Station
(BS)) simultaneously receives from a node and transmits to another
node. The three-node mode can be extended to the more general N-
node model, where all the nodes either form a path or a cycle, to receive
from the upstream node and transmit to the downstream node
simultaneously. FD brings about new challenges to the design of power
control algorithms. In a traditional Half-Duplex (HD) network, if a
node increases its power, the Signal-to-Interference-Plus-Noise Ratio
(SINR) at its target receiver can be improved, but with larger
interference to other receivers. In an FD network, an increase in power
causes not only larger interference to other receivers, but also larger
residual self-interference to the node itself, which may even degrade its
own SINR. To fully harvest the high potential of FD wireless networks,
the power control problem should be carefully addressed with effective
developed algorithms.

In this paper, we first consider an FD wireless network consisting of
multiple node pairs, where the two nodes in each pair transmit to each
other (i.e., the two-node mode). We analyze the basic case with a single
pair of nodes [9]. Taking advantage of the structure of the formulated
optimal power control problem, we show that the optimal solution
should be at the vertex of the feasible region. Furthermore, we consider
the case of multiple node pairs in the FD network. Based on a high
SINR approximation, we transform the optimal power control problem
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into a convex problem in the high SINR region. We develop a Dual
Decomposition based distributed algorithm to find the optimal solution
to the transformed problem [10]. We then consider the case of general
SINR values and drop the high SINR assumption. Incorporating an
iterative approximation method for the logarithm functions [12], we
are able to obtain a convex transformation of the original power control
problem and develop a distributed algorithm.

Finally, we extend our work from the two-node mode to the general
FD network scenario, where some of the nodes may be receiving data
from one node, while transmitting to another node. We show that the
general network graph can be decomposed into isolated nodes, paths,
and cycles, for which the distributed power control algorithm still
applies to find near optimal power assignments. The proposed algo-
rithms are validated with simulations, where fast convergence and
large gain over the traditional HD system are demonstrated.

The remainder of this paper is organized as follows. The system
model and preliminaries are introduced in Section 2. We investigate
the case of a single pair of FD nodes in Section 3 and a network of FD
node pairs in Section 4. We next address the case of a general FD
network in Section 5. Simulation results are presented in Section 6.
Section 7 reviews related work and Section 8 concludes this paper.

2. System model and preliminaries

We present the channel and propagation model in this section. We
then derive the total capacity for a single pair of FD nodes and for an
FD network with multiple pairs of FD nodes.

2.1. Channel and propagation models

Consider an FD wireless network that only consists of two
transceivers, denoted as nodes a and b, respectively. The FD link is
shown in Fig. 1. The received signals at the two transceivers are

⎪

⎪

⎧
⎨
⎩

y P h x P h x n
y P h x P h x n

= + +
= + +

a b ba b a aa a a

b a ab a b bb b b (1)

where xa and xb are the normalized, transmitted signals from node a
and b, respectively; Pa and Pb are the corresponding transmitting
powers; hab and hba are the channel gains from node a to b and from
node b to a, respectively; haa and hbb are the self-interference channel
gain at node a and b, respectively; and na and nb are the thermal
noises.

According to the channel estimation model in [13], the maximum
likelihood channel estimation is modeled as

h h e h= + ∼ (2)

where h is the estimated channel; e h∼ is the estimation error that is
uncorrelated with the real channel h; and h∼ is i.i.d. Gaussian with a zero
mean and unit variance. In (2), e is an indicator that shows how
accurate the estimated channel is.

2.2. Propagation-domain interference suppression

Self-interference cancellation is the enabler of FD systems. Among
many techniques, propagation domain interference suppression (PDIS)
dramatically reduces the self-interference [14]. Applying PDIS, the self-
interference terms, e.g., P h xa aa a, in the received signals (1) is reduced

to a fraction, as κP h xa aa a.
Considering both PDIS and channel estimation, the received signals

in (1) can be written as [9]

⎪

⎪

⎧
⎨
⎩

y P h x κP h e h x n

y P h x κP h e h x n

= + ( + ) +

= + ( + ) +

∼

∼
a b ba b a aa aa aa a a

b a ab a b bb bb bb b b (3)

2.3. Analog and digital interference cancellation

In addition to PDIS, analog and digital interference cancellation
(ADIC) can cancel more known self-interference. For example, in the
first equation in (3), the first term P h xb ba b is the expected received
signal, and the rest of the terms are treated as interference and noise.
However, κP ha aa is already known by node a, since the estimated self-
interference channel and PDIS of this channel are both known at the
node. Therefore, this part of interference is eliminated with ADIC, and
the remaining interference plus noise at node a is κP e h x n+∼

b aa aa a a.

Denoting h 2
as G , the received signal power is P Gb ba, the remaining

interference power after interference cancellation is κP ea aa, and the
noise power is Na. Since both κ and eaa are related to self-interference
cancellation, we define a new parameter χ κe= aa as the self-inter-
ference cancellation coefficient. The SINRs for FD transceivers a and b
are written as

SINR P G
χP N

=
+a

b ba

a a (4)

SINR P G
χP N

=
+b

a ab

b b (5)

We adopt the Shannon formula C B= log (1 + SINR)2 to approximate
the capacity of a channel with bandwidth B. For brevity, we set B=1 for
all the transmitters (i.e., we focus on the spectral efficiency since the
channels have identical bandwidths). The total capacity for the pair of
FD nodes, Cab, is written as

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟C P G

χP N
P G

χP N
= log 1 +

+
+ log 1 +

+ab
b ba

a a

a ab

b b (6)

Now consider an FD network with M pairs of FD nodes, denoted by
a b j M{{ , }, = 1, 2, …, }j j . The sum rate of the entire network, denoted

as Ctotal, is written as

⎡
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j

M

a b
j

M
b a b

a l j a a a l j b a b a

a b a

b l j a b a l j b b b b

=1 =1 ≠ ≠

≠ ≠

j j
j j j

j l j l l j l j

j j j

j l j l l j l j

(7)

3. Optimal power control for a pair of FD nodes

We first consider the basic case of a pair of FD nodes, i.e., M=1. The
idea is to adjust the transmition powers Pa and Pb so as to maximize
the total capacity of the FD link. The sum rate of the pair, Cab, is given
in (6). The power control problem for nodes a and b is

Cmax
P P

ab
{ , }a b (8)

P Ps. t. 0 ≤ ≤a max (9)

P P0 ≤ ≤b max (10)

where (9) and (10) are peak power constraints. We have the following
theorem for the power control problem of a single FD pair.

Fig. 1. An FD link consisting of a pair of FD nodes.
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Theorem 1. In the optimal solution to Problem (8), at least one node
transmits at its maximum power Pmax.

Proof. Defining
⎛
⎝⎜

⎞
⎠⎟
⎛
⎝⎜

⎞
⎠⎟Z = 1 + 1 +P G

χP N
P G

χP N+ +
b ba
a a

a ab
b b

, then we have C Z= logab

and Z > 0. Consider a weighted sum of the partial derivatives of Cab
with respect to Pa and Pb; the weights are P1/ b and P1/ a, respectively.
We have

C
P P

C
P P

G G χ N N N P χ N P χ
Z χP N χP N

G N
Z χP N P

G N
Z χP N P

∂
∂

· 1 + ∂
∂

· 1 = (2 + + )
( + ) ( + )

+
( + )

+
( + )

> 0

ab

a b

ab

b a

ba ab a b a b b a

a a b b

ab b

b b b

ba a

a a a

2 2

2 2 (11)

Therefore, the two partial derivatives cannot be both non-positive; we
have either C P∂ /∂ > 0ab a or C P∂ /∂ > 0ab b (or both) for any power
allocation in the feasible region defined in (9) and (10).

Consequently, we can always increase Cab by increasing the power
for the node with a positive partial derivative, until finally hitting the
boundary of the feasible region. Thus the optimal solution will always
be on the boundary of the feasible region, i.e., it will be either P P( , )a max ,
P P( , )max b , or P P( , )max max .□

Based on this observation, the algorithm for computing the optimal
power allocation for the FD pair is presented in Algorithm 1. The
algorithm basically searches for the optimal solution on the boundary
of the feasible region.

Algorithm 1. Optimal Power Control Algorithm for a Single FD Pair.

1
Solve = 0C

P
P P

∂
∂

=

ab
a

b max

for Pa;

2
Solve = 0C

P
P P

∂
∂

=

ab
b

a max

for Pb;

3 Substitute P P( , )a max into(6) to get C (1)ab ;
4 Substitute P P( , )max b into(6) to get C (2)ab ;
5 if C C(1) ≥ (2)ab ab then
6

P P P P
Output optimal power allocation
( *, *) = ( , );a b a max

7 else
8

P P P P
Output optimal power allocation
( *, *) = ( , );a b max b

9 end

In the case of a single pair of FD nodes, increasing the power of one
node, say node a, has both positive and negative effects on the sum rate: the
SINR for node b will be larger since the received signal will be stronger; but
the SINR for node a itself will be smaller, since the self-interference will
also go up. Furthermore, at least one of the nodes should transmit at the
maximum power according to Theorem 1. In the case of power allocation
for a network of FD pairs (i.e., the case when M > 1), similar observations
can be made, as will be shown in Section 4.

4. Power control for multiple FD node pairs

We next consider the optimal power allocation problem for the case of
M > 1 pairs of FD nodes. Within each pair, the two FD nodes transmit
simultaneously to each other. The challenge is that the power control
problem is not convex in the feasible region, and thus cannot be solved by a
convex optimization technique directly. We show how to apply two
approximation methods to transform the network-wide power control
problem into a convex problem.

4.1. High SINR approximation and convexity

In the high SINR region where SINR⪢1, we have
log(1+SINR) ≈ log(SINR). The capacity of an FD link for a given power
allocation vector P can thus be approximated as

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

C
G P

χP G P G P N

G P

χP G P G P N

P( ) = log
+ ∑ + ∑ +

+ log
+ ∑ + ∑ +

a b
b a b

a l j a a a l j b a b a

a b a

b l j a b a l j b b b b

(1)

≠ ≠

≠ ≠

j j
j j j

j l j l l j l j

j j j

j l j l l j l j (12)

The sum rate of the FD network is approximated as

⎡

⎣
⎢⎢
⎛
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P P( ) = ( ) = log + log + log + log

−log + + +

− log + + +

total
j

M

a b
j

M

a b b a a b

a
l j

a a a
l j

b a b a

b
l j

a b a
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b b b b

(1)

=1

(1)

=1

≠ ≠

≠ ≠

j j j j j j j j

j l j l l j l j
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(13)

The power control problem for the network of M FD node pairs is
formulated as

C Pmax ( )totalP{ }
(1)

(14)

P P js. t. 0 ≤ ≤ , for alla maxj (15)

P P j0 ≤ ≤ , for allb maxj (16)

where (15) and (16) are the peak power constraints. We next show the
problem is convex in the high SINR region.

Theorem 2. Problem (14) is a convex optimization problem.

Proof. Define P P= log∼
x xj j, which means P e=x

P∼
j

xj, for all x a b∈ { , },
j M∈ {1, 2, …, }. Consider the problem with variables

P P P PP = [ , , …, , ]∼ ∼ ∼ ∼ ∼
a b a bM M1 1 . Taking the partial derivative of C P( )∼

total
(1) with

respect to P∼aj, we have that

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑C

s
s s N

s
s s N

P∇ ( ) = 1 −
∑ ( + ) +

+
∑ ( + ) +

∼
a total

k j

a a

l a a b a a

a b

l a b b b b

(1)

≠
j

j k

l k l k k

j k

l k l k k

where s χe=a a
P∼

j j
aj, s = 0a bj j , and s G e=a b a b

P∼
j l j l

aj.
Taking the derivative again for each nonlinear term

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑ ∑χP G P G P N−log + + +a

l j
a a a

l j
b a b a

≠ ≠
j l j l l j l j

the Hessian is

H s s s= − diag( )a
a
T

a aj
j j j

where s s s Ns = [ , …, ]/( ∑ + )a a a b a k ka aj j M j j j1 . The overall Hessian is

s s s∑ − diag( )l l
T

l l , where k and l represent either aj and bj. For a non-
zero row vector t, we have

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑ ∑ ∑ ∑

∑

∑

t s
s N

t s
s N

t s t s s N
s N

t s t s s
s N

tHt =
∑ +

−
∑ +

=
∑ ( ) − ∑ (∑ + )

( ∑ + )

<
∑ ( ) − ∑ (∑ )

( ∑ + )

T

l m

m ml

k kl l l m

m ml

k kl l

l

m m ml m m ml k kl l

k kl l

l

m m ml m m ml m ml

k kl l

2 2

2 2

2

2 2

2
(17)

The inequality (17) is due to the omission of some negative terms, i.e.,
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t s N s N− ∑ ∑ /( ∑ + )l m m ml l k kl l
2 2. For each numerator, letting ϕ t s=m m ml

and θ s=m ml , we have t s t s s∑ ( ) − ∑ ( ∑ ) ≤ 0m m ml m m ml m ml
2 2 , for all l,

according to the Cauchy-Schwarz Inequality (i.e., ϕ θ ϕ ϕ θ θ( ) ≤ ( )( )T T T2 ).
Thus tHt < 0T , and C P( )∼

total
(1) is concave.

Consider the solution space of P, it is easy to verify that
C CP P∇ ( ) = ∇ ( )∼

a total P a total
(1) 1 (1)

j aj
j . The transformation from P to P∼ only scales

the gradient, but does not affect the concavity property. Thus C P( )total
(1) is

also concave. With linear constraints (15) and (16), problem (14) is a
convex optimization problem. □

4.2. Decomposition and distributed algorithm

We next apply the Dual Decomposition technique to develop a
distributed power control algorithm for the FD network [10,11].
Rewrite the sum rate approximation (13) as

⎡

⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
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⎞
⎠
⎟⎟
⎤

⎦
⎥⎥∑ ∑C C

G P
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G P
χP m

P P( ) = ( ) = log
+

+ log
+total

j

M
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j

M
a b a

b b

b a b
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(1)

=1

(1)

=1
j j

j j j
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j j j

j j (18)

where

⎧
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m G P G P N

m G P G P N

= ∑ + ∑ +

= ∑ + ∑ +

a l j a a a l j b a b a

b l j a b a l j b b b b

≠ ≠

≠ ≠

j l j l l j l j

j l j l l j l j (19)

are the received signals for idle nodes aj and bj, i.e., the interference
plus noise at nodes aj and bj from other nodes, respectively.

Problem (14) is rewritten as maximizing (18) subject to constraints
(15), (16), and (19). Define the Lagrange multipliers μ and consider the
Lagrangian only including the coupled constraints. We have

⎡
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j

M
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j

M
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(1) (1)
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=1

(1)

=1
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where Ca b
(1)
j j is the capacity for FD node pair a b{ , }j j ;

ν μ G μ G= ∑ + ∑a l
M

a a a l
M

b a b=1 =1j l j l l j l; and ν μ G μ G= ∑ + ∑b l
M

a b a l
M

b b b=1 =1j l j l l j l.
The subproblem for each pair of nodes a b{ , }j j is

C P P C P P ν P ν Pmax ( , ) = ( , ) − −
P P

j a b a b a b a a b b
{ , }

(1) (1)

aj bj
j j j j j j j j j j

(20)

P Ps. t. 0 ≤ ≤a maxj (21)

P P0 ≤ ≤b maxj (22)

The optimal solution P P{ *, *}a bj j can be solved by local Karush-Kuhn-
Tucher (KKT) Conditions or using the subgradient method.

The master problem is written as

∑ ∑μ μC C μ m μ mmin ( ) = ( ) + ( + )
μ total

j

M

j
j

M

a a b b
(1)

=1

(1)

=1
j j j j

(23)

μ 0s. t. ≥ (24)

The gradient method is used to solve the master problem by using a
centralized controller or by flooding the power allocation information
to all other nodes as in [11].

The distributed power control algorithm for the network of FD node
pairs is presented in Algorithm 2.

Algorithm 2. Distributed Optimal Algorithm for M Pair of FD Nodes
in the High SINR Region.

1 Initialize μaj and μbj to some non-negative values, for all j;

2 repeat

3
4
5
6

m t m t μ μ ν ν

P P

P P

Each FD pair receives power updates from other nodes;
Each FD pair computes ( ) and ( ), and solves (23) to update , , , and ;

Each FD pair solves (20) for { *, *};

Each FD pair distributes { *, *} to the entire network;

aj bj aj bj aj bj

aj bj

aj bj

7 until convergence;

4.3. Approximation for general SINR values

Note that Algorithm 2 is based on the high SINR assumption, which
may not be true in a general FD network environment, although we can
always exclude low SINR transceivers to enforce this assumption. In
this section, we present an alternative approach to relax the high SINR
assumption, to obtain a more general approximation for the power
allocation problem.

Following the approach in [12], the tightest lower bound for
xlog(1 + ) is α x βlog + , i.e.,

x α x βlog(1 + ) ≥ log + , (25)

which intersects xlog(1 + ) at x0 when the coefficient α and β are chosen
as follows.

⎧
⎨⎪⎪

⎩
⎪⎪

α x
x

β x x
x

x

=
1 +

= log(1 + ) −
1 +

log

0

0

0
0

0
0

(26)

The lower-bounding approximation to the log-function is illustrated in
Fig. 2. It can be seen that the approximation curve is always below the
log-function curve, and the two curves intersect at x0.

Let P P P P={ , , …, }M1 2 , α α α α= { , , …, }M1 2 , and β β β β= { , , …, }M1 2 .
We approximate the network-wide sum rate as
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Fig. 2. A lower-bounding approximation to the log-function.
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The power control problem for M FD node pairs becomes

α βC Pmax ( , , )

s. t. constraints (15), (16), and (19).

totalP
(2)

(28)

It can be shown that C P( )total
(2) is also concave, following a similar

approach as that in Section 4.1. This is because the non-negative and
constant scalars α and β do not change the concavity property. Hence
C P( )total

(2) is concave for non-negative α and β; the method of Dual
Decomposition is applied to find the optimal solution for a given α and
β.

To further improve the competitiveness of the solution, we itera-
tively update α and β in each step τ as follows, until the optimal
solution to the original problem is achieved.

⎧

⎨

⎪⎪⎪⎪

⎩

⎪⎪⎪⎪

x τ
G P τ

χP τ m τ

α τ
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β τ x τ
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x τ
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*( )

*( ) + ( )

( ) =
( )

1 + ( )

( ) = log(1 + ( )) −
( )

1 + ( )
log( ( ))
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b a b

a a

a
a
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a a
a

a
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j
j j j

j j

j
j
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j j
j

j
j

(29)
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β τ x τ
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( ) =
( )

1 + ( )

( ) = log(1 + ( )) −
( )

1 + ( )
log( ( ))

b
a b a

b b

b
b

ab

b b
b

b
b

j
j j j

j j

j
j

j

j j
j

j
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(30)

Algorithm 3. Distributed Optimal Algorithm for M Pair of FD Nodes
in the Case of General SINR Values.

1 Set τ = 0, and α 1(0) = , β 0(0) = ;
2 repeat

3
4
5
6
7
8
9
10
11

λ λ m m j

m m

μ μ ν ν

P P

P P

convegence
α τ α τ β τ β τ τ τ

repeat

until

Initialize and to some non−negative values, and set = 0 and = 0, for all ;

Each FD pair receives updated powers from other nodes;

Each FD pair computes and ,

and solves the master problem to update , and , ;

Each FD pair solves the subproblem for { *, *};

Each FD pair distributes{ *, *}to the entire network;

;
Each FD pair updates ( ), ( ), ( ), and ( )as in (29) and (30); ← + 1;

aj bj aj bj

aj bj

aj bj aj bj

aj bj

aj bj

aj bj aj bj

12 until convegence;

The distributed power control algorithm for the general network/
SINR case is presented in Algorithm 3. Specifically, in each iteration,
m τ( )aj and m τ( )bj can be sensed from the radio environment. We then
use them to compute x τ( )aj as in (29), using x τ( )aj to update α τ( )aj and
β τ( )aj , and using x τ( )bj to update α τ( )bj and β τ( )bj . Finally the new power
assignment τP( + 1) is derived based on α τ( ) and β τ( ).

5. Power control in a general FD network

In Sections 3 and 4, we mainly focus on the two-node FD
transmission scenario, where the FD nodes are paired to transmit to
and receive from each other. In this section, we consider the more
general case of FD networks. We assume a link scheduling algorithm in
force, which schedules FD and/or HD transmissions for the FD nodes,

based on their traffic demand. As a result, in the graph formed by the
nodes and active links, each of the FD nodes will have a node degree of
either 0 (if it is not scheduled to transmit or receive), or 1 (if it is a HD
transmitter or receiver), or 2 (if it is scheduled to transmit and receive
simultaneously).

The snapshot of the FD network with nodes and active links, termed
transmission graph in this paper, will thus consist of various sub-
graphs, such as an isolated vertex (no transmissions and thus no need
for power control), a path (or, an open walk), and a cycle (or, a closed
walk). In the case of a path, the head and tail node of the path operate
in HD transmit and receive mode, respectively, while each intermediate
node operates in FD mode, receiving from the previous node while
transmitting to the next node in the path. In the case of a cycle, each
node operates in FD node, receiving from the previous node while
transmitting to the next node. When the cycle consists of only two
nodes, it reduces to the FD pair case we studied in the previous two
sections. Some examples are given in Fig. 3.

In the following, we first examine the problem of power control in
the basic three-node cycle case. We then show that a general FD
network can be decomposed to basic elements and show how to
perform power control in the general FD network.

5.1. Basic three-node FD cycle

Consider the basic scenario of a three-node cycle. In the cycle, node
a transmits to node b, while receiving data from node c; node b
transmits to node c, while receiving data from node a. The sum rate of
the 3 nodes, denoted as Cabc, is

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

C P G
χP PG N

P G
χP P G N

PG
χP P G N

= log 1 +
+ +

+ log 1 +
+ +

+ log 1 +
+ +

abc
a ab

b c cb b

b bc

c a ac c

c ca

a b ba a (31)

The optimal power control problem for this three-node network can
be formulated as

Cmax
P P P

abc
{ , , }a b c (32)

P Ps. t. 0 ≤ ≤a max (33)

P P0 ≤ ≤b max (34)

P P0 ≤ ≤c max (35)

Let P P P P={ , , }a b c , α α α α= { , , }a b c , and β β β β= { , , }a b c . Applying the
lower bound approximation for logarithm functions (25), we have

Fig. 3. The basic cases of N ≤ 3.
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c
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c
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b b c cb b
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(36)

Therefore, the sum rate (31) is transformed into a sum of
logarithms, each being a logarithm of a linear combination of Pa, Pb,
and Pc. The approximated problem is concave and also solved with
Algorithm 3.

The above result is extended to a general FD cycle, as given in the
following lemma.

Lemma 1. Suppose there are N nodes, i.e., x1, x2, ⋯, and xN, that
form a cycle, where node xi transmits to node xi+1, for all

i N1 ≤ ≤ − 1, and node xN transmits to node 1. Suppose there are
M other nodes, i.e., y1, y2, ⋯, and yM outside the cycle, which may
cause interference to the nodes in the cycle. Then the sum rate for the
N-node cycle is transformed into a sum of logarithms of linear
combinations of the transmit powers, i.e., Px1, Px2, ⋯, PxN , Py1, Py2, ⋯,
and PyM .

Proof. As in the case of the three-node cycle, the sum rate of the N-
node cycle is written as (note that x x=N+1 1)

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟∑C

P G

χP P G P G N
= log 1+

+ ∑ + ∑ +
cycle

i

N
x x x

x j i i x x x k
M

y y x x=1 ≠ , +1 =1

i i i

i j j i k k i i

+1

+1 +1 +1 +1

Applying the lower bound approximation for logarithm functions (25),
we have

⎛
⎝
⎜⎜

⎞
⎠
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∑

∑ ∑

α βC α G β α P

α χP P G P G N

P( , , ) = log + + log

− log + + +

cycle
i

N

x x x x x x

x x
j i i

x x x
k

M

y y x x

(2)

=1

≠ , +1 =1

i i i i i i

i i j j i k k i i

+1 +1 +1 +1

+1 +1 +1 +1 +1

(37)

From Lemma 1, the lower capacity bound α βC P( , , )cycle
(2) is also

concave. Therefore, the power allocation problem for a cycle compo-
nent of a general FD network is solved with Algorithm 3.

5.2. General FD networks

Finally, we consider the case of a general FD network. As discussed,
with the link scheduling mechanism in force, the transmission graph is
a graph where each vertex represents a node, and each edge represents
an active link between two nodes. Since each node at most transmits to
another node and/or receives from the same, or another node, the in-
degree (i.e., the number of incoming edges) and the out-degree (i.e., the
number of outgoing edges) of each node is at most 1, and the node
degree is at most 2. Then we have the following theorem for the general
FD network.

Theorem 3. A directed graph G with a maximum node degree of 2, is
composed of isolated vertices, paths, and cycles.

Proof. We prove the theorem by induction with respect to the number
of vertices N of the graph G. For the base case of N ≤ 3, we simply

enumerate all possible scenarios, as given in Fig. 3. Note that in
Figs. 3–8, the links are directional but the directions are omitted for
clarity.

The hypothesis assumption is that the theorem holds true for any
directional graphs Ga with k or fewer vertices. Now, we show that the
theorem also holds true when an additional vertex a is added to the
graph, to form a new directional graph G with k + 1 vertices. Since the
degree of vertex a is either 0, 1, and 2, we examine these cases in the
following.

• When the deg(a)=0: as shown in Fig. 4, vertex a is an isolated vertex.
Since the theorem holds true for Ga with k vertices following the
hypothesis assumption, then G only contains isolate vertices, paths,
and cycles.

• When the deg(a)=1, vertex a has only one neighbor, termed vertex b
in Ga. We have the following two cases. If deg(b)=1, as in Fig. 5, then
edge ab (or ba) forms a path in G. If the deg(b)=2, as in Fig. 6, then
vertex b is an endpoint of a path P in Ga, and a P∪ forms a longer
path in G. Following the hypothesis assumption, G only contains
isolate vertices, paths, and cycles.

• When the deg(a)=2, vertex a has two neighbors, say, vertices b and
c. We have the following three cases. If both vertices b and c have a
degree of 1, then nodes a, b, and c form a path in the augmented
graph G. If both vertices b and c have a degree of 2, then we have
two cases. First, vertices b and c are the endpoints of two different
paths in graph Ga. Then vertex a connects the two paths to form a
longer path, a shown in Fig. 7. Second, vertices b and c are the
endpoints of the same path in Ga. Then vertex a connects vertices b
and c to form a new cycle in graph G, as shown in Fig. 8. Following
the hypothesis assumption, G only contains isolate vertices, paths,
and cycles.

In conclusion, considering the base case and the hypothesis
induction, we can claim that for all N, a graph with N vertices and

a

G-a

Fig. 4. The degree of vertex a is 0.

a

G-a

b

Fig. 5. The degree of vertex a is 1 and its neighbor is an isolated vertex in Ga.
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maximum node degree 2, is composed of isolated vertices, paths, and
cycles. □

Theorem 3 shows that a general FD network can be decomposed
into isolated nodes, paths, and cycles. From the power control
perspective, we have (i) For the isolated nodes, they do not need to
communicate with other nodes and their transmission power should be
set to 0. (ii) For the nodes that are in cycles, according to Lemma 1, we
transform the sum rate into a sum of logarithms of linear combinations
of the transmit powers, which can then be solved by a convex
optimization solver. (iii) For the nodes that are in paths, a path is a
special case of cycle. The tail node does not transmit and its power
should be set to 0.

Therefore, for a general FD network, we use Algorithm 4 to solve for
the near optimal transmit powers. Note that each node executes the
algorithm to compute its transmit power, but they do not need to know

the topology of the transmission graph.

Algorithm 4. Distributed Power Control Algorithm for General Full
Duplex Networks.

1 Set τ = 0, and α 1(0) = , β 0(0) = ;
2 repeat

3
4
5
6
7
8
9
10
11

λ m

m

μ ν
P

P
convergence

α τ β τ
τ τ

repeat

until

Initialize to some non−negative values, and set = 0;

Each FD node receives updated powers from other nodes;

Each FD node computes

and solves the master problem to update and ;
Each FD node solves the subproblem for *;
Each FD nodes distributes * to the entire network;

;
Each FD node updates ( ) and ( );

← + 1;

i

i i

i

i

i i

12 until convergence;

6. Simulation results

In this section, we validate the proposed algorithms with simula-
tions. We first examine the case of one pair of FD nodes with unbiased
noise. We use an HD network with the same setting as a benchmark; a
simplified version of the proposed algorithm is used to find the optimal
powers for the HD only network. Note that in the FD network, it is
possible that the optimal power for some nodes are zero, indicating
that such nodes operate in the HD mode. In the simulations, we
assume log-normal block fading channels, with zero mean and 10 dB
standard deviation. The path loss exponent is 4. The noise powers are
randomly generated around−110 dB W, unless otherwise specified. The
results are presented for a time slot within which the channel gains do
not vary. The peak power is set to P = 5 mWmax .

We first demonstrate the impact of the self-interference coefficient χ
and noise on FD transmissions in Figs. 9 and 10. In Fig. 9, we plot the
normalized throughput as a function of χ. It is seen that, as χ is
increased, the normalized throughput of the FD network converges to
that of the HD network. Particularly, when χ is less than −45 dB, FD
achieves a significant throughput gain over HD; the more effective the
self-interference cancellation, the higher the throughput gain.

In Fig. 10, we fix χ = − 80 dB and plot the normalized system
throughput for increased noise levels. In this simulation, the FD

a

G-a

b

P

Fig. 6. The degree of vertex a is 1 and its neighbor is the head or tail of a path in Ga.

a

G-a

b

P

c

P’

Fig. 7. The degree of vertex a is 2 and its two neighbors are the head or tail of two
different paths in Ga.

a

G-a

b

P
c

Fig. 8. The degree of vertex a is 2 and its 2 neighbors are the head and tail of the same
path in Ga.
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Fig. 9. Optimal throughput of a single pair of FD nodes versus χ.
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throughput is always higher than that of the HD for the entire range of
simulated noise levels. As the noise level is decreased, especially when
the average noise power is lower than −120 dB, the FD network
throughput approaches that of the HD network. This is because when
the noise is extremely low, if one of the nodes, say node b, has P → 0b ,
the denominator of SINRb (see (4)) will be reduced close to zero. The
throughput of node b will be dramatically increased, which dominates
the reduction in the throughput of node a. Thus the pair will work in
HD mode.

Next, we demonstrate the performance of the proposed algorithms
for a bidirectional FD network of M=4 node pairs. The general
approximation algorithm shown in Algorithm 3 is used to obtain the
results shown in Figs. 11 and 13. The convergence of the eight
transmition powers are plotted in Fig. 11. With the proposed algo-
rithm, all the transmition powers converge to the optimal power
allocation after several iterations. After convergence, node 2 transmits
at the maximum power Pmax, nodes 3, 4, 7, and 8 are not allowed to
transmit (with transmit power zero), and nodes 1, 5, and 6 assume
some transmition power lower than Pmax. This is consistent with the
single pair of nodes case in Theorem 1 (i.e., at least one node transmits
at the peak power). Among the four node pairs, two of them operate in
FD mode (1–2 and 5–6), while two of them are turned off (3–4 and 7–
8), in order to achieve a larger sum rate. As the channels vary over time
slots, the node pairs with power zero in this time slot will get their turn
to transmit in future time slots.

The convergence of the sum rate is presented in Fig. 12. We find
that the sum rate also converges after several iterations. With
Algorithm 3, the sum rate is always non-decreasing across the iterations. The optimal sum rate of the FD network is about 1.6 times

of that of the HD network, demonstrating the benefits of FD transmis-
sions and distributed power control.

In Figs. 13 and 14, we examine the basic three-node FD model
assuming all the nodes need to transmit. The general algorithm shown
in Algorithm 4 is used to obtain the transmition powers. From the
output of our algorithm, the transmition powers for node 1, 2, and 3 in
Fig. 13 are 0 mW, 5 mW, and 5 mW, respectively. The transmition
powers for node 1, 2, and 3 in Fig. 14 are 5 mW, 0 mW and 0 mW,
respectively. These results imply that the FD mode may not always be
beneficial. In Fig. 13, node 3 has less interference to node 1, so that the
near optimal throughput is achieved when both nodes 2 and 3 nodes
transmit simultaneously. However, in the scenario in Fig. 14, only node
1 transmits in the near optimal scenario.

Finally, we simulate a general scenario as shown in Fig. 15, where four
FD links transmit simultaneous on the same channel. With each three-
node FD link, the three nodes form a path, while the node in the middle
operates in FD mode. The self-interference cancellation coefficient is
χ = − 80 dB. This is like a small cell/femtocell deployment scenario
where the BS is in the FD mode, the user equipment is in HD mode,
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Fig. 10. Optimal throughput of a single pair of FD nodes versus noise level.
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and the four small cells share the same channel. The convergence of the
transmit powers are presented in Fig. 16, and the convergence of the
network-wide throughput is shown in Fig. 17, where fast convergence is
observed. The FD enabled network achieves a 1.2 times higher throughput
than the corresponding HD network in this case.

7. Related work

We briefly review related work on FD in this section. FD has
become a hot research area in recent years [14–16]. There have been
several seminal works on both the theoretic aspect (such as deriving the
capacity region [3]) and practical design of FD wireless networks [4]. A
practical design and implementation was reported in [4], including the
antenna structure, several kinds of self-interference cancellation tech-
niques, and MAC layer design. The authors showed that up to 73 dB
suppression of self-interference for a 10 MHz OFDM signal and at least
45 dB reduction at a 40 MHz channel are achievable. Various self-
interference cancellation schemes have been investigated in prior
works [5–7], such as PDIS, Analog Self-Interference Cancellation,
which reduces the self-signal by the design of distance between
transmitting antenna and receiving antenna, and Digital Self-
Interference Cancellation [4,7,14,17], which cancels the self-signal by
subtracting the transmitted signal from the receiving signal. In [8], the
details of self-interference cancellation was reviewed and the paper
then focused on antenna design, including the arrangement of the
position of transmitting and receiving antennas.

In [9], the authors studied power allocation for a single pair of FD
nodes equipped with MIMO. It was assumed that the power for each
single antenna at the same node were equal. The two transmition
powers for the FD pair were then optimized to achieve the maximum
throughput. In [18], we studied power control for an underlay cognitive
ratio network with FD transmissions, and developed a centralized
scheme with a control-theoretic approach. In [19,20], we investigated
the incorporation of FD transmissions in cognitive femtocell networks,
and developed a matching based algorithm for joint duplex mode
selection, channel allocation, and power control for FD cognitive
femtocell networks.

8. Conclusion

In this paper, we developed distributed algorithms for near optimal
power control in FD wireless networks. For the case of a single pair of
FD nodes, we presented a simple algorithm that computed the optimal
powers. For the case of multiple pairs of FD nodes, we first developed a
distributed algorithm by applying the high SINR approximation, and
then proposed a distributed algorithm based on an iterative approx-
imation method for the logarithm function. For general FD networks,
we examined the performance for the basic 3-node mode, and showed
that a general FD network can be decomposed into isolated nodes,
paths, cycles, for which the power control problem was solved with the
proposed distributed algorithm. The proposed algorithms were vali-
dated with simulation studies.
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