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Abstract—Large Language Models (LLMs), such as LLaMA
and GPT-4, have transformed the paradigm of natural language
comprehension and generation. Despite their impressive perfor-
mance, these models still face certain challenges, including the
need for extensive data, high computational resources, and pri-
vacy concerns related to their data sources. Recently, Federated
Learning (FL) has surfaced as a cooperative AI methodology
that enables AI training across distributed computation entities
while maintaining decentralized data. Integrating FL with LLMs
presents an encouraging solution for privacy-preserving and
collaborative LLM learning across multiple end-users, thus ad-
dressing the aforementioned challenges. In this paper, we provide
an exhaustive review of federated Large Language Models,
starting from an overview of the latest progress in FL and
LLMs, and proceeding to a discourse on their motivation and
challenges for integration. We then conduct a thorough review
of the existing federated LLM research from the perspective
of the entire lifespan, from pre-training to fine-tuning and
practical applications. Moreover, we address the threats and
issues arising from this integration, shedding light on the delicate
balance between privacy and robustness, and introduce existing
approaches and potential strategies for enhancing federated
LLM privacy and resilience. Finally, we conclude this survey by
outlining promising avenues for future research in this emerging
field.

Index Terms—Federated Learning, Large Language Model,
Foundation model, Privacy.

I. INTRODUCTION

In the past few years, the domain of Artificial Intelligence
(AI) [1]–[8] has experienced a paradigm shift with the advent
of Foundation Models (FMs), prominently represented by
Large Language Models (LLMs). LLMs, including GPT series
[9]–[11], PaLM [12], and LLaMA [13], boast billions of
parameters and have attracted considerable interest owing to
their outstanding performance across a wide spectrum of AI
tasks, such as text generation [14], contextual awareness [15],
and even planning and reasoning [16]. Based on these AI
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NOMENCLATURE

Acronyms Definitions
AI Artificial Intelligence
ML Machine Learning
FL Federated Learning
LM Language Model
LLM Large Language Model
NLP Natural Language Processing
GPT Generative Pre-Training Transformer
i.i.d Independently and Identically Distributed
PFM Pretrained Foundation Model
IoT Internet of Things
UAV Unmanned Aerial Vehicle
HFL Horizontal Federated Learning
VFL Vertical Federated Learning
TFL Transfer Federated Learning
CFL Centralized Federated Learning
DFL Decentralized Federated Learning
RNN Recurrent Neural Network
SGD Stochastic Gradient Descent
BERT Bidirectional Encoder Representation from Transformers
RLHF Reinforcement Learning with Human Feedback
KD Knowledge Distillation
GPU Graphics Processing Unit
PEFT Parameter-Efficient Fine-tuning
LoRA Low-Rank Adaptation of Large Language Models
FLOP Floating Point Operations
SMPC Secure Multi-Party Computation
DP Differential Privacy
HE Homomorphic Encryption
IP Intellectual Property
GAN Generative Adversarial Network
ViTs Vision Transformers Models
CLIP Contrastive Language-Image Pre-training

tasks, LLMs have paved the way for a plethora of appli-
cations in diverse fields. They provide technical assistance
not only to areas directly linked to language processing (e.g.,
search engines [17], service support [18], and multi-language
translation [19], [20]), but also prove beneficial in broader
contexts such as code generation [21], chatbot [22], finance
[23], and legal consultation [24]. However, while LLMs have
achieved impressive success in various domains, these models
necessitate substantial amounts of high-quality data and sig-
nificant computational resources, which result in substantial
costs for the training and utilization of LLMs. Moreover,
LLMs typically rely on extensive public datasets for training.
To enhance their performance in specific domains, they need
to incorporate data from private entities, such as hospitals
and banks. However, these highly sensitive data pose privacy
challenges that hinder further improvements in LLMs unless
well addressed.

In the field of machine learning, Federated Learning (FL)
has recently gained traction as an innovative framework that
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enables intelligent learning systems while maintaining data
privacy [25]–[28]. FL is a decentralized artificial intelligence
strategy that facilitates model training across numerous de-
vices, coordinated by a central server, without the need to
exchange the actual data. Typically, the process begins with
the central server, or the aggregator, initializing a global model
with certain learning parameters. Each participating device,
referred to as a worker, retrieves the latest model from the
aggregator, applies its own data to update the model, and
then transmits this updated model back to the aggregator. The
aggregator then amalgamates these updates from all workers
to refine the global model. By harnessing the computing power
of distributed workers, significant computational resources can
be saved for the centralized server. Additionally, since the
data remains local, the data transmission cost associated with
centralized training is reduced, and user privacy risks are
minimized.

With these distinctive advantages, FL can address various
challenges faced by LLM systems, spanning from pre-training
to deployment, as previously discussed. LLM can also assist
FL in synthetic data generation to mitigate the non-i.i.d (non-
independent and identically distributed) data challenge within
FL. Therefore, the integration of LLMs and FL, namely feder-
ated LLM, is emerging as a prominent and trending topic [29]–
[31]. FL leverages distributed data sources to efficiently supply
LLMs with a vast amount of data, which is one of the primary
requirements for LLMs. Additionally, the use of distributed
data sources helps circumvent the communication overhead
typically associated with centralizing distributed datasets. FL’s
capacity for reliable privacy protection during distributed train-
ing enables access to high-quality, private domain data beyond
publicly available datasets. For instance, medical data from
hospitals can be harnessed to address knowledge gaps in LLMs
within specific domains, thereby enhancing model accuracy
and generalizability. Furthermore, the distributed computing
nature of FL allows for the exploitation of computational
resources from numerous edge devices. This exploitation can,
to some extent, alleviate the immense computational power
required by large models. However, integrating FL with LLMs
introduces new and unexplored challenges. These challenges
include heterogeneity in federated LLM training, as well as
new privacy and security concerns arising from this amal-
gamation. For example, the integration of FL with LLMs
raises significant concerns regarding data leakage and model
inversion attacks. Adversaries may exploit the gradients shared
during the training process to infer sensitive information about
the underlying data. Therefore, it is imperative to develop
advanced cryptographic techniques and differential privacy
methods to safeguard against such threats. Furthermore, the
amalgamation of FL and LLMs necessitates stringent access
control and authentication protocols to prevent unauthorized
access and ensure the confidentiality of the training data. The
implementation of Secure Multi-Party Computation (SMPC)
and homomorphic encryption can provide viable solutions to
these privacy and security challenges. To examine the current
state of research and address the encountered challenges, this
article will conduct a comprehensive survey of the federated
LLM domain.

A. Related Reviews and Our Contributions

Prompted by the latest progress in FL and LLM, a number
of overviews on the corresponding studies have emerged. For
instance, Khan et al. [32] review the recent advances of FL
for enabling IoT applications. They propose a comprehensive
set of evaluation metrics, such as sparsification, robustness,
quantization, scalability, security, and privacy, to rigorously
evaluate the recent progress. Furthermore, they establish a
systematically structured classification for understanding FL
in IoT networks. Similarly, Nguyen et al. [33] investigate FL
for a range of crucial IoT services and explore related works
in IoT applications. Other studies such as [34]–[37] have also
presented the fundamental principles of FL. and the taxonomy
of recent work under various scenarios. In addition, Lyu et
al. [38] delve into the privacy and robustness challenges in
FL, offering a thorough classification of FL threats along with
the respective protective measures and outlining prospective
avenues for future research. Several other similar works [14],
[39] also provide a detailed taxonomy from the FL privacy
and security perspective.

On the other hand, with the rise of LLMs, there has been a
surge in survey works based on LLMs. For instance, Zhou et
al. [40] present an extensive survey of the latest developments,
existing challenges, and future prospects for Pretrained Foun-
dation Models, with a particular focus on LLMs among diverse
data types. Xi et al. [41] delve into the realm of LLM-based
agents, exploring current research and future prospects in this
domain. They introduce a general conceptual framework for
LLM-based agents, comprising three essential components:
brain, perception, and action, which is adaptable to various
applications. Wang et al. [42] offer a comprehensive overview
of LLM alignment technologies, discussing from three major
perspectives, including data collection, training methodologies,
and model evaluation. This serves as a crucial guide for
individuals interested in comprehending and progressing the
alignment of LLMs to more effectively meet human-centric
tasks and expectations. In [43], the authors conduct a thorough
examination of the security and privacy issues associated with
LLMs concerning both training data and application-based
risks across various domains. The review includes an assess-
ment of the vulnerabilities inherent to LLMs, an investigation
into the emerging security and privacy attacks targeting these
models, and a comprehensive evaluation of potential defense
strategies. Several other works [44]–[47] also provide detailed
introductions to various aspects of LLMs.

While FL and LLMs have been studied extensively in
isolation within the existing literature, as far as we know,
only a selected number of studies have conducted an in-depth
analysis specifically focused on the system architecture of
federated LLMs, a categorization of existing federated LLM
works, and federated LLM applications in various scenarios.
For instance, Yu et al. [48] and Chen et al. [49] emphasize the
potential benefits and challenges of FL throughout the lifecycle
of LLMs, including stages of pre-training, fine-tuning, and
application. They also delve into future research directions,
aiming to facilitate the creation of more personalized and
context-sensitive models, all while prioritizing data privacy
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Fig. 1: Organization of this paper.

protection. Similar work has been proposed by Zhuang et
al. [50], aiming to understand of the synergistic relationship
between FL and LLM. Their study highlights the motivations,
challenges, and future directions in more detail. Nonetheless,
these studies have merely offered a cursory overview of the
fundamental notions and challenges, without conducting a
comprehensive review of all the current relevant research.
These limitations inspire us to carry out a more thorough
survey of the integration of FL and LLM. The principal
contributions of this paper are highlighted as follows:

1) We present a state-of-the-art survey on the topic of
federated LLM, beginning with an introduction to the
basic system concept and recent advances in FL and
LLM. We also engage in an in-depth discussion about
the motivation behind integrating FL and LLM, delving
into how this union can foster innovation and enhance
efficiency across both fields.

2) We conduct a comprehensive investigation and analysis
of the existing work, spanning from pre-training and
fine-tuning to application. Various detailed topics, such
as data construction, initialization, and research related
to heterogeneity, are thoroughly reviewed. Addition-
ally, we provide taxonomy tables summarizing the key
technical aspects and contributions of each proposed
approach for federated LLM.

3) Furthermore, we undertake a thorough review from the
perspectives of privacy and robustness. We have curated

a list of potential threats to privacy and security that
federated LLMs may encounter, along with a detailed
analysis of corresponding defense strategies. Further-
more, we offer taxonomy tables summarizing these
research efforts, providing a clear overview of the field’s
current state and challenges.

4) We identify several critical research challenges and
outline prospective research directions that aim to boost
the performance and utility of federated LLMs.

B. Structure of the Survey
The structure of this paper is systematically outlined in Fig.

1. Section II offers a primer on the foundational concepts of
the system and delves into the latest developments in FL and
LLMs. It particularly explores the core mechanisms of FL, the
various types of federated methodologies, and the progression,
architecture, and taxonomy of LLMs. Section III examines
the impetus and obstacles associated with merging FL with
LLMs. Section IV provides a comprehensive survey and cate-
gorization of the current work on federated LLMs, from pre-
training and fine-tuning to application, and meticulously sorts
through different subtopics in detail. Section V addresses the
work on federated LLMs from the perspectives of privacy and
robustness, investigates potential privacy and security threats
that may arise, and presents an in-depth analysis of the respec-
tive countermeasures. Section VI discusses potential future
directions aimed at enhancing the performance of federated
LLMs. Section VII summarizes the survey.
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Fig. 2: A typical FL procedure considering N number of
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II. BACKGROUND

A. Federated Learning

FL has gained significant attention across multiple research
fields, leading to a proliferation of studies on FL. Since its
inception in 2016 [51], FL has been a game-changer for a
multitude of intelligent Internet of Things (IoT) applications.
It has offered groundbreaking AI solutions, capitalizing on
its distributed framework and privacy-conscious features. FL
can be described as a distributed approach to ML. In this
framework, clients independently conduct training on their
datasets and update a collective global model at a central
server without exposing their individual data. This process
enables devices to benefit from a comprehensive model while
preserving data privacy, as they periodically contribute to the
enhancement of the global model by sharing their model
updates.

1) Definition of Federated Learning: In the standard FL
framework, it is assumed that there are N participating clients,
denoted as {C1, C2, . . . , CN}. Each client Cn possesses a
private dataset Dn = {xn

i , y
n
i }

Kn
i=1 with |xn| = Kn and

K =
∑K

n=1 Nk. In addition, client Cn typically possesses
a learned local network model or an initialized model, rep-
resented by f(θn). Thus, f(xn, θn) represents the predicted
result of the private sample xn based on the local model θk.
Conventional ML frameworks are typically built on a larger
centralized dataset, denoted as Dcentral = D1∪D2∪ ...∪DN ,
by directly combining the private datasets of each client. This
merged dataset is subsequently employed to train a model
with better performance, symbolized by θcentral. Despite
the limitations imposed by data silos and privacy concerns,
traditional centralized learning approaches are impractical for
use in real-world contexts where privacy is paramount. As a
remedy, FL allows each participant, Cn, to jointly train the
models without revealing the private data Dn to other clients
Cn0(n ̸= n0). As shown in Fig. 2, the typical FL procedure
includes the following key stages:

1) System Initialization. The server receives the task
requirements and target application, then establishes
learning parameters, for instance, learning rates and
communication rounds. In addition, the server chooses a
set of clients, denoted as {C1, C2, ..., CK}, to participate

and set up the initial global model θ1global in the first
round. Subsequently, it distributes the present global
model θt−1

global to all the clients involved. This serves as
the initialization of local models θt−1

1 , θt−1
2 , . . . , θt−1

N .
2) Local Training and Update. Each client Cn employs

its private dataset Dn to execute local model updates in
the following manner:

θtn ← θt−1
n − α∇θLn(f(x

n, θt−1
n ), yn), (1)

where α denotes the learning rate and Ln() denotes the
calculated loss for each client n. The loss function can
differ among various FL approaches [28]. Subsequently,
each client, labeled as n, sends its computed update θtn
to the central server.

3) Model Aggregation and Global Update. Upon receiv-
ing the local models {θt1, θt2, . . . , θtN} from the partic-
ipants, the FL server conducts an aggregation process
and subsequently generates an updated version of the
global model θtglobal by

θtglobal ←
1∑

n∈N |Dn|

N∑
n=1

|Dn|θn. (2)

After aggregating the models, the server disseminates
the latest global update θtglobal to every client. This is
intended to enhance the local models in the ensuing
training iteration. The FL procedure is reiterated until
the global loss function reaches convergence or attains
a predetermined accuracy benchmark.

2) Taxonomy of FL Frameworks: Recent research in FL
[33], [35], [52] has made significant advances. Typically,
FL can be categorized according to federation scale, parti-
tioning sample and networking structure. In this subsection,
we conduct a detailed study of each individual instance of
categorization.

Depending on the nature of the data distribution across
clients, FL is typically classified into three distinct categories,
including Horizontal Federated Learning (HFL) [53], Verti-
cal Federated Learning (VFL) [54], and Transfer Federated
Learning (TFL) [55], as summarized in Fig. 3.

HFL is the predominant technique utilized in FL. It en-
compasses the federation of samples and is optimal in situ-
ations characterized by a high degree of feature overlap but
minimal node overlap. Such conditions are commonly linked
with cross-device scenarios. In an HFL framework, every
participant independently develops their AI model, which
results in a local update. To ensure security and privacy,
these local updates can be concealed through methods like
encryption or application of differential privacy. Following
this, a central server consolidates all the local updates received
from the clients to formulate a new, comprehensive global
update. This global update is then disseminated back to the
clients, facilitating the subsequent phase of local training. This
iterative cycle persists until the model’s loss function stabilizes
or attains a predetermined accuracy threshold.

In contrast, VFL and TFL present intricate challenges in
their implementation and integration within various application
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contexts due to their distinct approaches to data structuring.
VFL is designed to facilitate the collaborative learning of a
shared AI model among a network of clients that possess a
common set of samples but disparate feature sets. It employs
an entity alignment method to amalgamate intersecting sam-
ples from these clients, which are then used to collectively
train a unified AI model. Security during this process is
bolstered by the use of encryption protocols. Conversely,
TFL is the strategy of choice in scenarios where there is
a scant overlap of features and samples across nodes. It
involves the transformation of features from heterogeneous
feature spaces into a unified format, enabling the training
of a model with data compiled from numerous clients. The
server responsible for aggregation then updates the model
based on the weights received from the participants’ learning
processes. TFL’s primary goal is to develop tailored models
that are effective for specific use cases, particularly when
data availability is limited, thereby representing another crucial
facet of data organization within FL strategies.
Networking Structure: From the standpoint of network archi-
tecture, FL can be bifurcated into two subcategories: Central-
ized Federated Learning (CFL) and Decentralized Federated
Learning (DFL).

Currently, CFL is the most widely adopted framework in
FL. This structure involves a central server coordinating with
numerous clients to implement an FL model. During each
iteration of training, clients individually train their models on
local data and then forward the updated parameters to the
central server. The server employs a specialized algorithm for
aggregating these parameters, such as Federated Averaging
(FedAvg) [51], to produce a global model. This global model is
then circulated among all clients for further training rounds.
However, the centralized design of CFL can lead to issues
like a single point of failure, dependency on trust, and server
bottlenecks. These are common challenges in systems where
a central server plays a pivotal role. In contrast to the CFL
system, DFL presents a server-less paradigm of FL. This
approach underscores the benefits of adopting a peer-to-peer
model for delivery and aggregation, which is independent of
a central trusted server. Rather than exclusively interacting
with a central server, participants in a Decentralized FL

system can fully exploit the network bandwidth by utilizing
the network connections among themselves. This peer-to-peer
communication allows for a more distributed and potentially
more resilient system. These modern attributes of DFL make
it compatible with peer-to-peer communication technologies,
including blockchain [56], [57], to establish decentralized FL
networks.

B. Large Language Models (LLMs)

LLMs are typically sophisticated language models, distin-
guished by their extensive parameter sizes and exceptional
learning capabilities. The self-attention module in the Trans-
former [58] acts as the fundamental building block for these
LLMs, aiding in language modeling tasks. Furthermore, these
LLMs necessitate substantial computational resources and
diverse datasets for model pretraining. After the training phase,
LLMs require finetuning to meet specific downstream re-
quirements, including performance, speed, and confidentiality.
This section will offer a comprehensive introduction to the
background of LLMs concerning the aforementioned aspects.

1) LLM Background and Definition: Language models
(LMs) [59], [60] are computational models designed to com-
prehend and generate human language. Here, we focus on gen-
erative language models that generate text in an autoregressive
manner. These models predict the next token in a sequence
by calculating the probability distribution conditioned on the
preceding tokens, which unfolds as follows:

P(w) = P(w1) · P(w2|w1) · · · P(wT |w1, · · ·, wT−1), (3)

where {w1 · · ·wT } denotes a text sequence of T = |w| tokens,
and t is the current position. P(wt|w1, · · ·, wt−1) with t =
1, · · ·, T , is the probability the LM outputs on the token wt

given the previous t − 1 tokens. However, traditional LMs
usually encounter several challenges, such as dealing with rare
or unseen words, mitigating the issue of overfitting, and the
difficulty in capturing complex linguistic phenomena.

LLM have made great progress in solving the problems
that traditional LMs faced before, utilizing huge amounts of
high-quality data and having large amounts of parameters.
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The fundamental structure that has driven the recent advance-
ments of LLMs is the Transformer model. This model, first
introduced in 2017, has outperformed the traditional Recurrent
Neural Network (RNN) architecture and become the preferred
model for machine translation tasks. Transformer models
are more suitable for parallel computing than RNN, which
makes them to train faster and handle larger datasets. The
Transformer architecture is built around two key structures,
namely an encoder and a decoder. The encoder is constructed
from multiple identical layers, each containing a multi-head
attention mechanism and a feed-forward neural network. These
layers work in unison to process the input sequence, extracting
its features layer by layer, and culminate in a final output
that is passed on to the decoder. Similarly, the decoder is
comprised of several identical layers, each equipped with a
multi-head attention mechanism and a feed-forward neural net-
work. However, the decoder layers also include an additional
encoder-decoder attention mechanism, which focuses on the
input sequence while decoding. At the core of the Transformer
lies the machanism of self-attention. The fundamental formula
for the attention mechanism is given by:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V, (4)

where Q, K, and V represent Query, Key, and Value vectors,
respectively, while dk denotes the dimension of the key.
The self-attention mechanism quantifies the relevance of each
term within a sentence when forecasting a particular word. It
computes a weighted aggregate of the values for all terms in
the sentence, with the weights determined by the resemblance
of each term to the word under prediction.

As discussed, all modern LLMs are based on the Trans-
former architecture. This design allows these models to handle
up to trillions of parameters. Fig. 4 illustrates a thorough
overview of LLMs, including the model architecture, the
evolutionary trajectory of the LLMs, and the Transformer
structure.

2) Training and Fine-tuning of LLMs: The pre-training
process of large-scale language models involves numerous
crucial steps that are essential for their effective development.
This procedure usually begins with the collection and prepro-
cessing of a vast amount of text data from diverse sources. The
assembled dataset is viewed as the fundamental building block
for the training of LLMs. Table I shows several examples of
datasets used by typical models. During the training process,
unsupervised learning techniques are employed, wherein the
model learns to predict the subsequent word in a sequence
based on the context that precedes it. This task is commonly
referred to as language modeling. LLMs utilize sophisticated
neural network architectures, usually Transformers, which
allow them to capture intricate language patterns and depen-
dencies. The primary training objective is to optimize the
model’s parameters to maximize the likelihood of generating
the correct next word within a given context. This optimiza-
tion is typically achieved using an algorithm like stochas-
tic gradient descent (SGD) or its variants, combined with
backpropagation to iteratively update the model’s weights.
In addition, pre-training for LLMs necessitates significant
computational power. For example, GPT-3-175B [10] model
utilizes 3.14 × 1023 flops and LLaMa-70B [13] requires
1.7×106 hours of GPU processing. Consequently, the strategic
allocation of computational assets is crucial for the streamlined
pre-training of these language models.

On the other hand, the fine-tuning techniques for LLMs can
be classified into the following three categories:

Supervised Fine-Tuning (SFT): The fundamental principle
of SFT [69] involves refining the model through supervised
learning after extensive pre-training, thereby enhancing its
proficiency in conforming to the unique demands of a spe-
cific task. During the SFT procedure, it’s crucial to have
a labeled dataset specific to the given task, featuring input
texts paired with their respective labels. A subset of SFT,
known as instruction tuning, is commonly employed in the
fine-tuning stages of LLMs. This method further trains LLMs
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TABLE I: Datasets Utilized by Serveal Typical LLM Models

LLM Datasets
GPT-3 [10] CommonCrawl [61], WebText2 [62], Wikipedia [63], Books1 , Books2

LLaMA [13] CommonCrawl , Wikipedia , C4 [64], Books, Github, Arxiv, StackExchange
T5 [64] C4 , WebText, Wikipedia, RealNews

PaLM [12] Social Media, Wikipedia, Books, Github, Webpages
CodeGen [65] BIGQUERY [66], BIGPYTHON, the Pile

GLM [67] BooksCorpus [68], Wikipedia

using a dataset of both instruction and output, with the goal
of bolstering the models’ ability to comprehend and execute
human instructions, thus improving their functionality and
controllability.

Alignment Tuning: Alignment tuning is imperative. To
tackle the challenges posed by LLMs acting outside human in-
tentions [70]. LLMs undergo initial training with vast amounts
of varied data sourced from the internet. Despite preprocessing
efforts, it remains challenging to fully eliminate biased or
detrimental content from the extensive datasets used in train-
ing. While LLMs have shown remarkable abilities in a range of
language processing tasks, they can sometimes produce results
that stray from what humans might intend, such as creating
inaccurate information or biased and misleading expressions
[71]. A prominent strategy for alignment tuning involves the
use of Reinforcement Learning with Human Feedback (RLHF)
[69], which incorporates human-generated feedback to develop
a model that guides the reinforcement learning process.

Parameter-efficient Tuning: LLMs such as ChatGPT [11]
are constantly increasing in scale. However, for most re-
searchers, full fine-tuning on consumer-grade hardware is
infeasible and impractical. PEFT’s objective is to meet both
computational and memory demands in LLM finetuning. This
approach entails fine-tuning merely a select few or additional
model parameters, while the bulk of the pre-trained parameters
remain unchanged, thus significantly diminishing the need
for computational and storage resources. Notably, cutting-
edge techniques in parameter-efficient tuning have achieved
results on par with comprehensive fine-tuning. Among the
prominent methods of parameter-efficient tuning are Low-
Rank Adaptation (LoRA) [72], Prefix Tuning [73], and P-
Tuning [74], [75]. These techniques enable effective tuning
of models, even in settings with limited resources, offering
practicality and efficiency for real world applications.

III. MOTIVATION AND CHALLENGES

In this section, we will elaborate on the motivation and chal-
lenges of combining LLMs with FL. Current FL techniques
face several challenges when dealing with LLMs, including
model complexity and communication overhead. Due to the
large number of parameters in LLMs, traditional FL methods
incur high communication costs during model updates and
parameter synchronization. Additionally, FL has limitations
in handling heterogeneous data and devices, which can affect
model performance and convergence speed. In particular, we
will investigate how FL can address the current issues in the
LLM training and application processes, and vice versa, how
LLMs can support FL in various aspects.

A. Massive and Distributed Nature of LLM Training Data

LLMs are typically pretrained using massive and high-
quality data to achieve an astounding performance. For in-
stance, GPT-3 used 45TB of text data for training, while
Meta LLaMA-2 used 20 trillion tokens for training. However,
such high-quality data is projected to be exhausted within five
years [76]. Moreover, platforms that previously offered free
public data, such as Twitter, have begun charging substantial
fees for accessing their data [50]. In addition, utilizing these
public data may also involve legal and copyright-related com-
plications. It will become increasingly difficult to train better-
performing LLMs using public datasets.

Conversely, a substantial volume of data remains accessible
within private domains, spanning a wide array of personal and
corporate sources. However, aggregating these distributed pri-
vate datasets for centralized training would not only necessitate
intricate data integration efforts but also pose potential privacy
risks. Considering both model performance and efficiency, FL
stands out as a promising solution. By directly utilizing private
data for model training, it addresses the challenges posed by
privacy and data distribution across various domains. Besides,
by training with FL, LLMs can access a wider range of data
for optimization tasks such as fine-tuning, prompt tuning, and
pre-training. The enhanced data access facilitates the creation
of more accurate and efficient AI systems, better tailored to
meet the needs of users across a wide range of application
scenarios.

B. Data Privacy

Data privacy is a crucial concern in LLM training and
application, given the massive and distributed data used. In
FL, the server does not need raw data for training. The server
and clients only exchange intermediate information in model
training, such as model weights or gradient updates. This
core idea ensures that sensitive data stays local and is not
leaked. Therefore, FL reduces the risk of exposing sensitive
user information to external third parties and enhances data
privacy in LLM training and application.

C. Continuous Performance Improvement with Updating Data

Another data-related challenge is the necessity of keeping
LLMs updated with the latest knowledge. Data in real-world
scenarios are constantly growing even during a short time.
For instance, common applications such as drones and mobile
robots are constantly generating new data over time [77].
Maintaining the relevance and timeliness of LLMs becomes
challenging, particularly when dealing with distributed data.
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The dynamic nature of information across various sources ne-
cessitates continuous adaptation and updates to ensure LLMs
remain accurate and effective. FL provides a solution by
enabling continuous adaptation and enhancement of models
by utilizing distributed and heterogeneous data sources. For
instance, LLMs can be deployed in a federated manner, where
local models undergo additional fine-tuning based on the data
specific to that locality. Rather than transmitting local data,
only the updates to the model are transmitted back to the
central server. This allows the global model to be progressively
enhanced based on user data, without ever directly accessing
that data.

D. High Computational Demand for LLM Training

As discussed in Sec. II, LLMs have a huge number of
model parameters. Hence, training large-scale LLMs demands
considerable computational resources. This poses a challenge
for separate entities lacking the necessary framework or capa-
bilities to independently conduct LLM training. FL facilitates
a collective training approach, permitting entities to combine
their computational capabilities, which in turn, decentralizes
the training workload and alleviates the burden on any single
entity. On the other hand, FL usually involves multiple local
clients with heterogeneous computing resources in the entire
life-span process, and it can adjust the original model accord-
ing to the node’s computing capability, so that even clients
with low computing power can also join in the LLM training
and fine-tuning process.

E. Model Personalization and Adaptation

With the rapid development of LLMs, an increasing num-
ber of large models are evolving towards specific domains.
These application scenarios not only involve different specific
domain knowledge, but also have certain constraints on the
computing power and hardware requirements of clients. There-
fore, due to the decentralized nature of FL, it can provide users
with personalized and adaptive LLM services by training on
diverse, user-generated data. Another important issue is the
bias in LLM training. In FL, the models learn from various
users, which diversifies the data and knowledge that LLMs
use. This helps the models better understand the nuances
and complexities of real-world scenarios, and leads to more
informed and less biased decisions for different tasks and
domains, which contribute to bias reduction in LLM systems.

F. LLM-assisted FL

While FL can address numerous challenges associated with
LLMs, LLMs can reciprocally offer substantial support to
classic FL. For instance, a common issue in classic FL is
client drift, which arises from the heterogeneity in private
data distribution among clients. To improve FL performance,
recent research suggests incorporating data gathered from
public domains, such as the Internet, into the FL process. The
success of methods that utilize public data is largely dependent
on the quality of the gathered public data. To overcome the
constraints associated with public data, approaches based on

synthetic data for FL have been developed. LLMs, which are
pre-trained on wide-ranging datasets, have powerful fitting
capabilities of data distribution. This enables them to create
synthetic data that faithfully reflects the varied and intricate
nature of real-life data scenarios.

Additionally, LLMs can effectively address the issue of
suboptimal performance in FL through a process known as
knowledge distillation [78], [79]. Knowledge distillation is
a technique where the LLM, functioning as the “teacher,”
imparts its knowledge to streamline the training of a more
basic “student” model within the FL framework. The LLM
usually employs knowledge distillation to refine and condense
the student model. Subsequently, each participant in the FL
network utilizes this distilled student model to bolster their
local training efforts. The transfer of insights from the LLM
to the smaller model elevates the latter’s performance and
ability to generalize, addressing the challenges posed by scarce
or unevenly distributed data. This approach allows for more
efficient and effective learning within the FL system.

G. Challenges

The integration of LLMs with FL provides many benefits
as we explained above, yet it also inherits certain fundamental
challenges from the existing LLM and FL paradigms. In this
context, we will delve into these challenges, with a specific
emphasis on architectural design, privacy and security issues.

Computational and communication resource issues: In
conventional Federated Learning FL, memory, communica-
tion, and computation costs are critical factors that signif-
icantly impact performance. These challenges become even
more pronounced when integrating LLMs due to their substan-
tial size and complexity. One of the core principles of FL is
the frequent exchange of model updates between clients and
the central server [80]–[82]. When dealing with LLMs, the
volume of data that needs to be transmitted and synchronized
across multiple clients is immense. This results in significant
communication overhead, which can lead to increased latency
and reduced overall system performance. The high commu-
nication cost can also be a barrier in scenarios with limited
bandwidth or unstable network connections. Training LLMs
is computationally intensive, requiring substantial processing
power and energy consumption. In an FL setting, this compu-
tational burden is distributed across multiple clients, many of
which may not have the necessary computational resources to
handle such demanding tasks. This can lead to uneven training
progress and suboptimal model performance, as some clients
may struggle to keep up with the computational demands. To
address these resource challenges, several strategies can be
employed. Techniques such as pruning [83], [84], quantization
[85], [86], and knowledge distillation [87], [88] can be used
to reduce the size of LLMs, making them more manage-
able for FL environments. These methods help in decreasing
memory and computation requirements without significantly
compromising model performance. Instead of training LLMs
from scratch, fine-tuning pre-trained models [89], [90] on
specific tasks can significantly reduce the computational and
communication costs. This approach leverages the knowledge
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already embedded in the pre-trained models, requiring fewer
resources for adaptation to new tasks.

Synchronization and coordination: In FL, clients indepen-
dently train their local models and periodically synchronize
with a central server. However, when dealing with LLMs,
the large number of parameters and the complexity of these
models exacerbate these issues. One of the primary challenges
is the timeliness of model updates. Due to the enormous size
of LLMs, clients need to transmit a vast amount of update
data to the central server after local training. This large-
scale data transmission not only increases communication
overhead but also leads to delays and potential staleness in
updates. Stale updates can slow down the convergence of the
global model and reduce its accuracy. To address this, efficient
synchronization mechanisms are required. One approach is
synchronous aggregation [91], where the server waits for
updates from all clients before performing a global update.
However, this can lead to increased latency, especially if some
clients have slower network connections or lower computa-
tional power. On the other hand, asynchronous aggregation
[92]–[94] allows the server to update the global model as soon
as it receives updates from any client. While this can reduce
latency, it introduces the risk of incorporating stale updates,
which can degrade the model’s performance. To mitigate this,
techniques such as staleness-aware aggregation [95], [96] can
be employed, where the server assigns different weights to
updates based on their timeliness, giving more importance to
recent updates. Straggler clients [97], [98] are another issue
that needs to be addressed. These are slower clients that delay
the synchronization process. One approach to mitigate this is
to set a deadline for updates, after which the server proceeds
with the available updates, ignoring the stragglers. Another
approach is to use partial aggregation [99], [100], where the
server aggregates updates from a subset of clients, ensuring
that the synchronization process is not held up by a few slow
clients.

Heterogeneities: In FL, data is distributed across multiple
clients, each of which may possess vastly different data in
terms of quantity, quality, and distribution. The non-IID nature
of this data can lead to model divergence and suboptimal per-
formance when training LLMs, namely a phenomenon known
as data heterogeneity [101], [102]. Additionally, clients in a
federated setting can range from powerful servers to resource-
constrained edge devices, each with varying computational
power, memory capacity, and network conditions. This vari-
ability can result in uneven training progress, as some clients
may struggle to meet the computational demands of train-
ing LLMs, which referred to as system heterogeneity [103],
[104]. To address these heterogeneities, techniques such as
personalized federated learning [105]–[107] can be employed.
Personalized federated learning aims to create models tailored
to the specific data distribution and computational capabilities
of each client, rather than relying on a single global model that
may not perform well for all clients. Methods such as meta-
learnin [108] and multi-task learning [109] can be explored to
enable effective personalization.

Privacy and security issues: LLMs need to deal with
various potential attacks and biases, such as adversarial ex-

amples [110], [111], backdoor attacks [112], [113], poison-
ing attacks [114], [115], model stealing [116], [117], etc.
These challenges lead to issues concerning the robustness
and security of LLMs, which can impact their reliability and
trustworthiness. For instance, LLMs are susceptible to word
embedding poisoning due to noisy perturbations. Studies [118]
indicate that even modifying a single word embedding vector
enables an adversary to subtly manipulate the model, leading
to abnormal responses to specific trigger words. Furthermore,
the impact of word embedding poisoning attacks in federated
networks is substantial; even a small number of compromised
clients can significantly degrade the global model. In federated
LLM systems deployed over wireless networks, adversarial
jamming emerges as a practical threat, corrupting sensitive
word embeddings during transmission.

The challenges mentioned above is by no means a complete
list, as separate research on LLMs and FL has already ad-
dressed a substantial number of issues [119]–[122]. However,
this paper mainly focuses on the research that integrates LLMs
with FL more cohesively, and the works that are biased
towards only LLM or FL are out of our scope. This paper will
introduce and discuss these challenges in detail and depth, and
review the existing major relevant works.

IV. LLM PRE-TRAINING AND FINE-TUNING WITH FL:
STATE-OF-THE-ART

In this section, we conduct a comprehensive review of the
literature on LLM that utilize FL for pre-training and fine-
tuning, representing the state-of-the-art in this field. Specif-
ically, we survey the existing federated LLM systems and
organize our discussion around five key aspects: framework
& benchmark, data and model initialization, federated LLM
finetuning, personalized federated LLM, back-propagation-
free methods.

A. Framework & Benchmark

The pioneering effort in large-scale FL systems was made
by Google, where FL was employed to enhance next-word pre-
diction [123] and query suggestion [124] for Gboard applica-
tions. Following this, various innovative FL systems have been
developed to accommodate different FL scenarios, such as TFF
[125], FedLab [126], Felicitas [127], IBM FL [128], Paddle-
FL [129]. Recently, there has been notable advancement in
the creation of FL infrastructures and standards specifically
tailored for LLMs. These frameworks, usually coupled with
LLMs, provide a complete set of APIs that facilitate various
effective FL algorithms, encompassing most or all aspects of
the lifecycle of federated LLMs.

FedLLM [130], [131], FATE-LLM [132] and
FederatedScope-LLM (FS-LLM) [133] are three notable
works in the field of federated LLMs for enterprise
level applications. They incorporate parameter-efficient
fine-tuning techniques to enhance training efficiency
and reduce communication overhead. Additionally, these
systems implement robust privacy-preserving mechanisms to
ensure the confidentiality and integrity of data during both
training and inference phases. By facilitating cross-domain

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2024.3503680

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Auburn University. Downloaded on January 13,2025 at 19:58:34 UTC from IEEE Xplore.  Restrictions apply. 



10

FedLLM Privacy Hub

FedIPR SecAgg DP MPC

Communication-Efficient Hub

Adapter KD Prompt Quant

Model Hub

Bert GPT-2 Bloom LLaMa

ChatGLM Baichuan Qwen

Trainer Hub

FedHomoLLM FedHeteroLLM

FedCoLLM FedOST

Fig. 5: Basic components of FATE-LLM.

collaboration, these frameworks allow diverse organizations
to jointly optimize model performance while addressing
the challenges of limited computational resources and data
heterogeneity. FedML presents FedLLM [130], which enables
an MLOps-based training pipeline to construct the enterprise’s
own LLM on private data. FedLLM can perform training in
both centralized and geo-distributed GPU clusters, as well
as in a FL fashion for data silos. For a particular siloed
GPU cluster, FedLLM utilizes existing open-source LLMs
and well-known frameworks for local training. Moreover,
for efficient training, FedLLM supports parameter-efficient
training methods such as LoRA.

FATE-LLM (Fig. 5), built upon FATE (Federated AI Tech-
nology Enabler), aims to simplify FL for LLMs [132]. Specif-
ically, FATE-LLM enables FL for both homogeneous and
heterogeneous LLMs; it also boosts the training efficiency
of Federated LLM by adopting parameter-efficient fine-tuning
methods, such as LoRA and P-Tuning-v2. Furthermore, FATE-
LLM protects the intellectual property of LLMs using a
federated protection approach and preserves data privacy
during training and inference by applying privacy-preserving
mechanisms. This holistic approach strives to optimize the
performance of LLMs while adhering to high standards of
data security and privacy.

FS-LLM [133] aims to represent an all-encompassing
toolkit designed for the federated refinement of LLMs. This
toolkit establishes a seamless benchmarking system from start
to finish, streamlining dataset preparation, the execution or
simulation of federated refinement, and the assessment of
performance in federated LLM refinement tailored for vari-
ous capability demonstrations. It offers a suite of ready-to-
deploy federated PEFT algorithms and adaptable interfaces for
programming, which pave the way for future enhancements
to LLM functionalities in FL environments, ensuring min-
imal communication and computational overhead, and even
enabling operation without full model access. Moreover, it
integrates a range of swift and economical operators for opti-
mizing LLMs under resource constraints, along with modular
sub-routines that support cross-disciplinary research (such as
personalized FL applications of LLMs).

OpenFedLLM [134] presents an innovative framework for
contemporary LLMs that promotes cooperative and secure
training on underutilized distributed private datasets. It utilizes
FL to collectively enhance a shared model while maintaining

the privacy of raw data. The framework is streamlined, unified,
and designed to be user-friendly. Additionally, it integrates
federated instruction tuning to refine LLMs’ ability to follow
instructions, federated value alignment to align LLMs with hu-
man ethics, and includes 7 key FL algorithms. OpenFedLLM
also facilitates the training of LLMs across multiple fields,
encompassing 8 distinct training datasets, and offers thorough
evaluations with over 30 evaluation metrics.

In addition, the academic community also has a variety of
benchmarks and implementations for federated LLMs. FedIT
[135] is recognized as a pioneering initiative that utilizes FL
for instruction tuning of LLMs. This research illustrates that
FedIT can address the constraints of traditional instruction
tuning by harnessing the varied sets of instructions from users
within the FL framework. This is particularly effective in a
cross-device FL environment with a client base numbering in
the billions. Additionally, it offers an in-depth analysis of the
diversity present in FL instruction tuning. Utilizing the GPT-4
auto-evaluation technique, the study validates the efficacy of
FedIT in enhancing the quality of responses through the use
of a broad spectrum of instructions.

Woisetschlager et al. [29] explore the present and future
capabilities of edge computing for FL with LLMs, by con-
trasting these systems with a data-center GPU. They show the
possibility for improvement and the next steps towards achiev-
ing higher computational efficiency at the edge. Specifically,
this study fine-tunes the FLAN-T5 model family, adopting
FL for a text summarization task. It provides a micro-level
hardware benchmark, compared the model FLOP utilization
to a state-of-the-art GPU used in a data center, and examined
the network utilization in realistic conditions.

Zhao et al. [136] introduce a methodology that integrates
privacy-preserving technologies including FL, emulator-based
tuning with PEFT strategies and differential privacy (DP).
The paper details specialized parameter-efficient methods for
federated environments, designed to minimize communica-
tion costs while maintaining model efficacy. Additionally,
the implementation of DP safeguards against compromising
individual data privacy during statistical analysis.

There are also several other modalities of federated founda-
tion models training/fine-tuning works, such as Flower [137],
which supports fine-tuning of Whisper for the downstream
task of keyword spotting in a federated way. The experiments
also benchmark the new Raspberry Pi 5, with regard to not
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only training times but also the time taken to pre-process the
dataset partitions. FedCLIP, as presented in [138], introduces
a lightweight adapter module for the CLIP. These streamlined
adapters are capable of harnessing the extensive knowledge
of pretrained models, thereby guaranteeing that the models
remain flexible and suitable for client-specific applications.
Gao et al. [139] conduct a study on the convergence of
self-supervised learning and FL, with an emphasis on speech
representation leveraging the wav2vec 2.0 framework [140].
The researchers provide a pioneering, systematic exploration
into the practicality involved in developing speech models
within FL contexts, examining the subject through the lenses
of algorithmic processes, hardware capabilities, and systemic
boundaries.

B. Data and Model Initialization

The processing of original data and the initial setup of
models are crucial factors influencing the efficacy of FL.
Among the current FL literature, neural networks are usu-
ally initialized with random weights. However, in central-
ized learning, it is common to use model initialization with
weights pre-trained on large-scale datasets, as this has been
proven [141], [142] to enhance accuracy, generalizability,
robustness, etc. Training from random weights is also more
challenging for LLMs. Some recent works have investigated
whether model pre-training is suitable for FL and the impact
of model initialization (whether random or pre-trained) on
the performance of federated optimization techniques. These
studies [143], [144] show that initiating from a pre-trained
LLM can notably diminish the disparity between Independent
and Identically Distributed (IID) and non-IID data settings
for clients. Furthermore, when using a pre-trained model as
the initial point, the number of local epochs per round can
be greatly decreased without degrading the final accuracy.
These results indicate that pre-training effectively closes the
gap between FL and centralized learning.

One of the challenges for LLM is how to group such
massive datasets. Dataset Grouper library [145] facilitates
the formation of extensive, group-structured datasets, such as
those used in federated settings for Large LLMs. Its three
primary benefits include its ability to manage single-group
datasets that exceed memory capacity, its adaptable approach
to choosing the foundational dataset and defining partitions,
and its framework-agnostic nature. The generation of synthetic
data using LLMs is another intriguing topic. It arises from the
challenges in obtaining specific public datasets and the lack of
clear guidelines for their acquisition. To address the scarcity
of public data, researchers have explored FL approaches
that leverage synthetic data. In these methods, a generative
model is fine-tuned through knowledge distillation (KD), and
synthetic data is generated by this model in a staggered
manner during the federated training cycles. However, these
methods have stability and security issues, which can be
effectively solved by LLMs due to their strong generative
performance. GPT-FL [146] utilizes generative pre-training
approaches to create a variety of synthetic datasets. Such
synthetic information is employed to enhance a server-based
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Fig. 6: Several typical fine-tuning methods, including full
parameter fine-tuning, P-tuning v2, and LoRA. The weights
that require fine-tuning are highlighted within the green boxes.

downstream model, which undergoes further refinement using
confidential data from clients within the conventional FL struc-
ture. Experimental results indicate that GPT-FL outperforms
contemporary FL techniques in aspects such as accuracy of
model testing, efficiency of communication, and efficiency in
sampling across clients. Another typical work is proposed by
Wang et al. [147], which propose an in depth study into the
utilization of extensive public datasets and LLMs to enhance
the DP based training of mobile FL models. Their objective
is to strike a better balance between privacy and utility
by employing knowledge distillation methods. Additionally,
they introduce an innovative distribution matching technique,
backed by theoretical analysis, to select public data that closely
resembles the distribution of private data, thereby effectively
boosting the efficiency of training with public datasets.

C. Federated LLM Fine-tuning

The process of federated fine-tuning LLMs focuses on
adapting a pre-trained LLM to achieve specific objectives. Due
to the considerable computational resources and data volume
requirements for pre-training LLMs, most of the federated
LLM work concentrates on enhancing the fine-tuning phase’s
effectiveness and efficiency. For instance, efforts are made
to reduce the communication and computational overhead of
federated LLM fine-tuning, tackle the challenges of non-IID
data and personalized requirements across various clients, and
support a broader range of downstream tasks.

1) Federated LLM with PEFT: As outlined in Sec. II-B,
PEFT is a technique to tailor LLMs to particular downstream
tasks. Several typical PEFT methods are shown in Fig. 6. The
methodology entails freezing the core architecture of LLMs
while modifying a minimal number of extra parameters. The
objective of PEFT is to decrease the duration of training and
the expenses associated with communication, thereby address-
ing a fundamental obstacle in FL. Here we only introduce the
typical PEFT-related works, and the works on personalized
FL based on PEFT will be described in detail in the next
subsection.

LP-FL [148] integrates few-shot prompt learning from
LLMs with efficient communication and federating techniques.
It empowers federated clients to assign soft labels to un-
labeled data, using the gradually updated knowledge from
the global model. By employing the LoRA technique, this

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2024.3503680

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Auburn University. Downloaded on January 13,2025 at 19:58:34 UTC from IEEE Xplore.  Restrictions apply. 



12

method enables the generation of concise learnable parameters
and promotes the federation of global models with minimal
overhead.

Malaviya et al. [149] demonstrate that the PEFT approach
is capable of diminishing communication overheads without
compromising the efficacy of the model in FL environments.
In a range of real-world applications, acquiring data specific to
the intended downstream task can prove challenging; however,
procuring data from analogous tasks is often more feasible.
The empirical evidence regarding the task-level applicability
of PEFT within FL frameworks indicate substantial zero-
shot learning capabilities of the model on the intended tasks,
provided that the source data is derived from a closely related
task.

FedTune [150] reveals that Transformers, once fine-tuned,
exhibit superior efficacy in FL scenarios. The study highlights
that a streamlined fine-tuning process not only accelerates the
convergence but also minimizes communication costs. Delving
into the specifics, the authors conducted an extensive empirical
analysis on three distinct tuning strategies—modifying inputs,
integrating additional modules, and altering the core archi-
tecture, which utilizing two categories of pre-trained models,
namely vision-language and vision models. The findings un-
derscore that the integration of pre-trained models within FL
significantly enhances accuracy of the model by effectively
addressing the problem of overfitting.

FedPETuning [151] investigates the potential of PEFT meth-
ods in LLMs and establish a federated benchmark for four
key PEFT approaches. Specifically, it pioneers a thorough
empirical investigation into the tuning techniques of promi-
nent pretrained LMs within an FL framework, encompassing
aspects such as privacy threats, performance metrics, and anal-
ysis under resource limitations. The extensive experimental
data corroborate that FedPETuning is adept at safeguarding
privacy while maintaining commendable model performance,
all the while reducing the demand for substantial resources.

FedPrompt [152] examines the application of prompt tuning
through a model split aggregation approach within FL. It
reveals that this method markedly diminishes the communi-
cation overhead while only slightly impacting accuracy across
both IID and Non-IID data distributions. Additionally, the
study includes tests of backdoor attacks via data poisoning on
FedPrompt, with results showing a minimal success rate for
the attacks and an inability to implant a backdoor successfully,
thereby affirming FedPrompt’s resilience.

PROMPTFL [153] introduces a shift from traditional fed-
erated model training to federated prompt training. This
approach encourages participants in a federated network to
focus on training prompts rather than a communal model.
This strategy aims to harness the capabilities of LLMs for
efficient global aggregation and effective local training, even
with limited data. The key advantage of PROMPTFL lies in
its requirement to update only the prompts, not the entire
model, thus significantly speeding up both local training and
global aggregation processes. Moreover, an LLM that has been
trained on extensive datasets can offer robust adaptability for
diverse tasks of distributed users through the utilization of
trained soft prompts.

SplitLoRA [154] is a split FL LLM fine-tuning framework,
which is constructed upon the split FL paradigm, integrating
the benefits of parallel training from FL and model partitioning
from split learning. This integration significantly enhances
training efficiency by delegating the primary training workload
to a server through model partitioning. This approach involves
the exchange of activations and their gradients with smaller
data sizes, rather than transmitting the entire LLM. Notably,
SplitLoRA represents the first open-source benchmark for
SL LLM fine-tuning, establishing a foundational platform for
future research endeavors aimed at advancing split FL LLM
fine-tuning methodologies.

2) Fine-tuning for Downstream Applications: LLMs must
undergo the fine-tuning process in order to perform better on
downstream tasks. This stage adjusts the pre-trained model’s
parameters using a dataset tailored to the task at hand. The
purpose of fine-tuning is to shift from the broad linguistic
comprehension acquired during pre-training to a focus on the
particular subtleties and demands of the task in question. Some
works have adopted FL to finetune the LLM for downstream
tasks, with the aim of addressing the privacy and data sensi-
tivity issues.

Riedel et al. [155] explore the application of FL for the
purpose of Multilingual Protest News Detection (a binary
classification task), utilizing news texts in English, Portuguese,
Spanish, and Hindi. The researchers engage fine-tuning pre-
trained multilingual BERT and DistilBERT models on the
multilingual data, leveraging their demonstrated success in
analogous NLP classification tasks within centralized learning
frameworks [156], [157]. Additionally, the study assesses the
performance of FL aggregation algorithms across different
data partitioning scenarios.

FedTherapist [158] is a mobile application designed for
mental health monitoring that leverages ongoing speech and
typing activity while ensuring privacy through FL. The authors
assess the efficiency and computational load of BERT and
GPT-3.5 to manage the intricacies associated with training
language models directly on mobile devices. Additionally, the
study presents a context-aware learning technique, which is
adept at harnessing the voluminous and varied text data from
smartphones for detecting mental health indicators.

FedJudge [159] combines FL and LLM to address the
data privacy issues raised by the centralized training of Legal
LLMs, as legal data is scattered across various institutions
with sensitive personal information. In particular, FedJudge
employs parameter-efficient fine-tuning methods to update
only a few extra parameters during FL training. Moreover,
continual learning methods are also investigated to maintain
the global model’s crucial parameters when training local
clients to alleviate the problem of data shifts.

FedED [160] proposes a medical relation extraction model
that preserves the privacy of data sources, using FL as the
underlying framework. This is to tackle the challenge of han-
dling medical texts, which often contain sensitive information
that cannot be shared or copied across different domains. The
model is based on BERT models as the backbone, and enables
the training of a global model without exposing or transferring
any private local data. To address the communication bottle-
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neck in FL, a knowledge distillation strategy is adopted that
leverages the predictions of local models aggregated to form
the global model, instead of sending local parameters.

Ahmed et al. [161] propose an active learning based news
article retrieval model in a semi-supervised learning scenario.
This model offers the benefits of low communication overhead,
high scalability, enhanced data privacy, and a temporal-aware
retrieval model. The framework employs lexicon expansion,
content segmentation, and temporal events to construct a
BERT attention embedding query that captures the temporal
dynamics of sequential news articles. To produce pseudo-
labels, the partially trained models with the original labeled
data are fused.

FedHumor [162] is an approach for personalized humor
recognition based on FL. Recognizing the subjective nature
of humor, this method seeks to tailor humor recognition to
individual preferences, a task that is notably challenging for
conventional models. By enhancing a pre-trained language
model, FedHumor fine-tunes its processes to reflect the varied
humor tastes of different users. Furthermore, it employs a
strategy that adapts to this diversity, aiming to cultivate a
humor recognition model that is personalized for each user
within the FL paradigm.

Efficient-FedRec [163] is an FL framework for news rec-
ommendation that preserves user privacy. This framework
strategically splits the model into a substantial news compo-
nent hosted on the server and a compact user model shared
between the server and client devices. Specifically, client
devices receive the user model and news details from the server
and return their individual gradient updates for collective
integration. Subsequently, the server refines its universal user
model utilizing these combined gradients.

FEWFEDWEIGHT [164] trains client models on isolated
devices without data sharing. The framework utilizes the
server’s global model to create pseudo data for each client,
facilitating knowledge transfer from the global model to
improve the client models’ few-shot learning capability. An
energy-based algorithm is implemented to filter out noise by
weighting the pseudo samples. Additionally, the client models’
weights are adjusted according to their performance, it then
dynamically consolidates the client models to refresh the
global model.

FedNLP [165] is a framework designed to assess FL tech-
niques across four prevalent NLP tasks, namely text classifica-
tion, sequence tagging, QA, and seq2seq generation. This sys-
tem offers a standardized platform that integrates Transformer-
based LLMs, such as BERT and BART, with FL strategies,
accommodating a range of non-identically distributed data
situations.

In summary, we list the federated LLM fine-tuning works
in the taxonomy Table II, summarizing the technical aspects
as the key informations and contributions of each reference
work.

D. Personalized Federated LLM
As outlined in Sec. III, FL encounters various types of

heterogeneity issues, which require adaptive and personal-
ized solutions to overcome these challenges. In this paper,

the definition of personalized federated LLMs is inherited
from conventional personalized FL and extended to federated
LLMs. The goal is to address the various heterogeneity issues
that may arise during the pretraining and fine-tuning processes
of federated LLMs. Statistical (Data) Heterogeneity arises
as client data often exhibit non-IID characteristics. This can
lead to a scenario where a model trained on local data at
a client site may outperform a global FL model trained on
heterogeneous data. System Heterogeneity is evident as FL
clients typically operate on a wide array of hardware capabil-
ities, including differences in computational power, network
bandwidth, and storage capacities, as well as disparities in
operating systems, applications, and other software tools as
noted by Jiang et al. [166]. This variation allows clients with
advanced hardware to train more complex models, whereas
those with less capable systems are restricted to simpler
models. Model Heterogeneity is characterized by the fact
that various entities often maintain distinct, proprietary model
collections. The process of fine-tuning these models within the
FL framework can lead to reduced training durations while
also safeguarding proprietary knowledge, as discussed by Ye
et al. [35]. Given the diversity of models across organizations,
it is crucial to facilitate the training of personalized models
that are heterogeneous in nature. These challenges are not
unique to FL but are also prevalent in federated LLMs,
subsequently we will delve into the specific works addressing
these challenges.

Fed-PepTAO [167] aims to enable efficient and effective FL
of LLMs. This work proposes a parameter-efficient prompt
tuning method with an efficient and effective method to
select appropriate layers of prompts for FL. Second, a new
adaptive optimization method is devised to tackle the client
drift problems on both the client and server sides to improve
the system performance further.

Profit [168] attempts to study the trade-off between per-
sonalization (adaptation to the clients’ local distributions) and
robustness (avoiding catastrophic forgetting) over different FL
training algorithms and different data heterogeneity levels.
The study finds that in federated LLM prompt tuning, the
choice of adaptive optimizer, learning rate, regularization and
other parameters is crucial for achieving the personalization
vs robustness trade-off.

FedDAT [169] is a fine-tuning framework tailored for
heterogeneous multi-modal FL. It employs a Dual-Adapter
Teacher (DAT) to address data heterogeneity by regularizing
the local updates of the client and applying Mutual Knowl-
edge Distillation (MKD) for efficient knowledge transfer. The
experiment results indicate that the approach attains a superior
convergence rate and scalability compared to existing PEFT
methods.

FedRA [170] tackles the issue of diverse client capabilities
in computational and communication aspects within FL. It
operates by generating a random allocation matrix in each
communication cycle. For clients with constrained resources,
FedRA adapts a subset of the model’s layers according to
this matrix and refines them through LoRA. The server then
gathers the refined LoRA parameters, aligns them with the
existing allocation matrix, and assimilates them into the des-
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TABLE II: Taxonomy of Federated LLM Fine-tuning Research.

Reference Classification Fine-tuning
Methods

Model Main
Dataset

Key Contribution

LP-FL [148] Fine-tuning
with PEFT

LoRA BERT-Large IMDB, Yelp Federated fine-tuning LLMs with PEFT method with limited
communications and local computational powers.

Malaviya et al.
[149]

Adapter, prefix,
LoRA, BitFit

BERT-base GLUE Analyze the performance of four PEFT methods under different
non-i.i.d. settings in FL

FedTune [150] Three PEFT
methods

CLIP CIFAR-10,
CIFAR-100

Conduct an in-depth measurement on various parameter-
efficient tuning methods in FL using different pre-trained Trans-
former models.

FedPETuning
[151]

Adapter, prefix,
LoRA, BitFit

Roberta-
Base

GLUE Benchmark to provide a holistic review of PETuning methods
for PLMs under FL settings, covering privacy attacks, perfor-
mance comparisons, and resource-constrained analysis

FedPrompt
[152]

Prompt tuning BERT,
Roberta, T5

OffensEval,
IMDB,
Twitter,
GLUE

Evaluate new FL prompt tuning method performance and test
the model robustness to backdoor attack

PromptFL
[153]

Prompt tuning CLIP Cal101,
Flow-
ers102,UCF101,
Sun397

Prove the feasibility of the system in terms of overhead in
communication, training, and inference dimensions as well as
generalization and personalization ability.

SplitLoRA
[154]

LoRA + split
learning

GPT-2 E2E Constructed upon the split FL paradigm, integrating the benefits
of parallel training from FL and model partitioning from split
learning. ability.

RIEDEL et al.
[155]

Downstream
Applications
Finetuning

Full parameter BERT, Dis-
tilBERT

CASE2021 Fine-tuning the pre-trained DistilBERT and BERT models with
the partitioned protest news reports in a federated manner.

Fedtherapist
[158]

LoRA BERT,
RoBERTa,
LLaMa-7B

IRB Fine-tuning a mobile mental health monitoring system that
utilizes continuous speech and keyboard input in a privacy-
preserving way via FL.

FedJudge [159] LoRA Baichuan-
7B

C3VG,
Lawyer
LLaMA

Utilizes PEFT to fine-tune Legal LLMs efficiently and effec-
tively during the FL training.

FedED [160] Full parameter BERT 2010i2b2,
GAD, EU-
ADR

Propose a privacy preserving medical relation extraction model
based on FL.

Ahmed et al.
[161]

Full parameter BERT SemEval
2019 Task 4

Present a news article retrieval model based on active learning
in a semisupervised FL setting.

FedHumor
[162]

- BERT SemEval-
2020 shared
Task 7

Propose the FedHumor approach for the recognition of humor-
ous content in a personalized manner through FL.

Efficient-
FedRec [163]

- BERT MIND
Adressa

An efficient FL framework using split method for privacy
preserving news recommendation.

Fewfedweight
[164]

- BART-base Huggingface
118 tasks

Propose a FL framework for multi-task learning in the few-shot
and private setting.

ignated layers of the basic model.

FedLoRA [171] aims to address the issues of statistical,
system, and model heterogeneity in LLM PEFT. It works by
incorporating a small and consistent adapter into each client’s
heterogeneous local model. These models are trained using an
iterative procedure that facilitates the transfer of global and
local knowledge. The FL server then aggregates these small
and uniform local adapters into a global one. This technique
allows FL clients to leverage diverse local models with reduced
computational and communication costs.

pFedPG [172] is designed to harness the strong representa-
tional power of LLMs to enable efficient personalization for
clients with varying capabilities. It achieves this through a
dual-stage optimization process that involves adapting per-
sonalized prompts at the local level and generating them at
the global level. A specialized prompt generator at the server
side plays a pivotal role in this process, utilizing personalized
optimization trajectories to produce unique prompts tailored
for each client’s model. This approach ensures that each
client’s model is updated effectively, taking into account the
specific needs and constraints of the client’s environment.

Heterogeneous-LoRA [173] explores the performance trade-
off of federated fine-tuning with higher and lower LoRA
ranks. It deploys heterogeneous ranks across clients, aggre-
gates the heterogeneous LoRA modules via zero-padding,
and redistributes the LoRA modules heterogeneously through
truncation. By combining the benefits of high-rank and low-
rank LoRAs, it achieves an optimal balance, demonstrating a
simple yet effective approach.

AdaFL [165] addresses the critical issue of determining
the ideal depth and breadth for fine-tuning adapters, which
significantly influences the speed and efficiency of training.
The optimal configuration is contingent upon the specific
downstream NLP tasks, the desired accuracy of the model,
and the available mobile resources. AdaFL employs a gradual
approach to modify the adapter configuration throughout a
training session. Initially, it focuses on rapidly learning shallow
knowledge by training a limited number of smaller adapters
in the upper layers of the model. Subsequently, it incorpo-
rates progressively larger and deeper adapters to grasp more
complex knowledge. Additionally, AdaFL continuously evalu-
ates various adapter configurations by designating participant
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devices to different experimental groups.
PERADA [174] is an effective personalized FL framework

that minimizes communication and computational costs while
improving generalization performance, especially under test-
time distribution shifts. It enhances generalization by aligning
each client’s personalized adapter with a global one. The
global adapter in turn employs knowledge distillation to ag-
gregate generalized information from all clients. The validity
of this approach is supported by both theoretical and empirical
evidences.

Besides addressing the heterogeneity and personalization
issues of federated LLM with PEFT, decomposing a substan-
tial LLM into multiple sub-models is an uncomplicated yet
promising strategy for implementing practical federated LLM.
FedBERT [175] employs the concepts of federated and split
learning to pre-train BERT in a distributed fashion. After the
global model’s pre-training phase, each client has the ability to
independently fine-tune their model for local NLP tasks. This
method is inclusive, supporting all participants, regardless of
their computational power or data volume, to partake in the
pre-training process.

FEDBFPT [176] is a framework that trains selected layers
of BERT in an efficient way, which lowers the computational
and communication costs. It allows the training of a large
global model using FL by creating small local models for each
client. These local models train specific layers of the global
model, which leads to less computational resource consump-
tion and fewer weights to send. The efficiency of FEDBFPT is
supported by theoretical analysis and experiments on corpora
from various domains.

FEDOBD [177] is a novel framework that splits large-
scale deep models into semantic blocks, and assesses block
importance (rather than individual parameter importance) and
selectively eliminates unimportant blocks to achieve more
significant reduction of communication cost while maintaining
model performance. Comprehensive experimental evaluation
shows that FEDOBD surpasses state-of-the-art baselines in
terms of communication cost and test accuracy.

FedPerfix [178] attempts to investigate the partial person-
alization of large-scale models. It conducts empirical evalua-
tions to determine how sensitive different layers are to data
distribution. The findings suggest that the self-attention layer
and the classification head in a Vision Transformer (ViT)
are particularly sensitive. To address this, FedPerfix employs
plugins as a means to personalize the model by transferring
information from the aggregated model to individual clients.

In addition, there are also a number of works that address
the heterogeneity and personalization issues of federated LLM
by using techniques such as model compression [179], [180]
and knowledge distillation [181], [182]. For instance, RaFFM
[183] introduces specialized model compression algorithms
tailored for FL scenarios, such as salient parameter priori-
tization and high-performance subnetwork extraction. These
algorithms enable dynamic scaling of given transformer-based
FMs to fit heterogeneous resource constraints at the network
edge during both FL’s optimization and deployment stages.
Fed-ET [184] is a method that utilizes ensemble knowledge
transfer within a FL framework. It involves training smaller

models with varied architectures on client devices and then
using these models to inform the training of a larger, more
comprehensive model on a central server. This approach is
distinct from traditional ensemble learning because it lever-
ages the heterogeneous data from various clients. Fed-ET
incorporates a weighted consensus distillation strategy along
with diversity regularization to ensure that the consensus
derived from the ensemble is reliable and to improve the
model’s generalization capabilities by making use of diverse
data sets. However, these methods have many applications of
general personalized FL [135], [185], [186], but few works
have adopted these methods in federated LLM so far. In the
taxonomy Tab. II, the personalized federated LLM works are
cataloged, summarizing the technical aspects, key information,
and contributions of each cited study.

E. Back-propagation-free Methods

Due to the huge amount of parameters and data, the high
computational cost and memory overhead of LLM training
and fine-tuning are often unacceptable, even with methods
such as compression, quantization, and knowledge distil-
lation. To tackle this issue, several studies have explored
backpropagation-free techniques for training and fine-tuning
federated large language models. These approaches enhance
LLMs without the dependency on backpropagation. The BP-
free propagation algorithm obviates the necessity to store
activation values during computation, thereby mitigating the
substantial memory overhead typically associated with back-
propagation. For instance, inference-only methods like zeroth-
order optimization can reduce memory usage by up to 12.5
times compared to BP-based methods [187]. Despite the
promise shown by BP-free training methods in optimizing
LLMs, they are still in the early stages of development. A
significant challenge lies in the scalability of these methods
to high-dimensional models, as they exhibit greater sensitivity
to dimensionality and reduced robustness compared to BP-
based methods [188]. Various optimizations have been pro-
posed to address these challenges, including tuning the low
intrinsic dimension of LLMs [189]. The potential impacts
of backpropagation-free methods are significant. Firstly, they
can drastically reduce the computational cost and memory
requirements associated with training large-scale models. This
makes it feasible to train and fine-tune models on resource-
constrained devices. Secondly, these methods can enhance
the robustness and generalization capabilities of models by
introducing diverse optimization strategies that are less prone
to overfitting.

FwdLLM [190] is a pioneering study that integrates
backpropagation-free (BP-free) training, specifically zeroth-
order optimization, with methods that are efficient in terms
of the amount of updated parameters. This combination is
essential for scaling up to the era of LLMs. The BP-free
approach is particularly compatible with PEFT techniques,
which require only a minimal number of parameters to be
fine-tuned. Furthermore, FwdLLM is designed to distribute
computational tasks across devices in a systematic and adap-
tive manner, striking an optimal balance between the speed
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TABLE III: Taxonomy of Personalized and Efficient Federated LLM Research

Reference Heterogeneity Knowledge
Transfer
Techniques

Model Main
Dataset

Key Contribution

Fed-PepTAO
[167]

Data
heterogeneity

Prompt tuning GPT2,
LLaMA 7B

10
commonly-
used tasks

Propose a parameter-efficient prompt tuning approach with
Adaptive Optimization,to enable efficient and effective FL of
LLMs.

Profit [168] Data
heterogeneity

Prompt tuning PaLM (HHF, MHF,
LHF) SNI

Benchmarking fundamental FL algorithms (FedAvg and
FedSGD) plus personalization using LLM PEFT methods under
varying levels of data heterogeneity.

FedDAT [169] Data
heterogeneity

Prompt-tuning
with KD

ViLT 14 Vision-
Language
benchmarks

Finetuning framework tailored to heterogeneous multi-modal
FL leveraging a Dual-Adapter Teacher (DAT) to address data
heterogeneity

FedRA [170] System hetero-
geneity

Adapter with
allocation
matrix

ViT NICO++,
DomainNet

Propose a novel federated tuning algorithm, FedRA, to meet
the needs of heterogeneous clients with varying computation
and communication resources.

pFedLoRA
[171]

Model
heterogeneity

LoRA Heterogeneous
CNNs

CIFAR-10,
CIFAR-100

Propose a novel and efficient model-heterogeneous personalized
FL framework based on LoRA tuning using homogeneous small
local adapters.

pFedPG [172] Data/system
heterogeneity

Prompt tuning ViT-B/16 Office-
Caltech10,
DomainNet

Jointly optimizes the stages of personalized prompt adaptation
locally and personalized prompt generation globally.

Heterogeneous-
LoRA [173]

System hetero-
geneity

LoRA PaLM2 MSC Examine federated fine-tuning with homogeneous LoRA ranks,
and deploy hetergeneous ranks across clients, which is simple
yet effective.

FedBERT [175] - Split learning BERT,
GPT2

GLUE Grant clients with limited computing capability to participate in
pre-training a large model combining FL and split learning.

FedBFPT [176] System hetero-
geneity

Compression BERT S2ORC,
ERC, Rct-
20k

Effcient FL framework for further pre-training the BERT lan-
guage model on the client without sharing private corpora

FedOBD [177] System hetero-
geneity

Compression Transformer
based

CIFAR,
IMDB

It decomposes large-scale models into semantic blocks so that
FL participants can opportunistically upload quantized blocks

of convergence and the accuracy of the model. Consequently,
FwdLLM facilitates federated training of LLMs with billions
of parameters on standard mobile devices.

ZOOPFL [191] aims to investigate the impact of LLMs
on FL performance and efficiency. The researchers conducted
a series of experiments on four typical NLP tasks using
different LLMs and FL methods. It was found that LLMs
can significantly improve the accuracy and generalizability
of FL models, but also introduce high computational cost
and communication overhead. The results suggest that LLMs
should be carefully selected and adapted for FL scenarios,
and that novel techniques such as compression, quantization,
and distillation should be applied to reduce the resource
consumption.

FEDBPT [192] aims to address the challenges of applying
FL to fine-tune LLMs, such as restricted model parameter
access, high computational requirements, and communication
overheads. The framework does not require clients to access
the model parameters. Rather, it trains optimal prompts us-
ing gradient-free optimization methods (Black-Box Tuning),
which reduces the number of variables to be communicated,
enhances communication efficiency, and minimizes computa-
tional and storage costs.

FedKSeed [193] is a zeroth-order optimization-based FL
method for LLM, which enables full-parameter tuning of
billion-parameter LLMs on federated devices with extremely
low communication cost. It communicates only K seeds and
their corresponding scalar gradients between the server and the
clients. Moreover, it investigates the differentiated importance
of perturbations in ZOO, and proposes a simple and effective
strategy that samples seeds with non-uniform probabilities,

which reduces the number of required seeds.

F. Limitations and Lessons Learned

The preceding section has provided a comprehensive
overview of the state-of-the-art in LLM pre-training and fine-
tuning with FL. In this subsection, we discuss the limitations
of current methodologies and the lessons learned from recent
advancements in this field.

The diverse range of frameworks examined underscores the
ongoing need for innovation in FL systems. Each framework
provides distinct solutions to the challenges of privacy, ef-
ficiency, and scalability. The evolution of frameworks like
FedLLM, FATE-LLM, and FS-LLM highlights the critical
importance of infrastructure development that not only sup-
ports but also enhances the capabilities of LLMs within
federated environments. Currently, most research is centered
around fine-tuning LLMs using FL or combining it with
PEFT to achieve personalized FL. However, studies on pre-
training LLMs with FL remain scarce due to the significant
computational and communication costs involved. In an era
of diminishing data availability, federated LLM pre-training
presents a promising and practical approach, as it allows the
incorporation of private domain data while safeguarding data
privacy.

Furthermore, the establishment of benchmarks such as
FedIT and the utilization of evaluation metrics in Open-
FedLLM underscore the necessity for standardized testing
environments. These benchmarks are crucial for accurately
assessing the performance of federated LLM systems and en-
suring that advancements are both meaningful and measurable.
In the future, there will be a need for larger-scale and more
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standardized benchmarks to further enhance the evaluation
process.

Additionally, to reduce the resource overhead of federated
LLMs, PEFT and back-propagation-free methods have been
explored. PEFT-based approaches, such as FedPETuning and
FedTune, offer a promising path to reducing computational
costs and enabling training on devices with limited resources,
thereby broadening the accessibility of LLMs. The explo-
ration of back-propagation-free methods like FwdLLM and
FedKSeed introduces a paradigm shift in the training of LLMs.
These methods can be combined with existing techniques such
as model quantization, pruning, and knowledge distillation
to further reduce resource overhead. Additionally, the hetero-
geneity present in FL environments poses a significant chal-
lenge. Solutions like Fed-PepTAO, Profit, and FedDAT, which
integrate with LLM PEFT methods, showcase the potential of
personalized approaches to address the heterogeneity in data,
systems, and models.

V. FEDERATED LLM PRIVACY AND ROBUSTNESS:
STATE-OF-THE-ART

One of the crucial aspects in the research of FL and LLM
is how to ensure both privacy and robustness. FL aims to
address the privacy issues in ML training, and both FL and
LLM inherently face their distinct challenges to privacy and
robustness. The interaction between LLMs and FL systems
may exacerbate the potential vulnerabilities in these systems,
resulting in new challenges. In this section, we will first
present the privacy leakage and security problems that Fed-
erated LLM may encounter, and then we will summarize the
defense methods against these issues.

A. Federated LLM Privacy

FL is a training approach for models that prioritizes privacy,
eliminating the need for data exchange and allowing mem-
bers to freely join or leave the network. Nonetheless, recent
inquiries indicate that FL might not be completely reliable
in protecting privacy. Analyzing from the FL standpoint, the
current protocols of FL exhibit susceptibilities in two distinct
areas. Initially, a hostile server could aim to retrieve confiden-
tial data from individual contributions incrementally, sway the
training operations, or alter the collective understanding of the
global model weights. Secondly, a participant with adversarial
intentions might infer confidential data about other members,
and disrupt the aggregation process of the global model
weights. Specifically, the act of sharing gradients during train-
ing can inadvertently reveal private data, potentially resulting
in significant privacy leakage [194], [195], which may affect
not just external entities but also the central server managing
the process [196], [197]. It has been noted that even a minimal
subset of gradients can unveil extensive details about the local
dataset [198]. Furthermore, recent works also have shown
that an adversary could, through gradient observations alone,
reconstruct the original training dataset [195], [199]. On the
other hand, LLMs like GPT-3 carry potential privacy risks due
to their design to assimilate and generate text from extensive,
varied datasets. These models might inadvertently encode and

disclose confidential details found within their training data,
leading to privacy issues in text creation process. Challenges
including unintended data memorization and information leak-
age are critical [200]. Thus, it is crucial to strike a tradeoff
between the inference performance of these advanced LMs and
the capabilities to protect user privacy, to ensure their reliable
and ethical deployment across different sectors. We propose
a basic taxonomy that facilitates the comprehension of the
various types of privacy attacks, categorized by the attacker’s
objectives.

1) Training Data Recovery Attacks: Training data recovery
attacks, also referred to as reconstruction attacks, target the
retrieval of a client’s LLM training data within a practical
FL environment. These attacks are predominantly gradient-
based, exploiting the data transmitted between clients and the
federated server. Deep learning typically utilizes optimization
algorithms reliant on gradients, and federated participating
clients transmit their gradients to the federated server each
round, adhering to a federated Stochastic Gradient Descent
(SGD)-based training protocol. Attackers with access to these
gradients, or the ability to deduce gradient information, may
be able to reconstruct the confidential training data. It has been
demonstrated by several studies [201]–[204] that gradients
from deep learning models can be exploited to reconstruct
original private training data within an FL framework. These
techniques are primarily effective with image data, and there
is limited research on gradient leakage for LLMs, particularly
in a federated context. TAG [205] is designed to address
and resolve the gradient attack issue on Transformer-based
LMs, aiming to recover local training data. TAG introduces a
quantitative evaluation approach for the NLP gradient attack
challenge, utilizing metrics such as Recovery Rate, ROUGE-
1, ROUGE-2, ROUGE-L, and runtime to measure the attack
algorithm’s success. According to these metrics, TAG has
achieved a Recovery Rate that is 1.5 times higher and a
ROUGE-2 score that is 2.5 times greater than previous meth-
ods. Tests conducted on models like Transformer, TinyBERT4,
TinyBERT6, BERTBASE , and BERTLARGE using the GLUE
benchmark have confirmed TAG’s effectiveness.

LAMP [206] leverages language model priors to retrieve
private text from gradients. The fundamental concept behind
this type of attack is to integrate the predictive capabilities of a
language model with a search strategy that oscillates between
continuous and discrete optimization phases. In particular, it
produces a list of candidate sentences by applying different
transformations on the token sequence (e.g., moving a token)
and selects a candidate that minimizes the joint reconstruc-
tion loss and perplexity, which reflects the likelihood of the
text in a natural distribution. The experiments are based on
BERTLARGE and GPT-2 and the experiment results illustrate
the effectiveness of this method in extracting text from state-
of-the-art transformer models on several common datasets,
achieving up to 5 times more bigrams than previous work.

FILM [207] is the first method to demonstrate the possi-
bility of recovering text from large batch sizes of up to 128
sentences. Unlike image-recovery methods that are designed
to match gradients, it adopts a different approach that first
extracts a set of words from gradients and then directly
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reconstructs sentences based on beam search and a prior-based
reordering strategy. Three defense methods: gradient pruning,
DPSGD, and a simple approach to freeze word embeddings
are evaluated. Both gradient pruning and DPSGD result in
a significant loss of utility. However, when fine-tuning a
public pre-trained LM on private text without updating word
embeddings, it can successfully defend the attack with minimal
data utility loss.

The DECEPTICONS [208] framework introduces a novel
attack strategy that compromises user privacy by transmitting
harmful parameter vectors. This method is effective even
with mini-batches, multiple users, and extended sequences.
It uniquely leverages the Transformer architecture and token
embeddings to separately recover tokens and positional em-
beddings, resulting in high-quality text reconstruction. This
approach underscores the significance of the malicious server
threat model, emphasizing the vulnerability of text applications
using Transformer models to privacy breaches. The experi-
ments demonstrate the feasibility of recovering all tokens and
most of their absolute positions, even in large sequences and
with models that are only 10% the size of BERT.

FLAT-CHAT [209] is a novel and efficient gradient flatten-
ing attack method. It is inspired by the sparsity property of
gradients from the last linear layer, and applies a matrix flat-
tening operation on the gradient matrix. The method is based
on a theory that the flattened gradient vector elements follow a
two-cluster Gaussian Mixture Model and three observations on
the statistical properties of the distribution. To reduce the risk,
two defense methods are evaluated, gradient freezing [207]
and Differentially Private Stochastic Gradient Descent [210],
against the attack. The former method is a robust defense
method but it compromises the models’ performance. The
latter can mitigate our attacks while achieving improved model
performance.

2) Membership Inference Attacks: Membership Inference
Attacks (MIAs) are designed to ascertain whether a particular
dataset was utilized during the training of a model, based on
the client’s model and some data. In an FL framework, both
active and passive MIAs can be conducted [194], [211]. Pas-
sive MIAs entail monitoring the model’s updated parameters
and deducing information without interrupting the learning
process. On the other hand, active MIAs involve tampering
with the FL training protocol, constituting a more aggressive
form of assault on the other participants. Regarding LMs,
MIAs are primarily focused on text generation and subsequent
text classification tasks [212], [213]. While LMs are generally
resistant to basic probing techniques [214], they are still
vulnerable to privacy threats from MIAs specifically crafted
for LMs. A common technique in Membership Inference
Attacks (MIA) is known as the threshold attack. This method
is particularly relevant for word embedding models, which
are susceptible to privacy breaches [215], [216]. It works
by transforming text data into vector embeddings and then
calculating a similarity score between these vector pairs. If
the average similarity score exceeds a predefined threshold,
the data is considered to have been part of the training set.
The study by Song et al. [217] examined the vulnerability of
three prominent word embedding models, namely Word2Vec

[218], FastText [219], and GloVe [220], and all of which
were trained using the Wikipedia corpus by Mahoney [221].
Additionally, they scrutinized a dual-encoder framework for
sentence embeddings [222], which was trained on the Book-
Corpus dataset. The findings highlighted that these models,
often considered merely as beneficial tools for model training,
could also pose risks of privacy breaches. Other works [223]–
[225] also employ a similar idea to use some form of reference
model to compute the threshold test statistic. Another one of
the methods for MIA relies on the shadow model technique,
which typically builds several “shadow” models that emulate
the target model, given a known training dataset and its
membership labels. The attack model is trained using labeled
data, distinguishing between ‘member’ (part of the training set)
and ‘non-member’ (not part of the training set), along with the
inputs and outputs from shadow models. Song and Shmatikov
[226] pioneered the study of membership inference in natural
language text generation, followed by Meeus et al. [227],
Carlini et al. [228], and Abascal et al. [229]. Moreover, sev-
eral defense mechanisms against MIAs, including information
perturbation, have been suggested to shield natural language
models at various phases of the target model’s development.
However, the these attack models mainly concentrated on LMs
and only a few on LLMs, and there is hardly any work that
discusses the integration of FL and LLMs. It is imperative
to conduct comprehensive research and scrutiny to ascertain
the effects of the attack methods on federated LLMs and to
identify viable countermeasures.

3) Property Inference Attacks: Property inference attacks
are another potential privacy threat for LLMs, although they
have received less attention than membership inference and
training data extraction attacks. Attribute inference attacks
in the context of FL are designed to deduce specific char-
acteristics of a client or the collective attributes of partic-
ipants that are not directly related to the primary function
of the machine learning model. The objective is to uncover
personal or demographic details that are intended to remain
confidential. For instance, these attacks might aim to infer
sensitive information such as an individual’s name, contact
number, residential address, or private financial and medical
records. Therefore, attribute leakage has also been a serious
problem to be solved in LLMs. Staab et al. [230] conducted a
comprehensive research on the attack risks. It leverages pub-
licly available content authored by individuals, like messages
on digital social platforms. This information is incorporated
into a structured prompt that instructs an LLM to deduce
the personal characteristics of the post’s author. Utilizing the
data from user profiles, which include details such as age,
educational background, gender, profession, and geographical
location, GPT-4 was able to correctly identify these attributes
with a Top-1 accuracy rate of 84.6%.

B. Defence Methods Against Federated LLM Privacy Attacks
Privacy preservation methods have been thoroughly investi-

gated in the machine learning field, but it becomes even more
complex in FL settings, where factors such as intermittent
power and network availability, and heterogeneous data distri-
butions, affect the learning process. In this section, we review
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some of the mainstream techniques for preserving privacy,
such as differential privacy (DP), homomorphic encryption
(HE), and secure multi-party computation (SMPC), and how
they can be integrated in federated LLM scenarios.

1) Differential Privacy: DP is a technique that was initially
developed for the single database setting, where a database
server responds to each query with a randomized answer that
preserves privacy [231]. Unlike encryption-based methods, DP
achieves a balance between privacy-preserving and model ac-
curacy by adding noise to the data in a manner that prevents an
adversary from reconstructing the original data and maintains
a high level of utility. It ensures that any output from a
differentially private algorithm is nearly the same, whether or
not an individual’s data is included in the dataset. Formally,
a randomized algorithm M : D → R satisfies ϵ-differential
privacy if for any two adjacent datasets x, y ∈ D that differ
by only one record, and any subset of outputs S ⊆ R, the
following inequality holds:

Pr[M(x) ∈ S] ≤ eϵ Pr[M(y) ∈ S] (5)

This indicates that the likelihood of a specific result being
produced by the algorithm is limited by a factor of eϵ, which
is independent of whether any single entry is included in
the dataset or not. The parameter ϵ controls the degree of
privacy: lower values of ϵ correspond to more robust privacy
safeguards, albeit with the trade-off of increased distortion in
the final result.

There are mainly two types of DP in FL scenarios, namely
Global Differential Privacy (GDP) and Local Differential Pri-
vacy (LDP). GDP [232]–[236] has an advantage of preserving
privacy with a limited cost to model performance, as it
adds limited noise to the aggregated data, ensuring a good
statistical distribution. On the other hand, LDP [237]–[241]
methods offer a stronger privacy guarantee than GDP-based
FL methods, as individuals can apply noise to their sensitive
data locally to meet DP standards prior to sharing it with a
potentially untrustworthy data collector. Moreover, a variety of
LM works adopt DP to protect privacy against training data
recovery attacks, membership inference attacks, and property
inference attacks, which include data perturbation and output
perturbation [242]. By using the stochastic gradient descent
optimization algorithm [243], models with DP can reduce
the empirical privacy leakage while maintaining comparable

model utility in the non-DP setting. Fig. 7 shows the different
DP mechanisms. In addition, a few studies have also explored
the integration of LLM and FL using DP for preserving
privacy.

Basu et al. [244] investigate the impact of applying DP
in FL scenarios on training contextualized language models
(BERT, ALBERT, RoBERTa and DistilBERT). They bench-
mark the effect of privacy mechanisms such as DP on the
performance of the federated BERT-based models. The exper-
iments with different privacy budgets show how the privacy
budgets influence the utility of models trained on Tweets
related to depression and sexual harassment. The authors
provide guidance on how to train NLP models privately and
what architectures and setups yield more favorable privacy-
utility trade-offs.

Basu et al. [245] propose a financial text classification
system that preserves privacy, using transformers (BERT and
RoBERTa) with differential privacy, in both centralized and
FL scenarios, testing different privacy budgets to examine the
privacy-utility trade-off and their performance in classifying
financial document-based text sequences. For the federated
scenarios, both IID and non-IID data distributions are ex-
plored.

DP-LoRA [246] is a novel FL algorithm designed for
LLMs. It employs a Gaussian mechanism to add noise in
weight updates, which preserves individual data privacy and
enables collaborative model training. Furthermore, DP-LoRA
reduces communication costs by using low-rank adaptation,
which minimizes the amount of updated weights transmitted
during distributed training. The experiments on various LLMs
across medical, financial, and general datasets show that DP-
LoRA can effectively satisfy strict privacy requirements while
reducing communication overhead. The method ensures data
privacy in LLM fine-tuning through feasible FL approaches,
which allow multiple parties to securely improve LLMs.

2) Homomorphic Encryption: Homomorphic encryption
(HE) allows for computations to be performed on encrypted
data, maintaining the homomorphic trait, which means the
outcome, once decrypted, matches the result of operations con-
ducted on the original, unencrypted data. The homomorphic
properties are mathematically defined as follows:

Epk(m1 +m2) = c1 ⊕ c2, (6)
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Epk(a ·m2) = a⊗ c2, (7)

where a is a constant, m1, m2 denote the original messages
that require encryption, and c1, c2 refer to the resultant
encrypted messages corresponding to m1 and m2, respec-
tively. Homomorphic encryption can be categorized into par-
tial homomorphic encryption (PHE), somewhat homomorphic
encryption (SHE), and fully homomorphic encryption (FHE)
based on the type and number of ciphertext operations that
they support. PHE only supports one kind of ciphertext homo-
morphic operation, such as additive homomorphic encryption
(AHE) or multiplicative homomorphic encryption (MHE),
exemplified by Paillier [247] and ElGamal [248], respectively.
SHE extends this capability to support an unlimited number
of additions and at least one multiplication in the encrypted
domain, and it can evolve into an FHE system through
bootstrapping. FHE, which adheres to Gentry’s framework,
is capable of executing an indefinite sequence of both ad-
ditions and multiplications on ciphertexts. HE is extensively
utilized, especially for enhancing the security of learning
processes by allowing computations on encrypted data, thus
safeguarding against privacy breaches in FL involving LLMs.
Nonetheless, the computational operations on encrypted data
introduce significant overheads in terms of memory usage and
processing time, necessitating a balance between security and
performance in HE-based systems.

3) Secure Multi-Party Computation: The concept of Secure
Multi-Party Computation (SMPC) emerged from the million-
aire’s dilemma as outlined in [249]. SMPC’s objective is
to facilitate collaborative computation of a function among
multiple data proprietors who lack mutual trust, all while
maintaining the confidentiality of their respective datasets. The
foundational mechanisms that facilitate the SMPC framework
include Garbled Circuit (GC) [250], Oblivious Transfer (OT)
[251], and Secret Sharing (SS) [252]. However, these tech-
niques have drawbacks and often need to be combined with
other techniques to build efficient SFL algorithms. Generally,
SMC methods are known for their high privacy and accuracy
levels. However, they incur high computation and commu-
nication costs, which may discourage participation. Another
major challenge for SMPC-based schemes is the need for all
participants to coordinate synchronously throughout the LLM
training process. This multiparty interaction model may not
be suitable for practical scenarios, especially under the typical
participant-server architecture in FL settings. Moreover, SMC-
based protocols can enable a group of participants to jointly
perform calculations on a shared function without disclosing
individual inputs, except for for inferences made from the
output [253]. However, SMPC is not entirely foolproof against
data leakage, which calls for the integration of DP mechanisms
into the collective protocol to mitigate such vulnerabilities
[254], [255]. Despite these challenges, SMPC remains a
promising strategy for protecting privacy in FL involving
LLMs.

C. Federated LLM Robustness

Robustness is the ability of the LLM to produce the de-
sired content accurately, even under various types of attacks.
Unlike privacy attacks that aim at data confidentiality, these
attacks on robustness are not interested in data access, but in
manipulating the model’s output to mislead users and achieve
the attackers’ malicious goals. In this section, we discuss the
robustness issues faced by federated LLMs under three typical
attack methods, namely Byzantine attacks, poisoning attacks,
and prompt attacks.

1) Byzantine Attacks and Defences: Adversarial attacks for
robustness can be classified into two main categories, de-
pending on the attacker’s objective, namely untargeted attacks
[256]–[258] and targeted attacks [112], [259]–[262]. Byzantine
attacks [263]–[266] are usually defined as untargeted attacks
that send maliciously crafted gradients to the model aggrega-
tor, aiming to degrade the performance of the global model
or compromise its integrity. In this scenario, the server cannot
verify the trustworthiness of the clients. Byzantine problems
often arise during the client update phase. Certain clients
might be vulnerable to external attacks or internal errors. Such
compromised clients are capable of sending tainted updates
to the server. If these malicious updates are inadvertently
merged by the server, it could derail the entire federated
optimization workflow. The concept of a Byzantine attack is
formally described as follows:

∆wi =

{
∗ if ith participant is Byzantine
∇Fi(wi) otherwise,

(8)

where “*” represents any values, ∆wi denotes the gradient
update, and Fi represents the local model objective function
of participant i. The impact of the Byzantine attacks on
distributed learning can be described as follows:

w = w − Λ(∆w1,∆w2, ...,∆wp). (9)

Byzantine Detection and Robust Aggregation are two preva-
lent strategies to counteract Byzantine attacks within FL. The
primary goal of robust aggregation approaches [267]–[269] is
to minimize the influence of Byzantine clients on the collective
model update process. These methods presuppose that the
corrupted updates are geometrically distant from the legitimate
ones. Consequently, the focus is on developing an aggregation
rule robust enough to mitigate the impact of these attacks. For
instance, in distributed learning environments, algorithms like
Krum [270] and Bulyan [271] select local updates closest in
Euclidean distance to the majority and use them for the global
model update. Nonetheless, these robust aggregation methods
often experience a decline in performance when a significant
number of clients are compromised or when the client data
is highly Non-IID. This necessitates further exploration and
enhancement of robust aggregation techniques. In contrast,
Byzantine detection methods are designed to pinpoint and
eliminate harmful local updates, thereby preventing compro-
mised clients from impairing the FL system [272]–[274].
These detection-based methods tend to offer greater resilience
than their aggregation-focused counterparts. However, these
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approaches require extra computational resources and data
demand on the server and client side. As a common problem
in FL security related work, it is rarely discussed in more
complex and unpredictable federated LLM scenarios, which
makes it an open problem that calls for further studies on
federated LLM robustness.

2) Poisoning Attacks and Defences: Poisoning attacks rep-
resent a common form of targeted disruption in FL. These
attacks are twofold: data poisoning, which occurs during the
collection of local data, and model poisoning, which takes
place throughout the local model training phase. Specifi-
cally, model poisoning encompasses data poisoning within
FL environments, as it modifies a portion of the updates
transmitted to the model during any iteration. Conventionally,
poisoning attacks on mainstream ML models are designed
to deceive the model by tampering with the training data,
often targeting classification models. For instance, attackers
might contaminate a spam filter by incorporating “good”
words into the training dataset [275], [276], or they might
compromise network intrusion detection systems [277]. Recent
studies have revealed that LLMs are particularly susceptible to
poisoning, largely because their training data is predominantly
sourced from the Internet—a platform where content can be
freely posted, thus exposing it to potential poisoning. Re-
search has demonstrated the feasibility of poisoning expansive
datasets such as LAION-400M [278], COYO-700M [279],
and Wikipedia by domain purchases or crowdsourcing efforts
[280]. It has been shown that contaminating a mere 0.1%
of unlabeled data in semi-supervised learning can cause the
model to incorrectly classify any given example during testing
[281]. Moreover, even a slight 0.01% dataset contamination
can cause models like CLIP to misclassify test images [281].
Backdoor attacks, a subset or variation of poisoning attacks,
threaten the integrity of a model by embedding harmful
functions within it using poisoned samples. These attacks can
trigger inappropriate model behavior in response to specific
inputs while maintaining normal function otherwise [282].
While data poisoning poses a challenge for LLMs due to
the vast volume and stringent management of training data,
alternative backdoor attack methods remain a viable threat.
These methods introduce malicious logic into the model by
altering inputs during testing, potentially leading to targeted
misclassification when LLMs execute certain tasks [283],
[284].

A few studies have pioneered the exploration of poisoning
attacks in the scenario of federated LLM. FedMLSecurity
[285] is an FL security module of FedML, which consists of
two main components: FedMLAttacker and FedMLDefender.
It allows for the evaluation of various attack methods in FL,
such as Byzantine attacks, and label flipping backdoor attack,
and defense mechanisms such as Krum (and m-Krum) and
geometric median. Furthermore, FedMLSecurity supports a
broad spectrum of ML models, including basic ResNet and
GAN and shows the versatility of FedMLSecurity for LLMs
and real-world applications through experiments.

Li et al. [286] introduce a new backdoor attack strategy
for HFL, named Fed-EBD, that eliminates the need for com-
promising any client or sustaining long-term involvement in

the FL process. This strategy implants and disseminates the
backdoor via a synthetic public dataset created by a foundation
model, which could elude existing backdoor countermeasures
in FL by simulating normal client behaviors. Furthermore, Li
et al. [287] assess the robustness of FL integrating LLMs by
measuring their susceptibility to backdoor attacks. Based on
this, they devise an attack that does not demand the attacker
to fully subvert any client or persistently partake in the long-
term FL process. It is efficacious in realistic FL settings, as
the backdoor is embedded and transmitted to each client at the
FL initialization and it is difficult to discern due to the limited
research on the robustness of the LLMs. Another similar work
by Wu et al. [288] also specializes in novel backdoor attacks
for federated LLMs.

Zhou et al. [289] propose a robust pre-training strategy for
foundation models that can resist attacks without demanding
downstream users to adopt additional defensive measures.
The defense strategy aims to increase the feature distance
between poisons and targets. This is accomplished by altering
the feature distribution of the pre-trained model through two
methods, namely augmenting the feature distance between
samples of different classes and generating poison samples
with adversarial samples to shrink the feature distance between
poison samples and clean samples.

Huang et al. [290] propose a secure distributed large lan-
guage model (LLM) framework based on model slicing. This
framework employs the Trusted Execution Environment (TEE)
on both the client and server sides, incorporating the fine-
tuned structure (either LoRA or the embedding of P-tuning v2)
within the TEE. Secure communication is facilitated between
the TEE and general environments through lightweight encryp-
tion. To further reduce equipment costs and enhance model
performance and accuracy, the authors introduce a split fine-
tuning scheme. Specifically, the LLM is partitioned by layers,
with the latter layers placed in a server-side TEE, thereby
eliminating the need for a TEE on the client side.

All the above works attempt to analyze the vulnerability
of federated LLMs and design new poison attack methods.
The vulnerabilities pose new threats to the security and relia-
bility of the federated LLMs system. However, there are few
works in this direction currently. Therefore, exploring how to
discover new vulnerabilities and achieve corresponding good
effects of adversarial defense is worthwhile.

3) Prompt Attacks and Defences: LLMs are sensitive to
the engineering of prompts, and it has been shown that
LLMs can be inconsistent with their answers when prompted
differently. Prompt attacks involve strategically designing and
manipulating input prompts to modify the output of LLMs.
The intent behind this tactic is to direct the model towards
producing specific outputs or achieving particular objectives.
Even models that have undergone extensive training may yield
deceptive or harmful outputs when presented with certain
tailored prompts. One of the common methods of this kind
of attacks is prompt injection [291]–[294], where the attacker
gains control over the output of a language model, enabling
them to dictate the content it generates. This method involves
bypassing safeguards by using specially crafted prompts that
cause the model to ignore previous instructions or execute
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TABLE IV: Taxonomy of Federated LLM Privacy and Robustness Research

Reference Classification Core
method

Model Main
Dataset

Key Contribution

Basu et al.
[244]

Privacy DP BERT,
RoBERTa

Depression
Dataset

Study the effects that the application of DP has, in FL setup on
training contextualized language models.

Basu et al.
[245]

Privacy DP BERT Financial
Phrase Bank

Propose a contextualized transformer (BERT and RoBERTa)
based text classification model integrated with privacy features
such as Differential Privacy (DP) and FL.

DP-LoRA
[246]

Privacy DP GPT2, BERT,
ChatGLM-6B,
LLAMA2-7B

SlimPajama,
Medical,
Finance

DP-LoRA preserves data privacy by employing a Gaussian
mechanism and optimizes communication efficiency via low-
rank adaptation.

FedMLSecurity
[285]

Privacy/ ro-
bustness

- BERT, Pythia-
1B

20News,
PubMedQA

FedMLSecurity is an end-to-end benchmark (an open-source
library) designed to simulate adversarial attacks and correspond-
ing defense mechanisms in FL.

Li et al. [286] Robustness Backdoor DistilBERT SST-2 AG-
News

Introduce a novel backdoor attack mechanism for HFL that
circumvents the need for client compromise or ongoing par-
ticipation in the FL process.

Li et al. [287] Robustness Backdoor DistilBERT SST-2 AG-
News

Investigate the robustness of FL incorporating FMs by assessing
their susceptibility to backdoor attacks, and propose a novel
attack in FM-FL.

Wu et al. [288] Robustness Backdoor DistilBERT,
GPT-4

AG-News Conduct the firstd investigation on the vulnerability of FM-FL
under adversarial threats, and introduce a novel attack strategy
that exploits FM safety issues.

Huang et al.
[290]

Robustness - ChatGLM-6B CHIP-CTC,
KUAKE-IR

This framework employs the TEE on both the client and server
sides, incorporating the fine-tuned structure (either LoRA or the
embedding of P-tuning v2) within the TEE.

specific tasks. Such security loopholes could result in var-
ious adverse outcomes, including the exposure of sensitive
data, unauthorized system entry, or other forms of security
problems. For instance, [295] has demonstrated that a GPT
model’s responses can be swayed by introducing specially
engineered adversarial disturbances, affecting its text classi-
fication capabilities. In [296], the model might be configured
to avoid performing certain sensitive tasks, like modifying a
user’s password. However, prompt injection attack using cer-
tain prompts, e.g., instructing the LLM to “ignore previously
established restrictions,” the assistant could be manipulated
into carrying out these prohibited actions.

For such prompt-based attack methods in LLMs, limited
studies explored the corresponding defense strategies. Some
preventive measures [297] are suggested, such as preprocess-
ing the data prompt to remove the injected task’s instruc-
tion/data, and/or redesigning the instruction prompt itself. To
counter adversarial prompts, several techniques can be used,
for instance, paraphrasing [298], re-tokenization [299], data
prompt isolation [299], and instructional prevention [299].
Prompt attacks may affect the fine-tuning and inference ap-
plications of federated LLMs, but they are mainly due to
the security issues of LLMs, and they barely involve the FL
process. Defending from the perspective of LLMs alone can
prevent such attacks, so this topic will not be discussed further
in this paper.

D. Limitations and Lessons Learned
The exploration of federated LLMs is a dynamic field that

presents unique challenges and opportunities. This section
aims to distill the lessons learned from current research and
practice regarding the privacy and robustness of federated
LLMs, highlighting areas that require further attention and
innovation.

The integration of FL and LLMs necessitates adaptive
defenses [300] due to the dynamic nature of cyber-attacks.

Federated LLMs, which involve distributed training across
multiple devices, are particularly vulnerable to novel attack
vectors. Static security measures are inadequate; instead, adap-
tive defenses that evolve in response to emerging threats are
essential. These defenses can leverage real-time data from
various nodes to detect and mitigate attacks, ensuring the
robustness and security of federated LLMs. Additionally,
developing secure and efficient federated LLMs requires a
multidisciplinary approach. For instance, combining insights
from cryptography, machine learning, and network security
is crucial. Cryptographic methods can secure data during
transmission and storage, while machine learning techniques
enhance model performance and resilience. Network security
ensures the integrity of data exchanges between nodes. By
integrating these disciplines, researchers can address the com-
plex challenges of federated LLMs, creating robust and secure
systems.

As federated LLMs become more complex, transparency
and explainability are paramount. Understanding the decision-
making processes of these models helps identify vulnerabilities
and build trust. Explainable AI (XAI) techniques [301], [302]
can be applied to federated LLMs to interpret model outputs
and provide insights into their functioning. This transparency
is crucial for debugging, improving model performance, and
ensuring that federated LLMs operate as intended. It also
fosters trust among users and stakeholders by elucidating how
decisions are made.

Moreover, balancing privacy and utility is a central chal-
lenge in federated LLMs. Privacy-preserving techniques, such
as differential privacy and secure multi-party computation, are
essential to protect sensitive data. However, these methods
can impact model performance. Research must continue to
explore innovative approaches that enhance privacy without
significantly compromising utility. Achieving this balance en-
sures that federated LLMs remain both effective and secure,
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providing high-quality results while safeguarding user data.

VI. FUTURE RESEARCH DIRECTIONS

As discussed in the previous sections, integrating LLMs
with FL is a novel technique that can be regarded as an
emerging research area. After a thorough review of the existing
works on the federated LLM training and fine-tuning process,
as well as privacy and robustness mechanisms, this section
explores the several key challenges, and also discusses the
possible research directions to address these challenges.

1) Efficiency of Federated LLM: As discussed in Sec. II,
LLMs usually have a huge amount of parameters, which
poses significant challenges to their training and deploy-
ment on resource-limited clients. In order to tackle this
obstacle, we have presented the state-of-the-art federated
LLM approaches that leverage PEFT techniques, such as
Adapter and LoRA, to fine-tune the LLMs efficiently,
and the backward propagation-free methods to reduce
computational costs and enhance system performance.
However, several other techniques can also be lever-
aged with them to further improve the efficiency of
Federated LLMs: (i) From the perspective of model
structure, more resource-efficient model structures can
be combined, such as more efficient Attention module
designs [303], [304], Dynamic Neural Networks [305],
[306] (e.g. Mixture-of-Experts (MoE) structure [307])
to reduce computational and memory overheads. (ii)
Model compression strategies can also be applied, such
as pruning [308], [309], quantization [310], [311] and
knowledge distillation [181], [182] methods for LLMs,
which can effectively reduce the model size without
significant performance degradation. (iii) From the per-
spective of infrastructure, more efficient computing and
inference hardware and software designs, such as par-
allel computing [312], KV cache utilization [313], and
novel edge computing hardware, can also be used to
meet the computational demands of federated LLMs by
enhancing efficiency. Nevertheless, these studies mainly
consider the isolated LLM scenario, combining these
methods with FL and their efficacy have not yet been
fully examined, which will inevitably introduce new
optimization methods and new challenges.

2) Heterogeneity of Federated LLM: In practical large-scale
Federated scenarios, there may be significant differences
among data distributions, model structures, communica-
tion networks, and system edge clients, which make it
difficult to achieve federated collaboration. Such hetero-
geneity can be classified into four categories, namely
data heterogeneity, communication heterogeneity, device
heterogeneity, and model heterogeneity. The research
that we have reviewed in this paper mainly focuses on
device heterogeneity, where most works adopt PEFT
methods to adapt to different computational capabilities
of client devices. However, few works have consid-
ered the impact of other types of heterogeneity. For
example, various studies [101], [102], [314] indicate
that the local optimization objectives of clients are not

aligned with the global optimization objective due to
the variations in the local data distribution. Therefore,
data heterogeneity may cause local models to converge
to different directions, reaching local optima instead of
global optima, thus impairing the FL performance. In the
scenario of federated LLM, LLMs have access to a large
amount of data for training, and data heterogeneity may
have a greater impact on the training and fine-tuning
processes. On the other hand, data diversity could also
potentially improve the model’s generalization perfor-
mance. Therefore, it is crucial to investigate the impact
of data heterogeneity and other types of heterogeneity
on federated LLM more deeply, as this type of work is
still scarce.

3) Privacy of Federated LLM: A holistic approach that
encompasses both impact evaluation and solution de-
sign is required for privacy protection, which is an
growing research area that needs further improvements.
As mentioned in Sec. V, some studies have started to
investigate the privacy challenges of Federated LLM. DP
and its variations demonstrate reliable and generalizable
privacy protection capabilities, but they have limitations
when it comes to handling complex tasks, and these
approaches did not consider the heterogeneous resources
of clients. Cryptographic protections such as SMPC and
HE are primarily utilized during the inference phase
of LLMs, and these approaches usually encounter high
communication and computation costs. Furthermore,
these methods have not been evaluated for the feasibility
of applying a robust privacy-preserving algorithm, and
developing a system that can be adapted to the federated
LLM scenario. Further research needs to be conducted to
obtain maximum privacy benefits throughout the entire
lifecycle of LLMs.

4) Robustness of Federated LLM: There has been con-
siderable thorough and comprehensive research on the
robustness of LLM and FL against adversarial attacks.
However, the work that considers FL-integrated LLM is
scarce. The federated LLM system is evidently more
large-scale and complex than conventional FL sys-
tems. Consequently, adversaries are likely to have more
opportunities to exploit security vulnerabilities within
federated LLM systems and launch malicious attacks.
Thus, a comprehensive assessment of the vulnerability of
federated LLM to potential threats is essential. This eval-
uation should examine the impacts of malicious attacks,
such as backdoors, Byzantine attacks, and possible novel
attack methods. Moreover, from the FL perspective, a
thorough evaluation of the existing defense mechanisms
against emerging threats is also necessary. This evalu-
ation should include the effectiveness of robust aggre-
gation strategies and post-training detection methods in
combating these new threats. As we look ahead to the
future, sustained research and innovation in this area will
be crucial to advancing the field for federated LLMs.

In addition to the potential future directions that aim to
address the current challenges mentioned above, given that
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the research on federated LLM is still in its early stages, there
are various other opportunities that are worth exploring, for
example:

1) Multimodal Models Integration: In the rapidly evolving
field of AI, LLM is one of the most popular topics. For
example, millions of new GPTs in the GPT Store are
tailored for specific tasks or interests, such as providing
personalized trail recommendations, coding tutorials, or
even generating haikus. The GPT Store facilitates the
discovery and use of these custom GPTs. Besides, other
multimodal models, such as GPT-4o [315], which can
process and generate text, audio, and images simul-
taneously, Vision Transformers Models (ViTs) [316]
for various downstream vision tasks, Latent Diffusion
Models for high-quality images with arbitrary text-based
prompts generation, and CLIP and ImageBind [317]
which map different modal data into the same latent
space, are also developing quickly. These foundation
models are similar to LLM in that they have a large
amount of model parameters and require a lot of data for
training, as well as a lot of computational resources for
training and deployment. This makes them compatible
with FL for similar reasons. Therefore, similar hetero-
geneity, privacy and robustness issues also exist when
integrating FL with these foundation models. However,
due to the different characteristics of modal information,
these issues manifest and are addressed differently. For
example, different modal information may have differ-
ent data distributions, dimensions, formats, and quality,
which affect the training efficiency and effectiveness
when adopting FL for training. Therefore, appropriate
data alignment, data augmentation, and data selection
strategies are needed to reduce the negative impact of
heterogeneity. Building on the research findings of LLM
in this paper, how to solve these problems in a broaderly
ranged foundation models remains an open challenge
and a potential and promising research direction.

2) Federated Domain-specific AI agents: Domain-specific
AI agents [318], which are closely related to large
LLMs, are garnering significant attention. LLMs em-
power intelligent agents to autonomously address com-
plex problems. Domain-specific LLM agents, which
are LLM-based agents deeply integrated with domain-
specific data, provide specialized assistance in fields
such as healthcare and finance. However, the data in
these domains is highly sensitive and subject to stringent
privacy regulations. This data is often distributed across
various locations, complicating centralized training ef-
forts. FL offers a promising solution by enabling the
training and fine-tuning of models without the need
to centralize data, thereby preserving privacy. Conse-
quently, the integration of domain AI agents with FL
represents a highly promising future direction.

3) Continual Learning for Federated LLM: LLMs need to
constantly update their domain knowledge as they are
applied in dynamic real world scenarios, where data
distributions may change over time and cause domain

and concept drift. A potential solution is to combine
federated LLMs with continual learning methods [319].
Continual learning is a branch of machine learning
that focuses on how to enable machine learning mod-
els to learn from new data continuously, by retaining
knowledge from previous learning experiences without
catastrophic forgetting them. It tackles the challenges of
incrementally training a model using real-time collected
data, which may vary over time and cause data drift.
LLMs have the potential to achieve better generalization
and representation learning, which makes them suit-
able for adapting to new distributions through continual
learning. Future research can explore how to address
the performance challenges of continual learning in
federated LLM settings.

4) Legal, Responsible, and Profitable Usage: Federated
LLMs involve multiple entities that contribute their own
data, devices, and computational resources to the train-
ing process. These models are used for various content
creation applications by the users. However, this rapid
growth has also raised conflicts, especially regarding
intellectual property (IP) rights. While some technical
methods, such as watermarking for LLMs [320], [321],
have been proposed, tackling these challenges still de-
mands a multidisciplinary approach, which incorporates
not only advances in machine learning and statistics, but
also insights from fields such as law, ethics, and social
sciences. Ensuring the lawful and ethical utilization
of these trained models is a critical future direction.
Furthermore, the development of a sustainable busi-
ness model for federated LLMs is imperative. Although
federated LLMs have numerous potential applications,
such as in healthcare where patient data privacy is
paramount, robust models can be developed by training
LLMs on decentralized patient records across multiple
hospitals without compromising sensitive information.
Another potential application is in the financial sector,
where federated LLMs can analyze transaction data
from different banks to detect fraudulent activities while
ensuring data confidentiality. However, this model must
delineate strategies to render federated LLMs profitable.
However, this model must delineate strategies to render
federated LLMs profitable, as the widespread adoption
of this technology hinges on its economic viability.
Without a clear pathway to profitability, the potential of
federated LLMs may remain unrealized, limiting their
impact and utility.

5) Data Erasure for Federated LLMs: Although LLMs are
exceptionally powerful, their reliance on vast datasets
can also become a liability due to privacy concerns,
accuracy limitations, copyright infringement issues, and
the potential propagation of societal biases. A notable
example is the lawsuit filed by the New York Times
against OpenAI and Microsoft for using copyrighted
content in training their GPT models, sparking a con-
troversial debate on the application of fair use rules to
LLM training and highlighting the urgent need for data
erasure mechanisms [322]. To comply with the ”right to
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be forgotten” requirements stipulated by the EU’s GDPR
and the US’s CCPA/CPRA, it is essential to incorporate
data erasure mechanisms in future LLMs. Recently, there
has been a surge in relevant studies discussing this
issue in the context of LLMs [322]–[325]. However,
this challenge becomes particularly pronounced in FL
settings, where the concerned sensitive data may not be
centrally stored. Hence, future research should focus on
developing a distributed approach to machine unlearning
for FL-LLMs, ensuring effective data erasure while
maintaining the decentralized nature of FL.

VII. CONCLUSION

This paper provided a comprehensive, systematic overview
of recent advances on integrating FL with LLMs. We first
introduce the preliminary background of FL and LLM respec-
tively, including their development history, basic workflow,
and common architectures and algorithms. We then presented
the motivation for integrating FL with LLMs from multiple
perspectives, as well as the benefits they can bring to each
other. We also categorized and reviewed the current works
from the perspective of the whole lifespan of LLMs, from
training to deployment. In addition, we also classified and
reviewed the current works from the perspective of privacy
and robustness. Finally, we discussed the open opportunities
and future directions for federated LLM research based on the
comprehensive investigation of existing works.

REFERENCES

[1] M. A. Ferrag, O. Friha, B. Kantarci, N. Tihanyi, L. Cordeiro, M. Deb-
bah, D. Hamouda, M. Al-Hawawreh, and K.-K. R. Choo, “Edge
learning for 6g-enabled internet of things: A comprehensive survey of
vulnerabilities, datasets, and defenses,” IEEE Communications Surveys
& Tutorials, 2023.

[2] M. Xu, H. Du, D. Niyato, J. Kang, Z. Xiong, S. Mao, Z. Han,
A. Jamalipour, D. I. Kim, X. Shen et al., “Unleashing the power
of edge-cloud generative ai in mobile networks: A survey of aigc
services,” IEEE Communications Surveys & Tutorials, 2024.

[3] D. Katare, D. Perino, J. Nurmi, M. Warnier, M. Janssen, and A. Y. Ding,
“A survey on approximate edge ai for energy efficient autonomous
driving services,” IEEE Communications Surveys & Tutorials, 2023.

[4] D. C. Nguyen, P. Cheng, M. Ding, D. Lopez-Perez, P. N. Pathirana,
J. Li, A. Seneviratne, Y. Li, and H. V. Poor, “Enabling ai in future wire-
less networks: A data life cycle perspective,” IEEE Communications
Surveys & Tutorials, vol. 23, no. 1, pp. 553–595, 2020.

[5] B. Mao, F. Tang, Y. Kawamoto, and N. Kato, “Ai models for green
communications towards 6g,” IEEE Communications Surveys & Tuto-
rials, vol. 24, no. 1, pp. 210–247, 2021.

[6] H. Du, Z. Li, D. Niyato, J. Kang, Z. Xiong, H. Huang, and S. Mao,
“Diffusion-based reinforcement learning for edge-enabled ai-generated
content services,” IEEE Transactions on Mobile Computing, 2024.

[7] G. Xu, Z. Hao, Y. Luo, H. Hu, J. An, and S. Mao, “Devit: Decomposing
vision transformers for collaborative inference in edge devices,” IEEE
Transactions on Mobile Computing, 2023.

[8] Y. Cheng, Z. Zhang, and S. Wang, “Rcif: Towards robust distributed
dnn collaborative inference under highly lossy iot networks,” IEEE
Internet of Things Journal, 2024.

[9] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever et al.,
“Language models are unsupervised multitask learners,” OpenAI blog,
vol. 1, no. 8, 2019.

[10] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language mod-
els are few-shot learners,” Advances in neural information processing
systems, vol. 33, pp. 1877–1901, 2020.

[11] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman,
D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat et al., “Gpt-4
technical report,” arXiv preprint arXiv:2303.08774, 2023.

[12] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts,
P. Barham, H. W. Chung, C. Sutton, S. Gehrmann et al., “Palm: Scaling
language modeling with pathways,” Journal of Machine Learning
Research, vol. 24, no. 240, pp. 1–113, 2023.

[13] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux,
T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar et al., “Llama:
Open and efficient foundation language models,” arXiv preprint
arXiv:2302.13971, 2023.

[14] H. Zhang, H. Song, S. Li, M. Zhou, and D. Song, “A survey of con-
trollable text generation using transformer-based pre-trained language
models,” ACM Computing Surveys, vol. 56, no. 3, pp. 1–37, 2023.

[15] H. Liu, P. Peng, T. Chen, Q. Wang, Y. Yao, and X.-S. Hua, “Fe-
canet: Boosting few-shot semantic segmentation with feature-enhanced
context-aware network,” IEEE Transactions on Multimedia, 2023.

[16] K. Valmeekam, M. Marquez, A. Olmo, S. Sreedharan, and S. Kamb-
hampati, “Planbench: An extensible benchmark for evaluating large
language models on planning and reasoning about change,” Advances
in Neural Information Processing Systems, vol. 36, 2024.

[17] N. F. Lindemann, “Sealed knowledges: A critical approach to the usage
of llms as search engines,” in Proceedings of the 2023 AAAI/ACM
Conference on AI, Ethics, and Society, 2023, pp. 985–986.

[18] W. Nelson, M. K. Lee, E. Choi, and V. Wang, “Designing llm-based
support for homelessness caseworkers,” in AAAI-2024 Workshop on
Public Sector LLMs: Algorithmic and Sociotechnical Design, 2024.

[19] Z. He, T. Liang, W. Jiao, Z. Zhang, Y. Yang, R. Wang, Z. Tu, S. Shi,
and X. Wang, “Exploring human-like translation strategy with large
language models,” Transactions of the Association for Computational
Linguistics, vol. 12, pp. 229–246, 2024.

[20] S. Aycock and R. Bawden, “Topic-guided example selection for domain
adaptation in llm-based machine translation,” in Proceedings of the
18th Conference of the European Chapter of the Association for
Computational Linguistics: Student Research Workshop, 2024, pp.
175–195.

[21] J. Liu, C. S. Xia, Y. Wang, and L. Zhang, “Is your code generated by
chatgpt really correct? rigorous evaluation of large language models for
code generation,” Advances in Neural Information Processing Systems,
vol. 36, 2024.

[22] L. Zheng, W.-L. Chiang, Y. Sheng, S. Zhuang, Z. Wu, Y. Zhuang,
Z. Lin, Z. Li, D. Li, E. Xing et al., “Judging llm-as-a-judge with mt-
bench and chatbot arena,” Advances in Neural Information Processing
Systems, vol. 36, 2024.

[23] S. Roychowdhury, “Journey of hallucination-minimized generative ai
solutions for financial decision makers,” in Proceedings of the 17th
ACM International Conference on Web Search and Data Mining, 2024,
pp. 1180–1181.

[24] F. Wei, R. Keeling, N. Huber-Fliflet, J. Zhang, A. Dabrowski, J. Yang,
Q. Mao, and H. Qin, “Empirical study of llm fine-tuning for text
classification in legal document review,” in 2023 IEEE International
Conference on Big Data (BigData). IEEE, 2023, pp. 2786–2792.

[25] W. Zhang, D. Yang, W. Wu, H. Peng, N. Zhang, H. Zhang, and X. Shen,
“Optimizing federated learning in distributed industrial IoT: A multi-
agent approach,” IEEE Journal on Selected Areas in Communications,
vol. 39, no. 12, pp. 3688–3703, Dec. 2021.

[26] D. Yang, W. Zhang, Q. Ye, C. Zhang, N. Zhang, C. Huang, H. Zhang,
and X. Shen, “DetFed: Dynamic resource scheduling for deterministic
federated learning over time-sensitive networks,” IEEE Transactions
on Mobile Computing, vol. 23, no. 5, pp. 5162–5178, May 2024.

[27] W. Zhang, D. Yang, C. Zhang, Q. Ye, H. Zhang, and X. Shen,
“(com)2net: A novel communication and computation integrated net-
work architecture,” IEEE Network, pp. 1–1, Early access, 2024, doi:
10.1109/MNET.2024.3355922.

[28] Y. Cheng, Z. Zhang, and S. Wang, “Fed-sds: Adaptive structured
dynamic sparsity for federated learning under heterogeneous clients,”
in ICASSP 2024-2024 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2024, pp. 9231–9235.
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