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Abstract In the past ten years, many high-quality datasets have been released to support the rapid

development of deep learning in the fields of computer vision, voice, and natural language process-

ing. Nowadays, deep learning has become a key research component of the Sixth-Generation wire-

less systems (6G) with numerous regulatory and defense applications. In order to facilitate the

application of deep learning in radio signal recognition, in this work, a large-scale real-world radio

signal dataset is created based on a special aeronautical monitoring system - Automatic Dependent

Surveillance-Broadcast (ADS-B). This paper makes two main contributions. First, an automatic

data collection and labeling system is designed to capture over-the-air ADS-B signals in the open

and real-world scenario without human participation. Through data cleaning and sorting, a

high-quality dataset of ADS-B signals is created for radio signal recognition. Second, we conduct

an in-depth study on the performance of deep learning models using the new dataset, as well as

comparison with a recognition benchmark using machine learning and deep learning methods.

Finally, we conclude this paper with a discussion of open problems in this area.
� 2021 Chinese Society of Aeronautics and Astronautics. Production and hosting by Elsevier Ltd. This is

an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In recent years, with the rapid development of algorithms,
computation technologies, and the number of datasets, deep

learning has made significant progress in computer vision,
voice and natural language analysis.1 In the implementation
of deep learning, good-quality data collection plays a crucial
role as the high performance of deep learning is mostly data-

driven. For example, ImageNet was the first high-quality data-
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set including more than 14 million images in 20,000 categories,
which drove the advances of deep learning in computer vision.
After that, the general and robust image features in ImageNet

have nurtured enormous successful computer vision deep
learning models, such as AlexNet, VGG (Visual Geometry
Group), and Deep Residual Network.2 In the field of speech,

the CSTR VCTK Corpus dataset consists of speech data col-
lected from 110 English speakers with various accents. This
dataset paved way for remarkable real-time Text-to-Speech

(TTS) deep learning models such as WaveNet and Deep
Voice.3 The Bidirectional Encoder Representations from
Transformers (BERT) has achieved great success in natural
language processing with the help of BooksCorpus (including

800 M words) and English Wikipedia (including 2500 M
words).4 On some test datasets, BERT even outperforms aver-
age bilingual human translators.

Deep learning has become one of the most important
research topics in the Sixth-Generation (6G) wireless commu-
nications,5,6 which has been widely used in Multi-Input Multi-

Output (MIMO),7 resource management8 and ultra-reliable
and low-latency communications.9 Automatic Modulation
Classification (AMC) is considered as one of the most impor-

tant techniques in 6G scenario. Hence, many researchers pay
attention to get a better recognition performance based on
deep learning.5,6 Since the Convolutional Neural Network
(CNN) is not good at learning temporal information in time

series, researchers have proposed other deep learning methods
to dip the signal persistent features. Rajendran et al.10 pro-
posed a new data-driven model for automatic modulation clas-

sification based on Long Short-Term Memory (LSTM), which
is useful in classifying modulation signals with different sym-
bol rates. The achieved accuracy of 75% on an input sample

length of 64 for which it was not trained, substantiates the rep-
resentation power of the model. Afan and Fan11 demonstrated
a novel method for the AMC based on autoencoder network,

which is trained by a nonnegativity constraint algorithm. The
results indicate that the Autoencoder with Nonnegativity Con-
straint (ANC) improves the sparsity and minimizes the recon-
struction error in comparison with the conventional sparse

autoencoder. Huang et al.12 proposed a novel Gated recurrent
residual neural Network (GrrNet) for feature-based AMC,
where the amplitude and phase of the received signal are uti-

lized as the inputs of GrrNet. Simulations are conducted to
verify the classification performance and robustness of the pro-
posed GrrNet and it is shown that GrrNet outperforms other

recent deep learning based AMC methods. Zhang et al.13

addressed the AMC based on CNN-LSTM which is a dual-
stream structure by combining the advantages of CNN and
LSTM. The experimental results not only demonstrate the

superior performance of the proposed method compared with
the existing state-of-the-art methods, but also reveal the poten-
tial of deep learning based approaches for AMC. Tu et al.14

designed several key building blocks for Complex-Valued Neu-
ral Network (CVNN) for AMC. Additionally, signal recogni-
tion domain knowledge is also taken into consideration. Peng

et al.15 investigated several approaches to denote the complex
signals into images with grid like topologies and utilized two
CNN models (AlexNet and GoogLeNet) to learn features

from these images for AMC. Similarly, Lin et al.16 proposed
contour stella image method, which can convey deep level sta-
tistical information by dot density in constellation diagram.
This work bridges the gap between signal recognition and deep
learning. Ma et al.17 proposed a novel AMC method by using
Cyclic Correntropy Spectrum (CCES) and deep Residual neu-
ral Network (ResNet). Experimental results confirm that the

proposed algorithm outperforms the existing designs with
much higher classification accuracy. Furthermore, some
researchers are not only satisfied with accurate signal recogni-

tion but also consider few labeled data to achieve faster recog-
nition. Tu et al.18 applied Semi-Supervised Generative
Adversarial Networks (SSGAN) to deal with unlabeled signal

data and confirmed that the semi-supervised learning method
is an effective way to exploit unlabeled data effectively to
reduce over-fitting in deep learning. Wang et al.19 proposed a
novel deep learning based lightweight AMC (LightAMC)

method with smaller model sizes and faster computational
speed. The LightAMC method can effectively reduce model
sizes and accelerate computation with the slight performance

loss. Lin et al.20 proposed a new filter-level pruning technique
based on Activation Maximization (AM) that omits the less
important convolutional filter. The proposed method can

achieve equal or higher classification accuracy than conven-
tional methods.

According to the above survey, various deep learning based

AMC methods have been proposed to improve the signal
recognition performance. But there still exist some problems.
Firstly, the dataset is often generated from the simulation sys-
tem, such as MATLAB, GNURadio, and Python. Secondly,

the number of signal categories is limited. Thirdly, the real
radio signal environment is not considered. Actually, all the
defects are due to the lack of a large-scale and high-quality

radio signal dataset in the real world. However, producing a
good dataset requires a lot of time, money and manpower.
Due to the unique characteristics of radio signal, it is very dif-

ferent to label a large-scale and high-quality dataset with the
manual operation. Hence, in this paper, an automatic collec-
tion and labeling system is designed to capture radio signals

in the real world without human participation. The main con-
tributions of this paper are summarized as follows.

(1) The Automatic Dependent Surveillance-Broadcast
(ADS-B) system is chosen as the signal source from the real

world. An automatic collection and labeling system is designed
to capture over-the-air ADS-B signals. By means of data clean-
ing, a large-scale real-world radio signal dataset is acquired,

which includes 426613 pieces of long signals from 1661 cate-
gories of airplanes, and 167234 pieces of short signals from
1713 categories of airplanes.

(2) Numerous experiments are carried out to demonstrate
the effectiveness and accuracy of the dataset under different
scenarios. A rigorous benchmark is provided based on machin-
ing learning and deep learning techniques. The dataset will be

released to the research community, which will catalyze the
development of many new algorithms, models, and evaluation
methods.

The rest of this paper is organized as follows. In Section 2,
we introduce the work on ADS-B signals and the model of the
radio channel used in this paper. In Section 3, we present the

general framework of the ADS-B dataset generation process
and highlight the key elements in this framework. In Section 4,
we introduce the signal recognition models based on three dif-

ferent deep learning algorithms. In Section 5, we introduce a
series of experiments conducted with the dataset. Finally, we
conclude this paper in Section 6 with a discussion of future
work.
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2. Related work

2.1. Related datasets

In recent years, several datasets have been proposed in the field
of radio signal recognition, which are shown as follows:

(1) RadioML 2016.10A and RadioML 2016.04C. The
RadioML 2016.10A21 and RadioML 2016.04C datasets22 pro-
vide 170163 and 220000 labeled In-Phase and Quadrature (I/

Q) samples (two-dimensional data), respectively. Designed
using GNU Radio, each synthetic dataset consists of 11 mod-
ulations (8 digital and 3 analog). The signals are synthesized
for evaluating output under distinct signal and noise scenarios

at various SNR levels with mild Local Oscillators (LO) drift,
light fading, and multiple distinct labelled SNR increments.

(2) RadioML 2018.01A. RadioML 2018.01A23 is a rich

modulation classification dataset containing more than 2.5
million radio signals covering up to 24 analog and digital mod-
ulation formats in a wide range of SNR [�20: 2: 30] dB. This

dataset contains both artificial virtual channel effects and over-
the-air recordings of 24 tested forms of optical and analog
modulation.

(3) ORACLE. The Oracle dataset24 refers to a specific radio

signal from a wide pool of machines that are bit-like (i.e. with
the same hardware, protocol, physical address, and MAC ID)
utilizing only physical layer IQ samples. ORACLE follows two

approaches: (A) it trains a CNN to identify special hardware-
centric signatures embedded in the transmitter radio chain
(e.g., IQ imbalance, DC offsets, etc.); (B) it uses a receiver-

feedback to insert modifications in the transmitter chain to
conduct channel-independent fingerprinting of Radio Fre-
quency (RF).

Datasets are an integral part of the field of machine learn-
ing. Major advances in this field can result from advances in
learning algorithms (such as deep learning), computer hard-
ware, and less intuitively, the availability of high-quality train-

ing datasets. Many major AI breakthroughs have actually
been constrained by the availability of high-quality training
datasets, but not by algorithmic advances. We have seen that

numerous awesome datasets have been instrumental in
advancing computer vision, NLPs and deep learning research.
However, there are several datasets for radio signal recogni-

tion. But we believe that the high-quality and real-world
labeled training datasets are still absent.

These existing datasets have been widely used in research,
but they may not be sufficient for many practical scenarios.

First, most categories of these datasets are generated by simu-
lation, which could be very different from that captured from
real applications. Second, the number of signal categories in

these datasets may not be sufficient, which limits their applica-
tions in AMC. Third, these datasets are hard to extend for
emerging wireless systems, and thus they could be out-of-

date in the near future. The new radio signal dataset proposed
in this paper will address all these issues.

2.2. Benchmark recognition approach

(1) Statistical features

In this paper, the bispectrum method25 is used to extract the
statistical features. The bispectral transform has the benefits of
conservation of phase, variability of size, and invariance of
time change. These benefits mean that during transformation,
a lot of details in the signal are retained, which are particularly

useful for the classification and recognition of radiation source
devices. In addition, high-order spectral analysis can, techni-
cally, minimize the Gaussian noise. However, since the trans-

formation of the bispectrum is not conducive to detection
and identification, it generally absorbs a number of energies
for two-dimensional picture recognition.

The two-dimensional signal image, then, will first be con-
verted by the line integral bispectrum method to a one-
dimensional signal. Axial Integral Bispectrum (AIB), Circum-
ferential Integral Bispectrum (CIB), Radial Integral Bispec-

trum (RIB) and Rectangular Integral Bispectrum (RIB) are
four types of well-integrated bispectrum algorithms. First, it
is possible to express the signal bispectrum of x tð Þ as follows:

Bx x1;x2ð Þ ¼
X1

s1¼�1

X1
s2¼�1

C3x s1; s2ð Þe�i x1s1þx2s2ð Þt ð1Þ

where

C3x s1; s2ð Þ ¼
Z 1

�1
x� tð Þx tþ s1ð Þx tþ s2ð Þdt ð2Þ

¼ E x� tð Þx tþ s1ð Þx tþ s2ð Þf g
Among the four bispectrum algorithms, we choose AIB in

this paper, which can be described as follows:

AIB xð Þ ¼ 1

2p

Z 1

�1
B x1;x2ð Þdx2 ð3Þ

¼ 1

2p

Z 1

�1
B x1;x2ð Þdx1

From the Fourier transform projection, it can be shown
that AIB can be considered as the axial portion Fourier trans-

form of the signal’s third-order correlation function.
(2) Machine learning based classifier
A variety of lightweight machine learning models or ana-

lytic decision processes can be used to classify the signal after

mapping statistical features to a class name. Popular methods
include Support Vector Machine (SVM),26 Decision Trees
(DTree),27 and K-Nearest Neighbors (KNN),28 which are

briefly introduced in the following:
(A) SVM is based on the minimization of systemic risk and

has strengths over generative learning. For example, where the

ultimate aim is to obtain a classifier, not the distributions, the
Vapnik-Chervonenkis theory29 provides relevant objections
against attempting to estimate probability distributions in gen-

erative learning.
(B) DTree is a decision support mechanism that utilizes a

decision-making tree-like paradigm and its future effects,
namely the implications of chance events, resource costs, and

utility. It is an efficient way of expressing an algorithm that
includes only conditional statements of power.

(C) KNN is a type of instance learning, or lazy learning,

where the function is only locally approximated and all calcu-
lation is postponed before evaluation of the function. Since
this algorithm relies on distance for classification, if the fea-

tures come in vastly different scales, normalizing the training
data can improve its accuracy dramatically.
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2.3. Deep learning

To optimize wide parametric neural network models, deep
learning depends entirely on Stochastic Gradient Descent
(SGD). The key strategy over the years stays relatively

unchanged. Neural networks consist of a set of layers that
map the input h0 of each layer to output h1 utilizing dense
parametric matrix operations accompanied by non-linearities.
This can be represented clearly as follows:

h1 ¼ max 0; h0Wþ bð Þ ð4Þ
where the weights, W, have the dimension jh0 � h1j, the bias, b,
has the dimension jh1j (both constituting h), and max is applied

element-wise per output jh1j (i.e., as the Rectified Linear Unit

(ReLU) activation function).
Traditionally, preparation leverages a loss function (L). In

this case (for supervised classification), categorical cross-
entropy of one-hot recognized class labels yi (an all zero vec-
tor, except for a one value at the class index i of the correct

class) and predicted class values byi, is used.

L y; byð Þ ¼ �1

N

XN
i¼0

yi lg byið Þ þ 1� yið Þlg 1� byið Þ½ � ð5Þ

For each epoch n within the network (f x; hnð Þ), back prop-
agation of loss gradients can be used to iteratively update net-
work weights (h) until validation loss no longer decreases.

Back propagation of loss gradients can be used to itera-
tively update network weights (h) for each epoch n within
the network (f x; hnð Þ) until validation loss no longer decreases.

The essential optimization method is as follows:

hnþ1 ¼ hn � g
@L y; f x; hð Þð Þ

@hn
ð6Þ
3. Dataset generation approach

3.1. Radio signal source

As mentioned above, the new radio signal dataset should have
three important advantages. First, it should be collected in a
real-world scenario with a large number of categories. Second,

it should not be complicated to acquire and at a low expense.
Finally, it should be easy to update in the future. Therefore,
the source of radio signal is very important for the dataset.
Fortunately, the ADS-B system is a good fit for the applica-

tion. The ADS-B system is widely used to monitor the status
of airplanes, which is very important for the safety of air traf-
fic. The advantages of ADS-B include:

(1) Large Scale. The International Civil Aviation Organiza-
tion (ICAO) requires that every airplane installs the ADS-B
system, and every airplane should periodically transmit over-

the-air ADS-B signal. Therefore, there are a lot of ADS-B sig-
nals from different airplane categories in the open radio
environment.

(2) Easy labeling. The ADS-B system follows a standard
and open protocol (DO-260B), which is designed by the ICAO.
Therefore, it is easy to automatically collect and label the radio
signal without human participation.

(3) Open Source. The ADS-B system works at the fre-
quency of 1090 MHz, which is a passive receiving system
and designed for open-source. Therefore, for scientific
research, everyone can receive and collect ADS-B signals with-
out causing security and privacy concerns.

Two parts, including the preamble and the data block, con-
sist of the ADS-B signal, which are shown in Fig. 1. The data
block uses the pulse position modulation method: a high pulse

following a low pulse represents ‘‘1”, and a low pulse following
a high pulse means ‘‘0”.

In practice, the lengths of received ADS-B signals are dif-

ferent. In the preamble, there are 8 microseconds of signal
header with a total of 4 pulses at fixed positions, which can
be used to detect and synchronize the ADS-B signal.30 In
the data block, there are two different data formats. The long

data format is 112 bits, and the short data format is 56 bits.
From Fig. 1, it can be seen that the long and short data for-
mats have the same structure in the first 32 bits. The ICAO

code appears both in long and short signals, which is used
to identify the airplane. Therefore, the ICAO code will be
used as the unique identification of the airplane to labels

the signals in the dataset. Long and short signals will both
be labeled in the dataset, with increased amount of signal
types.

3.2. Radio signal capture

3.2.1. Overall architecture of capture system

The overall system architecture of the proposed signal capture
system is shown in Fig. 2. The Software Defined Radio (SDR)
device is used to detect and capture the baseband I/Q data of

ADS-B signal, and an automatic decoding algorithm is used to
obtain the individual identity (ID) of the airplane. Then, an
automatic clustering and labeling algorithm is used to label

the baseband I/Q data with the corresponding airplane ID.
In this way, a dataset will be obtained after continuous collec-
tion of ADS-B signals over a period of time. The entire system

works well without requiring human participation, which will
greatly save the cost, time, and human power for constructing
a dataset.

3.2.2. Hardware setup of capture system

The hardware configuration of the proposed signal collecting
system is shown as follows:

(1) Signal collecting device: SM200B is a SDR platform,

which is produced by Signal Hound, Inc.. The collecting
parameters are summarized in Table 1.

(2) Signal processing device: An HP Laptop computer is

used for signal decoding, labeling, and storage. The laptop
configuration is Intel(R) Core (TM) i7-10750H CPU
@ 2.60 GHz, 32 GB RAM, and 256 GB SSD Hard Disk.

(3) Antennas device: A 1090 MHz omnidirectional antenna
is used to collect over-the-air ADS-B signal.

As shown in Fig. 3, in the actual collecting environment, we

select an open and unobstructed place in the acquisition envi-
ronment to avoid the influence of the surrounding environ-
ment on the received signal fingerprint to the greatest extent.

3.2.3. Software algorithm of capture system

The software algorithm comprises five parts, including resam-
pling, header search, information decoding, CRC check, and

positioning and labeling.



Fig. 1 Structure of ADS-B signal.

Fig. 2 Overall architecture of capture system.

Table 1 SM200B parameters during recording.

Parameter Value

Sampling frequency (Mbps) 50

IF (Hz) 0 (baseband)

Center frequency (MHz) 1090

Bandwidth (MHz) 10

Gain (dB) 30

Fig. 3 Actual collecting environment.
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(1) Resampling. This is used to reduce the amount of data,
increase the rate of data processing, and extend the adaptabil-
ity of different processing devices.

(2) Header Search. This is to detect the beginning of the
ADS-B signal and synchronize the signal by finding the peak
value of the cross-correlation output in a certain interval.

(3) Information Decoding. According to the DO-260B stan-
dard, the received ADS-B signal can be decoded to obtain
specific information, which includes the airplane ID, status,

position, and so on. Such information will be used for labeling
the radio signal.

(4) CRC Check. Cyclic Redundancy Check (CRC) is an
error-detection code that is widely used in digital networks
and storage systems to identify unintentional data
adjustments.

(5) Positioning and Labeling. The resampling factor Dfactor

and the position index LD of the header are used to determine

the starting position of the radio signal, i.e., Lstart ¼ DfactorLD.
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According to the signal length, the ending position of the radio
signal can be easily calculated. Finally, a clustering method is
used to label the ADS-B signal with the corresponding air-

plane ID. A high-quality radio signal dataset can be obtained
without human operation in this way.

The overall dataset preprocessing procedure is summarized

in Algorithm 1.

Algorithm 1. Software algorithm.

Input: I/Q signal zBI nð Þ, zBQ nð Þ, and the front-end sampling

rate1=Ts

1.Calculate the resampling factor Dfactor and obtain the received

I/Q signal zBIR nð Þ,zBQR nð Þ
2. Extract the envelope signal a nð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zBIR nð Þ2 þ zBQR nð Þ2

q
3. Calculate the correlation coefficient Rs1;s2 sð Þ to find signal

header position index LD

4. Decode the received signal and get the airplane information

5. Check the effectiveness of decoding ADS-B information

6. Combine the airplane ID with the received I/Q signal, and

store them to the database

Output: A high-quality radio signal dataset
3.3. Statistics and visualization of dataset

Data collection lasted for nearly one month. Tens of thou-

sands of signals have been acquired, but we should choose
the high-quality data. Therefore, after data cleansing, 26613
pieces of long signals in 1661 categories of airplanes, and

167234 pieces of short signals in 1713 categories of airplanes
have been chosen for the dataset. The detailed quantity distri-
bution of the captured ADS-B signals is shown in Fig. 4. In

order to ensure the richness and balance of signal samples,
530 categories of long signals and 198 categories of short sig-
nals have been selected to build the dataset. Every category

consists of 200 to 600 signal samples. In the following experi-
ments, we will randomly select 80% of the data as the training
set, 10% of the data as the validation set, and 10% of the data
as the test set.

At a sampling rate of 50 MHz, the long signal length is 6000
sampling points, and the short signal is 3000 sampling points.
Fig. 4 Quantity distribution of
Four ADS-B signals from different airplanes are shown in
Fig. 5.

4. Signal recognition models

4.1. CNN-based model

It is well understood what deep neural networks actually learn
as discriminating features in CV applications. For example, in

CNN, the first layers are trained to detect small-scale ‘‘edges”,
which become increasingly complicated as the network deep-
ens. CNN also has the benefit of being shift-invariant: con-

verted weights detect patterns in arbitrary positions in the
sequence in each layer, and the presence of a signal is passed
to a higher layer by a max-pool layer. This is precisely the

property that makes it excellent for these networks to detect.
The convolution operation can be written as

conv I;Kð Þx;y ¼
XnH

i¼1

XnW

j¼1

Xnc

k¼1
Ki;j;kIxþi�1;yþj�1;k ð7Þ

where I and K denote the input and convolutional layer

weights, respectively, and H;W; andC denote the input’s
height, width, and channel, respectively.

However, in the wireless domain, CNN does not operate on
images but on samples of I/Q. In the I/Q plane, various radio

signal waveforms present various transition patterns. For
example, transitions between (1, 0) and (–1, 0) are typical for
BPSK signals, but they do not appear in QPSK signals, which

have a constellation that is significantly different. This can
constitute a unique ‘‘signature” of the signal that the CNN fil-
ters can ultimately learn.

The structure and parameters of the CNN used in this
paper are provided in Table 2.

4.2. LSTM-based model

Recurrent Neural Network (RNN) is an advanced deep learn-
ing model for extracting temporal features, and it is generally
applied to model language sequences and multimodal time ser-

ies. Different from CNN, whose input dimensionality is fixed,
RNN is suitable to analyze sequential data with variable
lengths. In the wireless domain, RNN not only considers the

current transition patterns in I/Q samples, but also looks back
into historical transition patterns. In this way, RNN performs
the captured ADS-B signals.



Fig. 5 Four types of ADS-B signal of different airplanes from dataset.

Table 2 Structure and parameters of convolution neural

network.

Layer Dimension Activation

Input 1 � Signal length � 2

Convolution 2 � Signal length � 50 ReLU

Batch normalization 2 � Signal length � 50

Max pooling 2 � Signal length/2 � 50

Convolution 2 � Signal length/2 � 75 ReLU

Batch normalization 2 � Signal length/2 � 75

Max pooling 2 � Signal length/4 � 75

Convolution 2 � Signal length/4 � 100 ReLU

Batch normalization 2 � Signal length/4 � 100

Max pooling 2 � Signal length/8 � 100

Convolution 2 � Signal length/8 � 150 ReLU

Batch normalization 2 � Signal length/8 � 150

Max pooling 2 � Signal length/16 � 150

Convolution 2 � Signal length/16 � 200 ReLU

Batch normalization 2 � Signal length/16 � 200

Max pooling 2 � Signal length/32 � 200

Convolution 2 � Signal length/32 � 300 ReLU

Batch normalization 2 � Signal length/32 � 300

Average pooling 2 � Signal length/64 � 300

Flatten 2 � Signal length/64 � 300

Output 1 � classes number Softmax

Table 3 Structure and parameters of LSTM.

Layer Dimension Activation

Input 1 � Signal length � 2

LSTM 1 � Signal length � 128 ReLU

LSTM 1 � Signal length � 128 ReLU

LSTM 1 � Signal length � 128 ReLU

Flatten 1�(Signal length � 128)

Dense 1 � 1024 ReLU

Dense 1 � 1024 ReLU

Output 1 � classes number Softmax
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well by using more sequence features. Hence, the simple RNN
can written as

ht ¼ rh Whxt þUhht�1 þ bhð Þ ð8Þ

yt ¼ rh Wyht þ by
� � ð9Þ

where xt is the input vector, ht is the hidden layer vector,
Wh;Wy;Uh are RNN weight parameters, b bh, bydenotes

RNN bias parameters, and rh denotes the activation function.

Usually, RNN models are trained with Back Propagation
Through Time (BPTT), which may result in gradient explosion
or gradient disappearance. In order to address the problem,

several variants of RNN have been developed, such as LSTM,
which is one of the most well-known and the most widely used
models. However, LSTM has a high computing complexity,
while Gated Recurrent Unit (GRU) greatly simplifies the
LSTM structure, with a simple recurrent unit more effective
than the RNN model.

The structure and parameters of the RNN used in this

paper are provided in Table 3.

4.3. CVNN-based model

Complex-valued signals are observed in a wide variety of tech-
nologies, such as wireless networking, sensor array signal pro-
cessing, as well as biomedical research and physics.31 The
outcome of the operation of Complex-Valued Neural Net-

works (CVNN) contains values that, as a consequence of the
complex operation, carry features of both I/Q components.
Let the complex kernel be Aþ jB and the complex input signal

be Xþ jY. We can store the outcome as
(1) Separated channel: XA� YB
(2) Mixed channel: XBþ YA

Mathematically, the outcome of this operation is still real-
valued in one channel and imaginary in the other channel. To
this end, the mixed channel will allow the CVNN to learn sig-
nal coherence information. It has been shown that the CVNN

outperforms the Real-Valued Neural Network (RVNN) in
high signal coherence regions (e.g., the high SNR region).14

The structure and parameters of the CVNN used in this

paper are provided in Table 4.

5. Recognition performance analysis

Signal recognition efficiency of deep learning approaches
would be greatly influenced by the architecture, deployment,



Table 4 Structure and parameters of CVNN.

Layer Dimension Activation

Input 1 � Signal length � 2

Complex convolution 1 � Signal length � 50 CReLU

Complex batch

normalization

1 � Signal length � 50

Max pooling 1 � Signal length/2 � 50

Complex convolution 1 � Signal length/2 � 75 CReLU

Complex batch

normalization

1 � Signal length/2 � 75

Max pooling 1 � Signal length/4 � 75

Complex convolution 1 � Signal length/

4 � 100

CReLU

Complex batch

normalization

1 � Signal length/

4 � 100

Max pooling 1 � Signal length/

8 � 100

Complex convolution 1 � Signal length/

8 � 150

CReLU

Complex batch

normalization

1 � Signal length/

8 � 150

Max pooling 1 � Signal length/

16 � 150

Complex convolution 1 � Signal length/

16 � 200

CReLU

Batch normalization 1 � Signal length/

16 � 200

Max pooling 1 � Signal length/

32 � 200

Complex convolution 1 � Signal length/

32 � 300

CReLU

Complex batch

normalization

1 � Signal length/

32 � 300

Average pooling 1 � Signal length/

64 � 300

Flatten 1 � Signal length/

64 � 300

Output 1 � classes number Softmax
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training, and data consideration. Therefore, in this section,
several experiments are conducted to evaluate the most com-

mon design parameters, which will greatly impact the recogni-
tion performance, including different classifier, signal
categories, sampling rate, and signal impairments.

5.1. Dataset and deep learning configuration

In the following experiments, long and short signals are sepa-

rated to evaluate the recognition performance. The entire data-
set will be separated into three non-overlapping parts, which
include the training set (80% of the dataset), the validation
set (10% of the dataset), and the testing set (10% of the data-

set). Therefore, there are 144550 and 50484 samples in the long
and short signal training sets, respectively; 18068 and 6311
samples in the long and short signal validation sets, respec-

tively; 18068 and 6311 samples in the long and short signal test
sets, respectively.

One epoch means that a whole dataset is transferred for-

ward and backward through the neural network once, and
batch size is the total number of training examples present in
a single batch. To balance the performance and time consump-
tion, the maximum training epoch is 1000 and the batch size is
256 for all the deep learning models in the following
experiments.

Early stopping is a way to define an unspecified large num-
ber of training epochs and avoid training until the output of
the model finishes improving on a validation dataset hold-

out. Early stopping is scheduled to end the training phase in
this experiment when there is no change across 20 epochs.

The rate of learning controls how easily the model is

adapted to the problem. When smaller adjustments are made
to the weights in each update, smaller learning rates need more
training epochs, whereas larger learning rates contribute to fas-
ter improvements which need less training epochs. The initial

learning rate is 0.001 for all the models. The decreased learning
rate enables our models to descend into areas of the loss land-
scape that are ‘‘more optimal.” The learning rate decreasing

scheme in the experiments is as follows:

a ¼
10�3; epoch � 15

10�4; 15 < epoch � 40

10�5; Otherwise

8><
>: ð10Þ

During the training process, the optimizer will tweak and
change the parameters (i.e., the weights) of the model to try

and minimize the loss function and make predictions as correct
and optimized as possible. In our experiments, (stochastic gra-
dient descent) SGD with momentum is chosen for all the deep
learning models.

Considering the effectiveness of the imbalanced sample cat-
egories, we choose mean Average Precision (mAP) to reduce
the influence from imbalance dataset. The mAP metrics we

used is defined as

mAP ¼
PQ

q¼1P qð Þ
Q

ð11Þ

where Q is the number of queries and P qð Þ is precis for each
query.

5.2. Recognition performance of different classifiers

In this part, three different machine learning and three differ-

ent deep learning methods are selected to compare their recog-
nition performance using the ADS-B signal dataset, and the
comparison results are presented in Fig. 6.

(1) BiSpec+KNN. The KNN classifier combined with
BiSpectrum features. The number of neighbors is set to 5,
the uniform weight function is applied, and minkowski dis-

tance is adopted as the distance metric.
(2) BiSpec+Dtree. The decision tree classifier combined

with BiSpectrum features. The Gini coefficient is chosen to
measure the quality of a split, the minimum number of samples

required to split an internal node is two, and the minimum
number of samples required to be at a leaf node is one.

(3) BiSpec+SVM. The SVM classifier combined with

BiSpectrum features. The radial basis function is chosen as
the kernel, and regularization is l2 regularization, whose
strength is 1.0.

(4) CNN. The CNN-based deep learning algorithm intro-
duced in Section 4.

(5) LSTM. The LSTM-based deep learning algorithm intro-
duced in Section 4.



Fig. 6 Recognition performance at different SNR levels.
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(6) CVNN. The CVNN-based deep learning algorithm

introduced in Section 4.
According to Fig. 6, several observations can be made as

follows:

(1) The recognition performance of deep learning is much
better than that of machine learning. This is due to different
feature extraction mechanisms. With the help of extra layers,
deep learning can extract robust and accurate features auto-

matically without human participation. However, machine
learning should use the handcrafted features, which have a lim-
ited capacity to obtain correct real-world signal features.

(2) The recognition rate of deep learning will be improved
with increased SNR, but it will become stable in the high
SNR region. According to Fig. 6, when the SNR is higher than

0 dB, the performance rates of all the deep learning models will
exceed 90%.

(3) The CVNN achieves the highest recognition rate among
all the models at high SNR. The reason is that the correlation

information from the I/Q channels is not polluted by noise at
high SNR levels. Therefore, according to the correlation infor-
mation from the I/Q channels, the CVNN can acquire more

information to extract features, which lead to better recogni-
tion performance at high SNR.

(4) We compared three different machine learning and three

different deep learning methods. The accuracy that we
achieved from CVNN, RNN, and CNN is approximate to
99.8%, 97.2% and 96% respectively at 20 dB for long and

short ADS-B signal, which implies that this dataset is high-
quality labeled and the noise in the signal is very low. In this
way, the reader can consider that this dataset is clean and
add any influence on it.

5.3. Recognition performance under different numbers of

categories

It is common to receive hundreds to thousands of categories of
ADS-B signals. Therefore, it is crucial to explore how the num-
ber of categories of ADS-B signals influences the recognition

performance. In this experiment, the numbers of categories
are Nc ¼ 530, 424, 318, 212, and 106 (corresponding to
100%, 80%, 60%, 40%, and 20% of long signals) and Nc ¼
198, 158, 119, 79, and 40 (corresponding to 100%, 80%,
60%, 40%, and 20% of short signals), which are randomly
selected from the ADS-B signal dataset. To eliminate the ran-

domness of selecting categories, 20 experiments are conducted
and the average results are presented. Then the deep learning
models mentioned in Section 4 are applied to test their recog-

nition performance under different SNR levels, and the result
is shown in Fig. 7.

According to Fig. 7, some conclusions can be drawn:
(1) With the increase of signal categories, the recognition

rate will decrease in low SNR. However, the recognition rate
will also improve with the increase of SNR. Therefore, the
recognition rate of different category numbers will become

stable at the same level in high SNR. It indicates that deep
learning method has a better capacity of feature extraction
and finds a better decision boundary in high SNR, even at a

large category number.
(2) CVNN model is proved to be the best recognition

method for both long and short ADS-B signal at any category
number. It indicates that we should fully use I/Q information

to improve the recognition rate in the future.

5.4. Recognition performance at various sampling rates

A higher sampling rate requires a higher performance recei-
ver. However, a higher performance receiver may not always
be available. An experiment is conducted to find out how

sampling rate affects the ADS-B recognition performance.
In the experiment, MATLAB is used to resample the original
signal at 50 MHz, and then resample the long and short sig-

nals with sampling rates of 50 MHz, 40 MHz, 30 MHz, 20
MHz, and 10 MHz. To guarantee that we obtain the inter-
ested band, we used an Anti-Aliasing Filter (AAF) which is
a filter used before a signal sampler restricts the bandwidth

of a signal.
The recognition performance under different sampling rates

are presented in Fig. 8. It indicates that the sample rate has a

great influence on recognition rate for both long and short sig-
nal. Because the information of original signals will be lost in
sample acquisition with a low sampling rate, according to

Fig. 8, the good recognition rate can be obtained with the sam-
ple rate higher than 40 MHz, and we know that the signal
bandwidth of ADS-B signal is 10 MHz. Therefore, we can

draw a conclusion that the sample rate should be four times
higher than the bandwidth of original signal.



Fig. 7 Recognition performance at different categories number for different models.
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5.5. Recognition performance under various signal impairments

Complex and various channels lead to the impairments of sig-
nal in real world, whereas the Additive White Gaussian Noise
(AWGN) is commonly utilized in simulation and modeling. It
is important to analyze how well-trained classifiers do and
compare their performance under those transmission

impairments.
One of the several non-ideal situations that may influence

the baseband receiver design is Carrier Frequency Offset



Fig. 8 Recognition performance at different sampling rates with different models.
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(CFO). CFO usually happens where the local oscillator signal
in the receiver is not compatible with the carrier in the

obtained signal for down-conversion. Two significant reasons
may be related to this phenomenon: the frequency mis-match
between the transmitter and the oscillators of the receiver;

the Doppler effect when the transmitter and/or receiver pass.
Like the carrier frequencies, transmitter and receiver sam-
pling frequencies used by the Digital to Analog Converter

(DAC) and Analog-to-Digital Converter (ADC) are generally
slightly mismatched. Such impairment is known as the Sam-
pling Rate Offset (SRO) and will also degrade the system

performance.



Fig. 9 Recognition performance under different signal impairments with different models.

46 Y. TU et al.
In this experiment, common signal impairments, such as
SRO and CFO, are considered. For long and short ADS-B sig-
nals, SRO is set to 1 KHz or 10 KHz, and CFO to 1 KHz or 10

KHz. The experimental results are presented in Fig. 9.
The following observations can be made from the results in

Fig. 9:
(1) It is obvious that signal impairments have a great

impact on the recognition performance, and a higher offset
leads to a larger decline of the recognition performance. In this
way, a high-performance receiver is needed to mitigate such
influence.

(2) Due to CFO, we suppose that the received frame at right

frequency fc is down-converted with a local carrier frequency
1þ eð Þfc. The resulting baseband samples are subject to phase
rotation. The waveform of ADS-B signal will be distorted non-
linearly and make it hard to recognize when facing worse CFO.

(3) Due to SRO, it is supposed that the sampling duration is

T
0
s ¼ 1� eð ÞTs. Hence, if the sampling e offset is positive (or
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negative), we obtain the history or future sample in the frame,
which is taken at time sn ¼ neTs earlier (or later) than it
should. The ideal feature like pike and high frequency chang-

ing in the waveform will be lost. It will be more difficult for
deep learning method to learn the correct features in ADS-B
signal.

(4) The impairments of signal cannot be avoided in real
world, and they will make a great influence on the recognition
performance. Therefore, first, we should try to collect much

larger data from real world, which includes different signal
impairments. Deep learning can learn to deal with the complex
conditions. Second, we should try to find better signal process-
ing method to reduce the impairments before inputting into

deep learning models.

6. Conclusions

In this paper, a large-scale and real-world dataset was pre-
sented, which was designed to advance the deep learning appli-
cation in radio signal recognition. We also presented the key

part about how to collect the dataset without human participa-
tion. Benchmark results were also presented using the dataset
under different radio signal recognition scenarios, such as dif-

ferent classifiers, different numbers of categories, different
sample rates, and different signal impairments. As shown in
the results, the deep learning methods have a great potential

in signal recognition. Finally, this dataset will be released to
the research community, which will catalyze the development
of new algorithms, models, and evaluation studies.

In the future, this dataset would become a primary refer-

ence for a wide variety of academic studies on signal process-
ing, including the following potential applications:

(1) A benchmark dataset. The current benchmark datasets

in radio signal processing, such as RadioML 2016.10A and
RadioML 2018.01A, have played a critical role in advancing
signal recognition research. The proposed high-quality, rich-

diversity, large-scale, and real-world radio signal dataset will
become a new and valuable benchmark dataset for future
research in the field.

(2) Automatic data labeling. In this paper, an automatic
data labeling framework for radio signals is proposed. Addi-
tional ADS-B signal data could be added in the dataset with-
out much cost. The proposed system will be a useful tool to

collect other types of signal in the future.
(3) Training resources for other ADS-B tasks. This dataset

could serve as a pretrain dataset for other tasks of the ADS-B

system, such as ADS-B demodulation and separation. This is
mainly due to the rich, diverse, and robust features captured
in this dataset. One interesting research direction could be:

transferring the deep learning models to conduct few-shot
learning about ADS-B signals in other scenarios.

(4) This paper’s dataset and codes have been open in
‘‘https://gitee.com/heu-linyun”. We hope it can be used to

attract more researchers to join the fields, and better deep
learning method can be provided to improve the recognition
performance.

However, there are also some improvements that should be
continued with more effort. In wireless communications, fad-
ing is variation of the attenuation of a signal with common

various variables. To give a comprehensive benchmark result
about our dataset, we will consider channel fading factor in
the future. First, the category and number of signals are still
not enough, which should be further replenished. Second, we
only capture the ADS-B signal in one city, the location should

change to several different cities, and we can even design a dis-
tributed capturing system. Third, we only label the airplane ID
with the ADS-B signal, and more tag should be used, such as

SNR, speed, and altitude. Fourth, the evaluation method is
not perfect, a more comprehensive target should be proposed.
Finally, a lot of deep learning methods should be included in

future recognition task. Fifth, the long tail concept has found
some ground for signal classification, such as minor class
ADS-B signal recognition, zero-shot learning, and supervised
learning. We will consider long-tail application in this dataset,

especially for those ADS-B categories that have less than 50
samples.
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