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ABSTRACT Recently, information centric wireless network (ICWN) has been concerned due to its flexible
network structure and high efficiency of content delivery. Meanwhile, scalable video coding (SVC) is a
promising solution to provide high quality of video services. Combining ICWN and SVC is expected to
improve the performance of wireless video delivery services. Since caching strategy plays a significant role in
ICWN, in this paper, we address the caching problem for scalable videos over ICWN in mobile scenarios. By
jointly considering the layered structure of SVC and the hierarchical architecture of ICWN, we formulate an
optimization problem to minimize the average download delay. A novel layered hierarchical caching method
is proposed for solving the problem. Furthermore, we focus on a special but common case in which the
above delay minimization problem is equivalently transformed into a cache hit ratio maximization problem.
A simplified algorithm with 1/2 approximation ratio is provided. Finally, simulation results show that our
proposed caching schemes outperform baseline methods in cache hit rate and delay performance.

INDEX TERMS ICWN, SVC, wireless caching, video transmission.

I. INTRODUCTION
With the development of wireless communication technolo-
gies and the proliferation of smart devices, we have witnessed
the explosive increment of mobile traffic. According to [1],
the total amount of mobile traffic is predicted to reach 136
exabytes (EB) per month by the end of 2024, and over 74%
of the traffic will be contributed by videos. Meanwhile, it
have been observed that themajority of the traffic is generated
from some replicate popular video contents [2].

To effectively cope with such a traffic growth, network
operators aim at not only expanding the network capac-
ity, but also changing the network structure to prevent
unnecessary traffic forwarding and large delays. Informa-
tion centric wireless networks (ICWN) is regarded as a
promising technology to achieve the aforementioned goals.
Different from the content delivery network (CDN) which
caches contents in the application layer outside the access
networks, ICWN provides in-network caching capabilities
nearby mobile users, and reduces the average download delay
when the requested contents are locally cached. Moreover,
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benefiting from edge computing, ICWN has the potential to
learn users’ behavior, such as mobility pattern and request
distribution. Compared with traditional information centric
networking (ICN), ICWN offers unique opportunities, since
proactive caching can be possible in the wireless nodes before
user demand.

In addition, with respect to adaptive video streaming ser-
vices, the same content may be downloaded with various
bit rates due to users’ inhomogeneous screen resolutions
and channel conditions. As a part of the H.264/265 stan-
dards, scalable video coding (SVC) can adjust to various net-
work conditions and user requirements, while guaranteeing
acceptable video quality. Specifically, SVC encodes a video
into a base layer and multiple enhancement layers [3]. The
base layer provides a fundamental video quality and carries
essential information, and the enhancement layers provide
different levels of improved video qualities. Before decoding
of a higher enhancement layer, the base layer and all lower
enhancement layers should be correctly decoded [4]. The
caching of SVC-based contents can be more efficient if its
layered video structure is considered.

Given that the scalability provided by SVC is beneficial for
video delivery and ICWN has been widely concerned due to
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its flexible network structure, SVC-based video over ICWN
is expected to improve the performance of wireless content
delivery services. Therefore, in this paper, we consider such
a video steaming scenario, and focus on caching strategies for
better video delivery.

Caching in wireless networks has been widely concerned
[5]–[10]. The concept of wireless caching is introduced in [5]
to alleviate the explosive increase in video-on-demand trans-
missions. Popular video files are cached in equipments with
high storage capacity to assist the macro base stations by han-
dling local requests. After that, a large number of researchers
study the issues of wireless caching in different aspects. For
example, in [6], [7], the authors focus on the hierarchical
structure of networks, and provide insights into the design
of cooperative caching algorithms based on the topology of
hierarchical tree. In [8], the authors aim at minimizing the
average delay-cost of content delivery in cloud radio access
networks through cooperative hierarchical caching. The work
in [9] extends the terrestrial wireless caching into the sky,
and addresses the problem of proactive content deployment
in cache-enabled unmanned aerial vehicles. The authors in
[10] consider dynamic video streaming in device-to-device
assisted wireless networks, and design a method to cache
video files of varying quality levels to enhance the quality
of user experience (QoE). However, all the above mentioned
researches take no consideration of caching SVC-based con-
tents, and thus cannot fully exploit the benefits of layered
videos.

To utilize the scalability provided by SVC, wireless
caching dedicated for SVC-based contents have also been
actively studied [11]–[18]. The authors in [11] investigate
cache-enabled wireless networks to provide scalable video
services with multiple perceptual qualities. Based on the the-
ory of stochastic geometry, the expressions of local serving
probability, ergodic service rate and service delay are derived.
To improve energy efficiency (EE), the authors in [12]
propose energy-efficient caching schemes for SVC-based
videos over heterogeneous networks. In [13], the problem
of joint power allocation and SVC-based content caching is
addressed, and the QoE is improved by emphasising user’s
reception capability. For improving successful transmission
probability, the authors in [14] investigate a layer placement
scheme for SVC videos, where multiple video layers are
stored in the cache devices of small-cell base stations (SBSs).
In [15], caching strategies in large-scale wireless networks
are analyzed and optimized, which reveals the relationship
between layers of SVC-based videos. Moreover, some recent
studies address the transmission latency in SVC-based video
caching. The policies proposed in [16], [17] aim to reduce
the average delivery delay of SVC videos in content delivery
networks and heterogeneous wireless network. In [18], the
authors provide an analytical characterization of the video
delivery delay in a cache-enabled network, where the avail-
able video layers are stored based on their popularity. How-
ever, all of the above SVC-based caching schemes have not
considered user mobility in wireless networks, and may not

be applied with high efficiency when users are moving from
one access point to another.

In addition, caching strategies play a significant role in
traditional ICNs or content centric networks (CCNs), where
routers are cache-enabled. There are already some researches
on the caching issue for SVC-based videos over ICN. For
instance, the authors in [19] propose a mechanism for cache
management and request forwarding policies for scalable
video streaming in ICN, which provides video faster to
the users, especially the mandatory base layer. In [20], to
improve the QoE for adaptive scalable video streaming ser-
vices, layered cooperative cache management (LCC-VCCN)
scheme is proposed. Neighbor nodes within broadcast range
are selected to cache one or several SVC layers content,
which reduces content retrieval time and prevents stalls of
the video playback. However, the wireless factors such as
channel fading, cell association, and user mobility involved
in ICWN have not been jointly considered in the aforemen-
tioned caching strategies.

Motivated by the above discussion, we would like to
design proactive caching schemes for SVC-based videos
over ICWN, and take into account the following specific
characteristics. Firstly, caching more layers results in higher
scalability for video delivery. However, the cost will increase
accordingly. Therefore, the number of video layers should be
cached properly. Secondly, a mobile user requesting adaptive
video streaming services often selects an appropriate video
bitrate according to its channel bandwidth [21]. The factors
which have important impact on the download rate should be
taken into consideration, such as channel fading, cell asso-
ciation, and user mobility. Thirdly, the hierarchical network
architecture of ICWN and layered structure of SVC videos
have to be jointly considered. In summary, the novelty and
technical contributions of this work are as follows:

• We address the problem of scalable video caching over
ICWN, and aim to minimize the average transmis-
sion delay. Both the hierarchical caching architecture
of ICWN and the layered feature of SVC-based videos
are taken into account. An optimization problem is for-
mulated and proved to be NP-hard. By simplifying it
into a special knapsack problem and solving it through
machine learning, we propose a layered hierarchical
caching scheme.

• We consider a special case of the above delay minimiza-
tion problem, which can be equivalently transformed
into a simple cache hit rate maximization problem.
A heuristic algorithm is proposedwhich provides at least
1/2 approximate ratio of the optimal solution.

• Simulation results show that our proposed caching
strategies achieve improvements in both transmission
latency and cache hit rate compared to baseline caching
strategies.

The rest of the paper is organized as follows. In Section II,
we present the system model, and formulate a delay min-
imization problem for wireless SVC-based videos over
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TABLE 1. Symbol notation.

FIGURE 1. Scalable video caching system based on ICWN.

ICWN. In Section III, the hardness of the problem is ana-
lyzed, and a layered hierarchical caching scheme is designed
by combining machine learning and optimization methods.
A special case of the delay minimization problem is illus-
trated in Section IV, and an approximate solution is derived
with 1/2 approximate ratio. In section V, through numerical
simulations, the effectiveness of our proposed caching algo-
rithms is verified. In Section VI, the work of this paper is
concluded.

Notations of some important symbols are summarized in
Table 1.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. NETWORK MODEL
As shown in Fig. 1, we consider a set U of mobile users,
each of which is requesting SVC videos and moving in an
area covered by ICWN. A set K of radio access points (APs)

are located in the area and connected to a centralized edge
controller (or edge router). The controller takes the role of
aggregating SVC video traffic between the video server and
APs. Both the edge controller and APs are equipped with
caches. This architecture enables centralized optimization for
content caching and cooperation in wireless access networks.

If a user in AP k requests a video which is neither cached at
AP k nor at the edge controller, the video will be downloaded
through Internet. Generally, the transmit delays from different
network nodes are unequal. We denote by dR, d0 and dk the
average latency per bit incurred for a user associated with AP
k to download videos from Internet, from the edge controller
and from AP k , respectively.

We adopt the Gauss-Markov process to characterize users’
mobility [22]. Let vectors `u(t) = (`ux(t), `uy(t)) and
zu(t) =

(
zux(t), zuy(t)

)
respectively denote the location and

velocity of user u at time t , where x and y represent the sub-
scripts of two orthogonal components in a two-dimensional
(2-D) area. The velocity in the next time slot is given by

zu(t + 1) = %zu(t)+ (1− %)µ+ β
√
1− %2w(t), (1)

where % is the memory parameter to reflect how current
velocity affects future velocity, µ = (µx , µy) and β represent
the central tendency and the dispersion of velocity, and w(t)
is an independent 2-D Gaussian process with zero mean and
unit variance. The parameters µ, β and % are assumed to be
known a priori. The location of user u in the next time slot
can be expressed as

`u(t + 1) =

{
`u(t), if user is out of bounds,

`u(t)+ zu(t)1T , else.

(2)

When a user is outside the bounds, its location in the next
time slot remains unchanged.

Based on the above Gauss-Markov process, the edge con-
troller is aware of user mobility, and determines the associa-
tion between users and APs in the next time slot. We assume
that each user is associated with its closest AP. Let the binary
decision variable aku indicate the association result, which is
determined according to the following strategy:

aku =


1, k = argmax

k

∏
i∈K,i 6=k

P(r2ku < r2iu),

0, else,
(3)

where rku denotes the distance between user u and AP k , and
the term

∏
i∈K,i 6=k P(r2ku < r2iu) is the probability that AP k is

the nearest AP of user u.
Let Uk = {u|u ∈ U , aku = 1} denote the set of users that

will be connected to AP k . Assume each AP transmits video
data using fixed power, and the bandwidth of AP k is equally
allocated to the users in Uk . The average downloading rate of
user u ∈ Uk is calculated by

Rku =
Wk

|Uk |
log2

(
1+

Pkhku
σ 2
0

)
, (4)
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where Wk and Pk denote the total available bandwidth and
the transmit power of AP k . hku and σ 2

0 denote the channel
fading and the noise power, respectively. Note that although
inter-AP interferencemay exist, it can be well coordinated via
different techniques [23]. Thus, for analytical simplicity, we
assume that a user experiences a roughly static interference,
which is similar as the model setting in [24], [25]. In addition,
the average channel fading hku is given by hku =

Ar
(rku)τ

, where
Ar is a constant coefficient in large-scale fading model, and
τ is the path loss exponent.

Next, we derive the cumulative distribution function (CDF)
of Rku. According to (1), in time slot t + 1, the moving
speed zu(t + 1) of user u is a gaussian random variable
with mean value ξzu = %zu (t) + (1− %)µ and variance
δ2z = β

2(1− %2). Based on (2), the square of distance r2ku is
the sum squares of two independent gaussian variables, which
follows a non-central chi-square distribution. Therefore, the
probability density function (PDF) of r2ku is given by

fr2ku (r) =
1
2δ2

e−
r+ξku
2δ2 I0

(√
rξku
δ2

)
, (5)

where I0(·) is the zero-order modified Bessel function,
δ2 = δ2z (1T )

2 denotes the variance of r2ku and ξku is the mean
value given by

ξku =
(
`kx − `ux (t)− (%zux (t)+ (1− %)µx)1T

)2
+

(
`ky − `uy (t)−

(
%zuy (t)+ (1− %)µy

)
1T

)2
,

where `kx and `
k
y are the horizontal and vertical coordinates of

AP k . Finally, the cumulative distribution function (CDF) of
Rku can be derived based on (5), and is given by:

Qku(x) = P (Rku ≤ x) =
∫
+∞

Ak
fr2ku (r)dr, (6)

where Ak =

 PkAr

σ 20

(
2
x|Uk |
Wk −1

)


2
τ

is derived from (4).

B. VIDEO DELIVERY MODEL
A setV of videos are stored in the remote server. Each video is
encoded into L layers according to SVC protocol. Therefore,
the video server can provide atmost L versions for a requested
video with different bitrates. Video v is divided into a setMv
of segments, each of which lasts for Tv seconds. Without loss
of generality, we assume that Tv is equal to the duration of
a time slot 1T for analysis simplicity. The average segment
size of the lth layer of video v is denoted by ovl . Segment
m of video v transmitted or cached in ICWN is refer to as
an object and expressed by (v,m) in the following. If a user
requests segment (v,m) with version l, the first l layers will be
downloaded, and the transmit rate should be greater or equal
to
∑l

i=1 ovl/Tv. Moreover, each user has a buffer to store
pre-fetched video data for subsequent use, and is capable
of combining multiple layers into an integrated video. For

example, a user requests a video with version l2, but only
layers from 1 to l1 are cached locally, where l2 > l1. The user
will obtain the first l1 layers from local caches and download
other layers through the backhaul link, and combine them
together to form the requested video.

Moreover, let pukvl indicate the probability that current
channel condition of user u can afford the streaming of video
v with version l, which is expressed by

pukvl =



Qku

(
2∑
i=1

ovi
Tv

)
, l = 1

Qku

(
l+1∑
i=1

ovi
Tv

)
− Qku

(
l∑
i=1

ovi
Tv

)
, l ∈ (l,L)

1− Qku

(
L∑
i=1

ovi
Tv

)
, l = L

(7)

Notice that if the transmit rate cannot afford the lowest video
version (i.e. Rku < ov1/Tv), even the base layer of the SVC-
encoded video cannot be successfully downloaded before
playback, which will cause interruptions and rebuffering.
However, the base layer will be still requested if the video
session is not ended.

Similar as the video request model proposed in [26], we
assume each request starts from the beginning of the video
file and proceed sequentially. The viewing process is roughly
divided into two phases: a browsing phase with high depar-
ture rate pF and a viewing phase with low departure rate pB.
A viewing ratio of 15% is set as the boundary between the two
phases. Meanwhile, since Zipf distribution has been estab-
lished as a proper approximation to video popularity [27],
we assume that if a user decides to switch to another video,
the first segment of video v is requested with a probability
given by:

qv =
v−α∑
i∈V i

−α
, (8)

where α is a parameter to determine the distribution skew-
ness.

Based on the aforementioned model, if segment (v,m) is
currently downloaded, segment (ν, n) will be requested in the
next time slot with the following probability

P {(ν, n)|(v,m)}

=



1− ph, ν = v, n = m+ 1,m ≤ 0.15|Mv|,

1− pl, ν = v, n = m+ 1,m > 0.15|Mv|,
pFqν
1− qv

, ν 6= v, n = 1,m ≤ 0.15|Mv|,

pBqν
1− qv

, ν 6= v, n = 1,m > 0.15|Mv|,

0, otherwise.

(9)

C. PROBLEM FORMULATION
In this paper, we aim to minimize the average downloading
delay of segments through effective caching schemes. We use
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a binary decision variable bmkvl to indicate the caching decision
of the l-th layer of segment (v,m), where bmkvl = 1 means
layer l is cached in the edge controller (k = 0) or AP k
(k > 0) and bmkvl = 0, otherwise. Any requested contents
that are not cached at the mobile edge should be downloaded
through Internet. For user u ∈ Uk requesting segment (v,m)
with version l, the average delay to obtain all layers from 1
to l is given by:

dmkvl =
l∑
i=1

dkovibmkvi + d0ovi(1− b
m
kvi)b

m
0vi

+ dRovi(1− bmkvi)(1− b
m
0vi)

=

l∑
i=1

ovi[dR + (dR − d0)bmkvib
m
0vi − (dR − dk )bmkvi

− (dR − d0)bm0vi]. (10)

Moreover, let λumkv denote the probability of user u ∈ Uk
requesting video segment (v,m) in the next time slot, which
can be predicted according to (9). Based on (7) and (10), the
total average delay of all mobile users can be expressed as:

Dtotal =
∑
k∈K

∑
u∈Uk

∑
v∈V

L∑
l=1

∑
m∈Mv

λumkv p
u
kvld

m
kvl . (11)

To minimize Dtotal , we formulate the following optimiza-
tion problem:

min
{bmkvl }

∑
k∈K

∑
u∈Uk

∑
v∈V

L∑
l=1

∑
m∈Mv

λumkv p
u
kvld

m
kvl

s.t.
∑
v∈V

L∑
l=1

∑
m∈Mv

bmkvlovl ≤ Ck ,∀k ∈ K ∪ {0},

bmkvl ∈ {0, 1},∀k ∈ K ∪ {0}, (12)

where Ck and C0 denote the cache capacities of AP k and
the edge controller, respectively. The first constraint in (12)
indicates that the total amount of contents in each cache
device should not exceed the corresponding cache capacity.

III. LAYERED HIERARCHICAL CACHING
FOR SVC-BASED VIDEO STREAMING
In this section, we first prove the NP-hardness of problem
(12), then simplify the problem and propose a layered hier-
archical caching algorithm for SVC-based video streaming
over ICWN.
Theorem 1: Problem (12) is NP-hard.
Proof: Knapsack problem (KP) is a well known

NP-Hard problem. We prove Theorem 1 by reducing KP
to Problem (12). In KP, we are given a set of items and a
knapsack. These items have different weights and values, and
can be packed into the knapsack which has limited weight
capacity. The objective is to pick out part of the items to make
sure that their total value is the largest while their total weight
is less or equal to the knapsack capacity. Note that KP is a spe-
cial case of problem (12) if Ck = 0,∀k ∈ K, i.e., all APs are

not cache-enabled. In this case, each layer of a segment can be
considered as an item in KP, where the weight and the value

of each item are ovl and ovl(dR − d0)
∑
k ′∈K

∑
u∈Uk

L∑
i=l

puk ′viλ
um
k ′v,

respectively. The above steps of reduction can be finished
within polynomial time, which proves the NP-hardness of
problem (12).

A. PROBLEM REFORMULATION
According to Theorem 1, it is hard to obtain the optimal
solution of problem (12) within polynomial time. Therefore,
we first simplify the problem according to the theory of KP,
and then propose a heuristic algorithm.

We rewrite (11) as

Dtotal = D−
∑

k∈K∪{0}

∑
v∈V

L∑
l=1

∑
m∈Mv

Dmkvlb
m
kvl, (13)

where D is a constant value given by:

D =
∑
k∈K

∑
u∈Uk

∑
v∈V

L∑
l=1

∑
m∈Mv

λumkv p
u
kvl

l∑
i=1

ovidR, (14)

and

Dmkvl =



ovl (dR − d0)
∑
k ′∈K

∑
u∈Uk

L∑
i=l

puk ′viλ
um
k ′v

(
1− bmk ′vl

)
,

k = 0,

ovl
∑
u∈Uk

L∑
i=l

pukviλ
um
kv
[
(dR − dk)− (dR − d0) bm0vl

]
,

k 6= 0.
(15)

To minimize the delay Dtotal is equivalent to solving the
following optimization problem:

max
bmkvl

∑
k∈K∪{0}

∑
v∈V

L∑
l=1

∑
m∈Mv

Dmkvlb
m
kvl

s.t.
∑
v∈V

L∑
l=1

∑
m∈Mv

bmkvlovl ≤ Ck , ∀k ∈ K ∪ {0},

bmkvl ∈ {0, 1}, ∀k ∈ K ∪ {0}. (16)

Problem (16) can be interpreted as a knapsack problem.
The cache devices at the edge controller and APs play the
role of knapsacks in KP. Accordingly, there are a total of
|K| + 1 knapsacks with capacities C0,C1, · · · ,CK , respec-
tively. Each layer of a video segment corresponds to an item in
KP. Therefore, all

∑
v |V| ·L · |Mv| layers form an item setO.

Each item can be put into more knapsacks. For the l-th layer
of video segment (v,m), its weight is ovl , but its value Dmkvl
is only determined after it has been put into a knapsack. The
objective is to pick out K + 1 sets of items which maximize
the total value.
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Algorithm 1 Layered Hierarchical Caching Scheme
Input: Ck , λumkv , ovl , p

u
kvl

Output: Sk , ∀k ∈ K ∪ {0}
1: Parameter Initialize.

(1) Map each layer of video segments into an item set O
with weight ovl .
(2) Set Sk = 8, where k ∈ K ∪ {0}.

2: Determine the caching priority for each item based on
SVM.

3: repeat
4: Update the values of items in O for knapsack 0.
5: Call Algorithm 2 for knapsack 0 to obtain S0.
6: for k ∈ K do
7: Update the values of items in O for knapsack k .
8: Call Algorithm 2 for knapsack k to obtain Sk .
9: end for
10: until
11: Maximal

∑
k∈K∪{0} gv (Sk) is obtained, or the number of

iterations exceeds the maximal threshold I .
12: return Sk

B. LAYERED HIERARCHICAL CACHING ALGORITHM
Layered video contents can be cached in both the edge

controller and an AP simultaneously. According to (15), the
value of an item Dmkvl may vary when the item is put into
different knapsacks. Specifically, the value of an item in the
edge controller depends onwhether it has been cached inAPs.
Similarly, the value of an item in an AP depends on whether
it has been placed in the edge controller.

Therefore, the caching priority has a significant impact on
the performance, which should be determined by considering
both network parameters and popularity of video segments.
However, it is hard to obtain an exact priority directly for
each item. Existing solutions such as branch-and-bound algo-
rithms may suffer from forbidding computational complexity
or unsatisfactory optimality [28]. To overcome the above dis-
advantages, some machine learning (ML) based approaches
have been widely adopted and proved to be effective [29].
Therefore, in this paper, we determine the priority based on
ML, which will be detailed in Section III-C.

Based on the caching priority, we propose a heuristic
layered hierarchical caching scheme, which is given as
Algorithm 1. The details of each step are described as follows:

Step 1: Initialize the selected item set Sk for each knapsack
k , where k ∈ K ∪ {0}. Let gv(·) and gw(·) denote the
value function and the weight function of an item or a set,
respectively. We can obtain that gv (8) = 0 and gw (8) = 0,
where 8 denotes an empty set.

Step 2: During the online decision making phase, the
instant parameters of items and networks within our consid-
ered region are readily available at the controller. We can
obtain the caching priority for each item in real time based
on the well trained SVM model.

Step 3: For knapsack 0, the value of each item Dm0vl in set
O is updated. These items are sorted by the decreasing order

Algorithm 2 Single Knapsack Filling Algorithm
Input: O, Ck , λumkv , ovl , p

u
kvl

Output: Sk
1: Calculate Dmkvl according to (15).
2: Sort the items ofO in decreasing unit-value order accord-

ing to Dmkvl/ovl .
3: for each item ai in O, 1 ≤ i ≤ |O| − 1 do
4: if gw(Sk ∪ {ai}) ≤ C0 then
5: Set Sk := Sk ∪ {ai}.
6: end if
7: end for
8: return Sk

of unit value Dm0vl/ovl , and as many items as possible are
selected according to the order until knapsack 0 cannot be
filled with more items. At this time, a set S0 of videos cached
by the edge controller is obtained, and the corresponding bm0vl
is updated. After that, the values of items is updated for each
AP. Similarly, a set Sk of selected items are cached in AP k ,
and the bmkvl is determined accordingly.
Step 4: Based on the obtained S0 and Sk in Step 3, the sum

value
∑

k∈K∪{0} gv (Sk) can be calculated. If the increment of
the above value is less than a constant tolerance or the number
of iterations exceeds the maximal threshold I , the item sets
for all knapsacks are obtained. Otherwise, the next iteration
of the algorithm starts from Step 2.

The single knapsack filling algorithm applied in Step 3
is shown in Algorithm 2. Notice that our proposed layered
hierarchical cache scheme can be executed with low compu-
tational overhead and finished within polynomial time, which
can be implemented in the centralized edge controller.

C. CACHING PRIORITY DETERMINATION BASED ON
MACHINE LEARNING
First, a sufficiently large number of training data have to be
generated. Therefore, we randomly simulate multiple scenar-
ios with various user requests and network parameters. For
each scenario, a specific problem (12) is obtained accord-
ingly. Ideally, if these problems can be solved optimally, an
accurate labeled training data set will be formulated based on
the solutions. Specifically, if bm0vl = 1, the controller will get
the priority to cache the lth layer of segment (v,m), and the
corresponding item inO is labeled as 1; otherwise, the item is
labeled as 0. After collecting all training labels from multiple
scenarios, the training set becomes large enough to make a
machine learning model be well trained.

However, problem (12) is hard to be solved optimally
within a reasonable time, since the complexity of searching
bm0vl exhaustively is as high as 2|O|, which is unaffordable in
practice when |O| is very large. Therefore, in the following,
we design a novel exhausting search method with sublinear
reduction [30] to speed up the generation of training data.

The essential idea is to effectively reduce the size of O
in each scenario. We first remove tail items with extremely
low or zero unit-values, and sample a subset of the residual
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items to obtain a reduced subset O′. Then, we search the
optimal bm0vl in set O′ exhaustively. An item that is not
included in O′ shares the priority of its most similar item in
O′. Specifically, we sort the items in O in decreasing unit-
value order according to Dmkvl/ovl , and obtain the ranks κik
for each item i ∈ O in AP k ∈ K and the controller. These
ranks are further normalized for similarity comparison, and
the caching capacities Ck (k ∈ K ∪ {0}) are reduced by the
same sampling ratio. Each record of the training set includes
the normalized unit-value ranks, weight, dR, d0, dk , C0, Ck ,
α, and a corresponding label of caching priority. Although the
exhausting algorithm cannot be executed in real time, it does
not impair the effectiveness of our proposed method, because
the training data are generated offline.

In addition, we design a binary classifier based on support
vector machine (SVM), which takes the training data as
input and outputs the caching priority for each item. Intu-
itively, the unit-value ranks of an item in different caches are
closely related to its request characteristics, and are suitable
to be utilized as training features. Moreover, we observe that
their mean value reflects the average popularity of an item,
and their variance indicates whether an item is uniformly
requested by all users in different APs. Therefore, we adopt
all the above elements as training features, i.e. dR, d0, dk ,
C0, Ck , α and κik , together with the corresponding means
and variances of κik . Note that, the caching capacities of the
controller and each AP are reduced by the same sampling
proportion accordingly.

To reduce the computational complexity, we choose radial
basis function (RBF) as the kernel function of SVM [31],
which can map the samples nonlinearity to a higher dimen-
sionality space. Note that such offline training process does
not take up the time of online decision making and the well-
trained model can be used directly during the service time.

D. COMPLEXITY OF ALGORITHM 1
The complexity of our proposed method is analyzed. Since
the training process can be performed offline, we only con-
sider the online decision making phase of Algorithm 1. First,
we sort the items in O in decreasing unit-value order in
each knapsack, whose complexity is O((K + 1)|O| log |O|).
Then, for each item, the complexity of judging an item’s
priority based on the SVM model is O(Ncdin) [32], where
Nc is the number of output categories, i.e. 2 in our model,
and din represents the dimension of the input vectors. The
complexity of Algorithm 2 is O(|O| log |O|). The maximal
computational complexity of Algorithm 1 can be calculated
by O(Ncdin|O| + I (K + 1)|O| log |O|).

IV. A SPECIAL CASE: REMOTE DOWNLOAD DELAY IS
MANY-FOLD HIGHER THAN LOCAL DOWNLOAD DELAY
In practice, the delay to download a video from remote server
is generally many-fold higher than that from local caches at
the network edge [33]. In this section, we consider a special
case of Problem (12), where the condition dR − dk ≈ dR −
d0 ≈ dR is satisfied.

Based on the above mentioned approximation, the average
delay given in (10) can be simplified as

d̃mkvl = dR
l∑
i=1

ovi(1− bmkvi)(1− b
m
0vi). (17)

Moreover, let

qmkvl =
d̃mkvl
dR
=

l∑
i=1

ovi
(
1− bmkvi

) (
1− bm0vi

)
, (18)

where qmkvl denotes the amount of layers from 1 to l of video v,
which are neither cached in AP k nor in the edge controller.
Correspondingly, the delayminimization problem (12) can be
equivalently expressed as

min
bmkvl

Rmiss =
∑
k∈K

∑
u∈Uk

∑
v∈V

L∑
l=1

∑
m∈Mv

λumkv p
u
kvlq

m
kvl

s.t.
∑
v∈V

L∑
l=1

∑
m∈Mv

bmkvlovl ≤ Ck , ∀k ∈ K ∪ {0},

bmkvl ∈ {0, 1}, ∀k ∈ K ∪ {0}. (19)

where Rmiss means the video data downloaded from remote
server due to cache miss.

We define the cache hit ratio of our considered ICWN
as the percentage of requests that can be retrieved from the
edge controller or an AP. Obviously, solving Problem (19) is
equivalent to maximizing the cache hit ratio. Therefore, Prob-
lem (19) is also referred to as cache hit ratio maximization
problem in this paper.

Although we can adopt Algorithm 1 to obtain a heuristic
solution since Problem (19) is a special case of Problem (12),
we would like to design a more efficient algorithm with low
complexity and guaranteed approximation ratio by utilizing
the special structure of Problem (19).

A. SIMPLIFIED LAYERED HIERARCHICAL CACHING
ALGORITHM
Lemma 1: In the optimal solution of problem (19), no

layers of the SVC videos can be both cached simultaneously
by the edge controller and an AP, i.e. bmkvlb

m
0vl = 0 or

bmkvl + b
m
0vl ≤ 1, ∀k ∈ K,∀v,∀l,∀m.

Proof: We prove Lemma 1 by contradiction. Suppose
there is an optimal solution that caches the l-th layer of video
segment (v,m) both in the edge controller and AP k , i.e.
bmkvl = 1 and bm0vl = 1. Obviously, the objective value of
(19) will not be changed if we set bmkvl = 0. In other words,
removing the cached layer of (v,m) in AP k would have no
impact on the result. Then, we can fill the caching space of
AP k that previously cached the removed content with other
uncached contents, which can certainly improve the optimal
solution. This contradicts the assumption of the optimality.
Based on Lemma 1, we further simplify Rmiss by

Rmiss = B−
∑

k∈K∪{0}

∑
v∈V

L∑
l=1

∑
m∈Mv

Rmkvlb
m
kvl, (20)
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where B is a constant value given by

B =
∑
k∈K

∑
u∈Uk

∑
v∈V

L∑
l=1

∑
m∈Mv

pukvlλ
um
kv

l∑
i=1

ovi, (21)

and

Rmkvl =


ovl

∑
k ′∈K

∑
u∈Uk

L∑
i=l

puk ′viλ
um
k ′v, k = 0,

ovl
∑
u∈Uk

L∑
i=l

pukviλ
um
kv , k ∈ K.

(22)

Therefore, Problem (19) can be equivalently transformed
into the following problem

max
bmkvl

∑
k∈K∪{0}

∑
v∈V

L∑
l=1

∑
m∈Mv

Rmkvlb
m
kvl

s.t.
∑
v∈V

L∑
l=1

∑
m∈Mv

bmkvlovl ≤ Ck , ∀k ∈ K ∪ {0},

bmkvl + b
m
0vl ≤ 1, ∀k ∈ K, ∀v, ∀l, ∀m,

bmkvl ∈ {0, 1}, ∀k ∈ K ∪ {0}, ∀v, ∀l,∀m. (23)

Similarly as what we did for solving Problem (16) in
Section III, Problem (23) can also be interpreted as a knap-
sack problem. Here, for the l-th layer of video segment (v,m),
the weight and the value are respectively ovl and Rmkvl when
it is put into knapsack k . A new constraint is added that an
item cannot exist both in knapsack 0 and knapsack k , where
k ∈ K.

Since the edge controller and APs have similar download-
ing delay compared with remote video server, the priority of
the edge controller is higher than APs, then all videos should
be sorted according to Dm0vl (which is not essentially different
from Rm0vl here), and packed with knapsack 0 to get a set of
videos as S0. Then, the value Dmkvl of all videos in the AP
(which is not essentially different from Rmkvl) is updated. For
the video files in S0, their value in each AP is updated to 0.
That is to say, knapsack 0 always has highest priority to cache
video contents in the special case.

Based on the above analysis, we propose an approximal
method as shown in Algorithm 3. First, we sort the items of
O in decreasing unit-value order, i.e. gv(ai)

gw(ai)
≥

gv(aj)
gw(aj)

if i ≤ j,
where ai and aj denote the ith and the jth items in O. Then,
we put as many items as possible according to this order into
knapsack 0, and obtain a item set of S0. Second, for each
knapsack k (k ∈ K), sort the items in O\S0 in the same
decreasing unit-value order. Fill knapsack k with as many
items as possible according to the aforementioned decreasing
order.

B. APPROXIMATION RATIO
To show the performance of our proposed scheme, we esti-
mate its approximation ratio compared with the optimal
solution.

Algorithm 3 Heuristic Caching Scheme for the Special Case
Input:

Ck , λumkv , ovl , p
u
kvl ,

Output:
1: Map all layers of videos into an item set O with weight
ovl . Calculate Rmkvl according to (22). Set Sk = 8, ∀k ∈
K ∪ {0}, where 8 denotes an empty set.

2: Sort the items ofO in decreasing unit-value order accord-
ing to Rm0vl .

3: for each item ai in O, 1 ≤ i ≤ |O| − 1 do
4: if gw(S0 ∪ {ai}) ≤ C0 then
5: Set S0 := S0 ∪ {ai}.
6: end if
7: end for
8: for k ∈ K do
9: Set Ok = O\S0
10: Sort items ofOk in decreasing unit-value order accord-

ing to Rmkvl .
11: for each item aj in Ok , 1 ≤ j ≤ |Ok | − 1 do
12: if gw(Sk ∪ {aj}) ≤ Ck then
13: Set Sk := Sk ∪ {aj}.
14: end if
15: end for
16: end for
17: return Sk , ∀k ∈ K ∪ {0}

Theorem 2: Algorithm 3 can provide at least 1/2 approx-
imations to the optimal solution.

Proof: Assume there is an optimal algorithm for solv-
ing Problem 23. By adopting the optimal algorithm and
Algorithm 3, we obtain two results as Soptk and Sk , which
indicate the items finally selected for knapsack k . Obviously,
if local caches’ capacities in considered ICWN are large
enough to cache all versions of videos in library, our proposed
scheme can achieve the optimal performance. However, in
general, the local caches cannot cache all videos. In this case,
the proof is given as follows.

It is assumed that the items in O have been sorted in
decreasing unit-value order. Let ai be the first excluded
item when filling S0, i.e. gw({a1, . . . , ai−1}) ≤ C0 and
gw({a1, . . . , ai}) > C0. Let S†

0 := {a1, . . . , ai−1} and S‡
0 :=

S†
0 ∪ {ai}. Similarly, for each knapsack k (k ∈ K), sort the

items in O\S‡
0 in decreasing unit-value order according to

their values in knapsack k . Let cjk be the first excluded item
for knapsack k . SetS†

k := {c
1
k , . . . , c

i−1
k } andS

‡
k := S†

k∪{c
j
k}.

Obviously, gw(S‡
k ) > Ck ,∀k ∈ K ∪ {0}.

If the binary constraint that bmkvl ∈ {0, 1} is relaxed to
bmkvl ∈ [0, 1], (23) can be considered as a linear programming
problem, whose optimal objective value is an upper bound of∑

k∈K∪{0} gv(S
opt
k ). If we expand the capacity of knapsack k

to gw(S‡
k ) by solving the linear programming problem, we can

easily obtain that S‡
k is the optimal solution. Thus, we have∑

k∈K∪{0} gv(S
‡
k ) ≥

∑
k∈K∪{0} gv(S

opt
k ).
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Let amax0 ∈ C0 be a itemwith maximum value for knapsack
0, where gw(amax0 ) ≤ C0 is satisfied. Let amaxk ∈ O\{amax0 }

be an item with maximum value for knapsack k , which is
constrained by gw(amaxk ) ≤ Ck , k ∈ K.

With the above analysis, we can derive that

∑
k∈K∪{0}

gv(Sk ) = max

 ∑
k∈K∪{0}

gv(Sk ),
∑

k∈K∪{0}
gv(amaxk )


≥ max

 ∑
k∈K∪{0}

gv(S†
k ),

∑
k∈K∪{0}

gv(amaxk )


≥

1
2

 ∑
k∈K∪{0}

gv(S†
k )+

∑
k∈K∪{0}

gv(amaxk )


=

1
2

∑
k∈K∪{0}

gv
(
S†
k ∪ {a

max
k }

)
≥

1
2

∑
k∈K∪{0}

gv
(
S‡
k

)
≥

1
2

∑
k∈K∪{0}

gv(Soptk ).

In summary, our proposed algorithm can achieve at least
1/2 of the optimal total value.

C. COMPLEXITY OF ALGORITHM 3
In Algorithm 3, all items in O are first sorted for the
centralized controller, and then K similar sorting pro-
cesses are performed over Ok for all APs. Therefore,
the complexity of entire algorithm can be given by
O(|O| log |O| +

∑
k∈K |Ok | log |Ok |). Compared with Algo-

rithm 1, Algorithm 3 is of low complexity and easy to be
implemented.

V. NUMERICAL RESULTS
In this section, the performance of our proposed caching
schemes are evaluated. Our simulation platform is built based
on MATLAB. In the platform, user movement and video
request are simulated and predicted according to the mod-
els in Section II, and the SVM classifier tool integrated in
MATLAB is adopted. Average transmission delay of down-
loading a video segment, cache hit rate and QoE of users are
adopted as main metrics.
Network Setting:Weconsider an ICWNwith 10APswhich

are connected to and controlled by an edge controller. Both
the controller and each AP are equipped with caching devices
with size of 5 GB and 1 GB, respectively. We set the available
bandwidth, the transmit power and the noise power to be
Wk = 20 MHz, Pk = 35 dBm and σ 2

0 = −105 dBm,
respectively. The number of mobile users in the ICWN is
100 in default. The user mobility is characterized by Gauss-
Markov process, where the average velocity is µ = (0.6, 3.8)
m/s, and other mobility parameters are set to be β = 2 and
% = 0.8, respectively. The latency parameters are dR = 80 ns,
d0 = 30 ns, and dk = 20 ns for each AP, respectively.
Application Setting: Each video in the server is encoded

into 1 base layer and 4 enhancement layers. Normally, the

FIGURE 2. Average delay of downloading one video segment of different
caching schemes.

bitrate of video layer depends on the encoding parameters
and the content of the video. For the purpose of simplifying
simulation, it is assumed that different videos have similar
bitrates, and each layer has a bitrate of 500 Kbps. Therefore,
with 500 Kbps in step, the video server offers 5 versions of
video, ranging from 500 Kbps to 2500 Kbps, respectively.
The departure rates pF and pB are set to 0.7 and 0.3, respec-
tively. The duration of a video follows a uniform distribution
from 2minutes to 10minutes. A video is divided intomultiple
segments, each of which lasts for 2 seconds.
Comparison Baseline:We compare the performance of our

proposed schemes with the following two baselines.
• Baseline 1: The first one is a non-layered caching
scheme. Different from our proposed methods, non-
layered caching approaches use traditional non-scalable
coding protocols to encode videos. Typically, SVC con-
sumes approximately 20%more bits to achieve the same
video quality, which is an additional overhead of adopt-
ing layered coding schemes [34].

• Baseline 2: The caching method proposed in [10] is also
simulated as a comparison baseline, which caches each
video as a whole file including all video segments.

A. AVERAGE TRANSMISSION DELAY
Fig. 2 depicts the delay performance of different caching
schemes with the increasing number of video segments. The
parameter α of Zipf distribution is set to 0.6 and 0.9, respec-
tively. As shown in Fig. 2, for all caching schemes, the larger
the number of video segments, the higher the average delay
of downloading a single video segment. The reason that our
proposed schemes outperform the baselines is that the lay-
ered cache schemes reuse low-layer video data, which fully
explore the benefits of layered video encoding. Fig. 2 shows
that the content reusing gain can overcome the 20% overhead
of layered coding and leads to better performance. Moreover,
by caching each video as a whole file, the performance of
baseline 2 is inferior to that of the others which cache video
contents at segment level. This is because baseline 2 is not
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FIGURE 3. Cache hit rates of different caching schemes.

FIGURE 4. Backhaul traffic load of different caching schemes.

mobility aware. When a user is moving from one AP to
another, a large number of pre-cached video segments in
the user’s previous associated AP may become useless. In
addition, when α increases from 0.6 to 0.9, i.e. video requests
become more concentrated, the average delays of all schemes
are reduced, which is consistent with the characteristics of
Zipf distribution. The more concentrated the video requests
are, the better performance will be obtained.

B. CACHE HIT RATE
Fig. 3 shows the trend of cache hit rate under different cache
schemes, α values and numbers of video segments. As the
number of video segments increases, the cache hit rates of all
caching schemes decrease. However, the performance of our
proposed layered cache scheme is better than that of other
baselines. It is noted that, benefiting from the data reuse
feature of layered video, the cache hit rate of the layered
cache scheme with α = 0.6 is higher than that of the non-
layered caching scheme with α = 0.9. What’s more, our
proposed cache scheme and baseline 1 are both better than
baseline 3 thanks to the former two being able to use cache
space more efficiently.

FIGURE 5. Average number of pauses under different caching schemes.

C. BACKHAUL TRAFFIC LOAD
Fig. 4 shows the backhaul traffic load per 5 mins under
different caching schemes. The scheme named no local cache
means that both the edge controller and APs are not equipped
with cache devices. Comparing with the no local cache
scheme, the proposed layered cache scheme can effectively
reduce the backhaul traffic load by up to 65%. It shows that
caching is an effective solution to alleviate the bandwidth
pressure on the backhaul link. The layered cache scheme per-
forms better than baselines in different video quantities. The
properties of different α also conform to the Zipf distribution.

D. AVERAGE NUMBER OF PAUSES
Since viewing interruption largely affects the QoE of users,
we simulate the average number of pauses for different
schemes. The numerical results are averaged over a large
number of independent runs each with a duration of 5 min-
utes. As shown in Fig. 5, the average numbers of pauses
under different caching schemes increase with the number
of video segments. Compared with baselines, users expe-
rience less number of pauses when adopting our proposed
caching scheme. In addition, when user requests are more
concentrated, i.e. the parameter α of Zipf distribution is
changed from 0.6 to 0.9, the number of pauses becomes less
accordingly.

E. IMPACT OF NUMBER OF USERS
Fig. 6 depicts the impact of user scales on our proposed
caching schemes. The total number of users is set to 60, 80,
100, and 120, respectively. The parameter α in Zipf distri-
bution is set to 0.6. In our design, most performance metrics
depend on the total number of users. According to (6) and
(7), with the increasing number of users, the download rate
tends to decrease, resulting in more requests of videos with
lower version. However, although the average video quality is
impaired, the performance of the average delay, the cache hit
rate, the backhaul load and the number of pauses is improved.
This is because more users are probable to request for videos
with low qualities, thus the distribution of requests becomes
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FIGURE 6. Performance comparison of our proposed caching scheme with respect to different user scales: (a) average
delay of downloading one video segment; (b) cache hit rate; (c) backhaul traffic load; (d) average number of pauses.

FIGURE 7. Cache hit rates of different caching schemes in special case.

concentrated. More requested videos can be found in local
caches. Therefore, higher cache hit rate and lower backhaul
load are observed. Furthermore, since lower versions of video
includes less bits and the average delay per bit is constant
in the simulation, there will be lower average delay and less
potential pauses if less bits are downloaded.

FIGURE 8. Cache hit rates in different APs.

F. SIMULATION RESULTS OF THE SPECIAL CASE
In the special case introduced in Section IV, where dR−dk ≈
dR−d0 ≈ dR is satisfied, minimizing the system total latency
is equivalent to maximizing the cache hit rate. As shown
in Fig. 7, the trend of the curve distribution of this special
case is similar to the general delay minimization case. Other
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analysis of the proposed layered cache scheme and the other
two baseline schemes have been respectively presented in
Fig. 2, Fig. 3, Fig. 4, Fig. 5, and Fig. 6 will not be discussed
here.

Fig. 8 shows the cache hit rate for three schemes in different
APs, where the number of video segments is set to 5000, and
the parameter α of Zipf distribution is set to 0.6. The cache hit
rate in different APs varies due to diverse interests of users in
different APs for video contents. By adopting our proposed
caching scheme, users are more probable to obtain higher
cache hit rate in each AP.

VI. CONCLUSION
In this paper, we address the caching problem for SVC-based
video steaming over ICWN, which is characterized by both
layered video contents and hierarchical network structures.
We formulate a 0-1 programming problem to minimize the
average video transmission latency. The NP-hardness of the
problem is proved, and we simplify it into a special KP for
the ease of problem solving. A layered hierarchical caching
scheme is proposed to solve the problem within polyno-
mial time. In addition, we consider a special but common
case where the remote download delay is many-fold higher
than the local download delay. The original problem can be
equivalently simplified into a cache hit rate maximization
problem, and an algorithm is proposed to solve the simplified
problem with a 1/2 approximation ratio. Simulation results
demonstrate the effectiveness of our proposed schemes in
achieving low average delay and high cache hit rate.

REFERENCES
[1] Ericsson. (2019). Ericsson Mobility report. [Online]. Available:

https://www.ericsson.com/en/mobility-report
[2] K.Wang, F. R. Yu, H. Li, and Z. Li, ‘‘Information-centric wireless networks

with virtualization and D2D communications,’’ IEEE Wireless Commun.,
vol. 24, no. 3, pp. 104–111, Jun. 2017.

[3] H. Schwarz, D. Marpe, and T. Wiegand, ‘‘Overview of the scalable video
coding extension of the H.264/AVC standard,’’ IEEE Trans. Circuits Syst.
Video Technol., vol. 17, no. 9, pp. 1103–1120, Sep. 2007.

[4] P. Ostovari, J.Wu, A. Khreishah, and N. B. Shroff, ‘‘Scalable video stream-
ing with helper nodes using random linear network coding,’’ IEEE/ACM
Trans. Netw., vol. 24, no. 3, pp. 1574–1587, Jun. 2016.

[5] K. Shanmugam, N. Golrezaei, A. G. Dimakis, A. F. Molisch, and G.
Caire, ‘‘FemtoCaching: Wireless content delivery through distributed
caching helpers,’’ IEEE Trans. Inf. Theory, vol. 59, no. 12, pp. 8402–8413,
Dec. 2013.

[6] K. Poularakis and L. Tassiulas, ‘‘On the complexity of optimal content
placement in hierarchical caching networks,’’ IEEE Trans. Commun.,
vol. 64, no. 5, pp. 2092–2103, May 2016.

[7] K. Poularakis and L. Tassiulas, ‘‘Optimal cooperative content placement
algorithms in hierarchical cache topologies,’’ in Proc. 46th Annu. Conf.
Inf. Sci. Syst. (CISS), Mar. 2012, pp. 1–6.

[8] T. X. Tran, D. V. Le, G. Yue, and D. Pompili, ‘‘Cooperative hierarchical
caching and request scheduling in a cloud radio access network,’’ IEEE
Trans. Mobile Comput., vol. 17, no. 12, pp. 2729–2743, Dec. 2018.

[9] M. Chen, M. Mozaffari, W. Saad, C. Yin, M. Debbah, and C. S. Hong,
‘‘Caching in the sky: Proactive deployment of cache-enabled unmanned
aerial vehicles for optimized Quality-of-Experience,’’ IEEE J. Sel. Areas
Commun., vol. 35, no. 5, pp. 1046–1061, May 2017.

[10] M. Choi, J. Kim, and J. Moon, ‘‘Wireless video caching and dynamic
streaming under differentiated quality requirements,’’ IEEE J. Sel. Areas
Commun., vol. 36, no. 6, pp. 1245–1257, Jun. 2018.

[11] X. Zhang, Y. Ren, H. Gao, T. Lv, and Y. Lu, ‘‘Analysis of caching and
transmitting scalable videos in cache-enabled small cell networks,’’ in
Proc. IEEE Global Commun. Conf., Dec. 2017, pp. 1–6.

[12] X. Zhang, T. Lv, W. Ni, J. M. Cioffi, N. C. Beaulieu, and Y. J. Guo,
‘‘Energy-efficient caching for scalable videos in heterogeneous networks,’’
IEEE J. Sel. Areas Commun., vol. 36, no. 8, pp. 1802–1815, Aug. 2018.

[13] D. Zhu, H. Lu, Z. Gu, Y. Lu, and F. Guo, ‘‘Joint power allocation and
caching for SVC videos in heterogeneous networks,’’ inProc. IEEEGlobal
Commun. Conf. (GLOBECOM), Dec. 2018, pp. 1–7.

[14] X. Zhang, T. Lv, and S. Yang, ‘‘Near-optimal layer placement for scalable
videos in cache-enabled small-cell networks,’’ IEEE Trans. Veh. Technol.,
vol. 67, no. 9, pp. 9047–9051, Sep. 2018.

[15] D. Jiang and Y. Cui, ‘‘Analysis and optimization of caching and multicast-
ing for multi-quality videos in large-scale wireless networks,’’ IEEE Trans.
Commun., vol. 67, no. 7, pp. 4913–4927, Jul. 2019.

[16] K. Poularakis, G. Iosifidis, A. Argyriou, I. Koutsopoulos, and L. Tassiulas,
‘‘Caching and operator cooperation policies for layered video content
delivery,’’ in Proc. 35th Annu. IEEE Int. Conf. Comput. Commun.,
Apr. 2016, pp. 1–9.

[17] C. Zhan and Z. Wen, ‘‘Content cache placement for scalable video in
heterogeneous wireless network,’’ IEEE Commun. Lett., vol. 21, no. 12,
pp. 2714–2717, Dec. 2017.

[18] B. Jedari and M. Di Francesco, ‘‘Delay analysis of layered video caching
in crowdsourced heterogeneous wireless networks,’’ in Proc. IEEE Global
Commun. Conf. (GLOBECOM), Dec. 2018, pp. 1–6.

[19] S. Ullah, K. Thar, and C. S. Hong, ‘‘Management of scalable video stream-
ing in information centric networking,’’ Multimedia Tools Appl., vol. 76,
no. 20, pp. 21519–21546, Oct. 2017.

[20] Y. Wei, C. Xu, M. Wang, and J. Guan, ‘‘Cache management for adaptive
scalable video streaming in vehicular content-centric network,’’ in Proc.
Int. Conf. Netw. Netw. Appl. (NaNA), Jul. 2016, pp. 410–414.

[21] M. Xing, S. Xiang, and L. Cai, ‘‘A real-time adaptive algorithm for video
streaming over multiple wireless access networks,’’ IEEE J. Sel. Areas
Commun., vol. 32, no. 4, pp. 795–805, Apr. 2014.

[22] B. Liang and Z. J. Haas, ‘‘Predictive distance-based mobility management
for PCS networks,’’ in Proc. 18th Annu. Joint Conf. Comput. Commun.
Societies. Future Now, 1999, pp. 1377–1384.

[23] D. Lopez-Perez, I. Guvenc, G. de la Roche, M. Kountouris, T. Quek,
and J. Zhang, ‘‘Enhanced intercell interference coordination challenges
in heterogeneous networks,’’ IEEE Wireless Commun., vol. 18, no. 3,
pp. 22–30, Jun. 2011.

[24] Z. Zhang and D. Liu, ‘‘A distributed scheduling algorithm for heteroge-
neous cache-enabled small cell networks using ADMM,’’ in Proc. IEEE
82nd Veh. Technol. Conf. (VTC-Fall), Sep. 2015, pp. 1–5.

[25] T. Han and N. Ansari, ‘‘A traffic load balancing framework for software-
defined radio access networks powered by hybrid energy sources,’’
IEEE/ACM Trans. Netw., vol. 24, no. 2, pp. 1038–1051, Apr. 2016.

[26] L. Chen, Y. Zhou, and D. M. Chiu, ‘‘Smart streaming for online
video services,’’ IEEE Trans. Multimedia, vol. 17, no. 4, pp. 485–497,
Apr. 2015.

[27] M. Cha, H. Kwak, P. Rodriguez, Y.-Y. Ahn, and S.Moon, ‘‘I tube, you tube,
everybody tubes: Analyzing the world’s largest user generated content
video system,’’ in Proc. 7th ACM SIGCOMM Conf. Internet Meas. (IMC),
2007, pp. 1–14.

[28] Y. Shen, Y. Shi, J. Zhang, and K. B. Letaief, ‘‘LORM: Learning to optimize
for resource management in wireless networks with few training samples,’’
IEEE Trans. Wireless Commun., vol. 19, no. 1, pp. 665–679, Jan. 2020.

[29] M. Chen, U. Challita, W. Saad, C. Yin, and M. Debbah, ‘‘Artificial neural
networks-based machine learning for wireless networks: A tutorial,’’ IEEE
Commun. Surveys Tuts., vol. 21, no. 4, pp. 3039–3071, 2019.

[30] W. Dan and H. Zhu, Sublinear Algorithms for Big Data Applications.
Berlin, Germany: Springer, 2015.

[31] C.-B. Yu, J.-J. Hu, R. Li, S.-H. Deng, and R.-M. Yang, ‘‘Node fault
diagnosis in WSN based on RS and SVM,’’ in Proc. Int. Conf. Wireless
Commun. Sensor Netw., Dec. 2014, pp. 153–156.

[32] C. J. C. Burges, ‘‘A tutorial on support vector machines for pat-
tern recognition,’’ Data Mining Knowl. Discovery, vol. 2, no. 2,
pp. 121–167, 1998.

[33] X. Wang, M. Chen, T. Taleb, A. Ksentini, and V. Leung, ‘‘Cache in the air:
Exploiting content caching and delivery techniques for 5G systems,’’ IEEE
Commun. Mag., vol. 52, no. 2, pp. 131–139, Feb. 2014.

[34] H. Kalva, V. Adzic, and B. Furht, ‘‘Comparing MPEG AVC and SVC for
adaptive HTTP streaming,’’ in Proc. IEEE Int. Conf. Consum. Electron.
(ICCE), Jan. 2012, pp. 158–159.

VOLUME 8, 2020 77283



Z. Zhang et al.: Scalable Video Caching for ICWNs

ZHILONG ZHANG (Member, IEEE) received the
B.E. degree in communication engineering from
the University of Science and Technology, Beijing,
China, in 2007, and the M.S. and Ph.D. degrees in
communication and information systems from the
Beijing University of Posts and Telecommunica-
tions (BUPT), Beijing, in 2010 and 2016, respec-
tively. From 2010 to 2012, he was a Software
Engineer with TD Tech Ltd., Beijing. From 2014
to 2015, he was a Visiting Scholar with Stony

Brook University, Stony Brook, NY, USA. He is currently a Lecturer with
BUPT. His research interests include optimization theory and its applications
in wireless multimedia networks and mm-wave communications.

JIANMEI DAI (Member, IEEE) received the B.S.
degree in communication engineering and the
M.S. degree in communication and information
systems, in 2004 and 2007, respectively. He is
currently pursuing the Ph.D. degree with the Bei-
jing University of Posts and Telecommunications,
Beijing. He was a Visiting Scholar with Auburn
University, Auburn, AL, USA, in April 2019. He
is currently a Lecturer with the Beijing University
of Posts and Telecommunications. His research

interests include optimization theory and its applications in wireless video
transmission and wireless networks.

MINYIN ZENG received the B.E. degree in com-
munication engineering from the Beijing Univer-
sity of Posts and Telecommunications (BUPT),
Beijing, China, in 2018, where he is currently
pursuing the M.S. degree. His research interests
include wireless video transmission and wireless
resource management.

DANPU LIU (Senior Member, IEEE) received
the Ph.D. degree in communication and electrical
systems from the Beijing University of Posts and
Telecommunications, Beijing, China, in 1998. She
was a Visiting Scholar with the City University of
Hong Kong, in 2002, The University of Manch-
ester, in 2005, and the Georgia Institute of Tech-
nology, in 2014. She is currently with the Beijing
Key Laboratory of Network System Architecture
and Convergence, Beijing University of Posts and

Telecommunications. She has published over 100 articles and three teaching
books. She holds over 26 patent applications. Her research involved with
MIMO, OFDM, and broadband wireless access systems. Her recent research
interests include 60GHz mm-wave communication, wireless high-definition
video transmission, and wireless sensor networks.

SHIWEN MAO (Fellow, IEEE) received the Ph.D.
degree in electrical and computer engineering
from Polytechnic University, Brooklyn, NY, USA.
He is currently a Samuel Ginn Professor with
the Department of Electrical and Computer Engi-
neering and the Director of the Wireless Engi-
neering Research and Education Center (WEREC)
with Auburn University, Auburn, AL, USA. His
research interests include wireless networks, mul-
timedia communications, and smart grid. He

received the IEEE ComSoc TC-CSR Distinguished Technical Achievement
Award, in 2019 and NSF CAREER Award, in 2010. He was a co-recipient of
the IEEE ComSoc MMTC Best Conference Paper Award, in 2018, the Best
Demo Award from the IEEE SECON, in 2017, the Best Paper Awards from
the IEEE GLOBECOM 2019, in 2016 and 2015, the IEEE WCNC, in 2015,
the IEEE ICC, in 2013, and the 2004 IEEECommunications Society Leonard
G. Abraham Prize in communications systems. He serves the Editorial Board
of the IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, the IEEE
TRANSACTIONS ON MOBILE COMPUTING, the IEEE TRANSACTIONS ON MULTIMEDIA,
the IEEE INTERNET OF THINGS JOURNAL, the IEEE MULTIMEDIA, the IEEE
NETWORKING LETTERS, and ACM GetMobile, and so on.

77284 VOLUME 8, 2020


	INTRODUCTION
	SYSTEM MODEL AND PROBLEM FORMULATION
	NETWORK MODEL
	VIDEO DELIVERY MODEL
	PROBLEM FORMULATION

	LAYERED HIERARCHICAL CACHING FOR SVC-BASED VIDEO STREAMING
	PROBLEM REFORMULATION
	LAYERED HIERARCHICAL CACHING ALGORITHM
	CACHING PRIORITY DETERMINATION BASED ON MACHINE LEARNING
	COMPLEXITY OF ALGORITHM 1

	A SPECIAL CASE: REMOTE DOWNLOAD DELAY IS MANY-FOLD HIGHER THAN LOCAL DOWNLOAD DELAY
	SIMPLIFIED LAYERED HIERARCHICAL CACHING ALGORITHM
	APPROXIMATION RATIO
	COMPLEXITY OF ALGORITHM 3

	NUMERICAL RESULTS
	AVERAGE TRANSMISSION DELAY
	CACHE HIT RATE
	BACKHAUL TRAFFIC LOAD
	AVERAGE NUMBER OF PAUSES
	IMPACT OF NUMBER OF USERS
	SIMULATION RESULTS OF THE SPECIAL CASE

	CONCLUSION
	REFERENCES
	Biographies
	ZHILONG ZHANG
	JIANMEI DAI
	MINYIN ZENG
	DANPU LIU
	SHIWEN MAO


