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ABSTRACT Food storage security is critical to the national economy and people’s lives. The environmental
parameters of a granary should be accurately monitored in order to provide a better preservation environment
for food storage. In this paper, we use temperature sensors to measure and collect grain temperature data for
a period of 423 days from a real world granary, and collect the corresponding meteorological data from
China Meteorological Data Network. We propose to leverage meteorological data to predict the average
temperature of the grain pile with machine learning algorithms: a support vector regression (SVR) approach
and an adaptive boosting (AdaBoost) approach. We incorporate different kernel functions in the SVR model
and choose the appropriate base-estimator and the number of estimators in the AdaBoost model. We then
analyze the correlation between a large amount of historical data from the granary and the corresponding
meteorological forecast data based on the Pearson correlation coefficient. We find that there are strong
correlations between somemeteorological factors. In order to eliminate redundant information, we reduce the
dimension of data by principal components analysis (PCA), and compare the prediction models before and
after PCA dimension reduction. The results show that the proposed approaches can achieve a high accuracy
and the Adboost method after PCA dimension reduction achieves the best performance.

INDEX TERMS Food storage, temperature sensors, meteorological metrics, support vector regression,
adaptive boosting, machine learning.

I. INTRODUCTION
The demand for food will be doubled by 2050 as population
and social mobility increase [1]–[6]. Globally, more than
2 billion tons of food are harvested each year [7]. However,
up to one third of the annual total global production of
grain is lost because of poor post-harvest management. Lack
of control over grain moisture content, high temperature,
and insect infestation are the three most significant factors
causing the loss. In fact, high grain moisture and temperature
can provide favorable conditions for hot spot development,
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mold growth, and insect infestation [8]. Grain is still a physi-
ologically active organism during storage, and is affected by
the physical and biological environment. These internal and
external factors are closely related to the safe storage of grain.
With the development of science and technology, grain stor-
age technology has been improved and food security has been
better guaranteed. However, there are still many risk factors
in the process of grain storage. The complex grain storage
ecosystem is under the joint influence of the environment
sub-ecosystem and the granary protection construction [9].

Grain temperature is an important indicator of grain con-
ditions. Its detection and control technology are critical for
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the operation of grain warehouses (or, granary). In the entire
grain detection system, detection of the temperature of stored
grain is a relatively mature technology and has been widely
used in national reserves [10]. In fact, the storage temperature
is highly predictable when aggregating over thousands of gra-
naries and storage parameters. Different from the developed
countries, the present situation of grain storage in China is
unique [8]. Recently, Yang et al. present a non-destructive and
economic wheat moisture detection system with commodity
WiFi, which can achieve high classification accuracy for both
LOS and NLOS scenarios [11], [12].

To improve the accuracy of grain pile temperature forecast-
ing, we focus on the issue of using the National Meteoro-
logical Information Center (NMIC) meteorological forecast
to accurately predict grain pile temperature. In this paper,
we first discuss the temperate measurement system for food
storage. For a period of 423 days, we used temperature sen-
sors to measure and collect of grain temperature data from the
grain storage at the No. 1 Warehouse in the Xishan District
of Kunming, Yunnan province, China. We also collect the
corresponding meteorological data from China Meteorologi-
cal Data Network. We provide an analysis of the correlation
between a large amount of historical data from the granary
and the corresponding meteorological data. We find that the
surface temperature of grain pile has higher correlations with
air temperature, relative humidity, and 0cm ground tempera-
ture, but a smaller correlation with air pressure. We propose
to predict surface temperature of grain pile using multiple
meteorological factors, aiming to achieve high predication
accuracy.

In particular, we develop a support vector regression (SVR)
approach [13]–[16] and an adaptive boosting (AdaBoost)
approach to predict surface temperature of grain pile using
multiple meteorological factors. In fact, because of some
outliers recorded by temperature sensors, the raw data cannot
be directly employed for the prediction model.We implement
outlier detection and removal to delete bad data samples, and
apply data normalization to all the sampled data to guarantee
that the meteorological data and the surface temperature of
grain pile have the same unit. Then, we leverage the calibrated
meteorological data and grain temperature data to train the
prediction model. Finally, we incorporate different kernel
functions in the SVR model, and choose the appropriate
base-estimator and the number of estimators in the AdaBoost
model to predict the temperature of grain pile using mete-
orological data. We then analyze the correlation between a
large amount of historical data from the granary and the cor-
responding meteorological forecast data based on the Pear-
son correlation coefficient. It is found that there is a strong
correlation between some meteorological factors. In order to
eliminate redundant information, we reduce the dimension
of data by principal component analysis (PCA). We com-
pare the prediction accuracy using different kernels in SVR
model (such as the linear kernel function, the polynomial
kernel function, and the Gaussian radial basis function (RBF)
kernel) [17], [18] and Adaboost model with random forest

regressor as base-estimator before and after PCA dimension
reduction.

The main contributions of this paper are summarized
below.
• To the best of our knowledge, this is the first work to use
meteorological metrics to predict the average tempera-
ture of grain pile with machine learning.

• We employ temperature sensors to measure the grain
temperature data from a real world grain storage for a
period of 423 days, and collect meteorological data for
the same region and time period. Then, we analyze the
correlation between a large amount of historical granary
data and the correspondingmeteorological data based on
the Pearson correlation coefficient.

• We implement outlier detection and data normalization
for the raw meteorological and grain pile temperature
data. We use different kernel functions with the SVR
model andAdaboost model with random forest regressor
to predict the average temperature of grain pile based on
meteorological data. We compare the accuracy of grain
surface temperature prediction using different kernel
functions of SVR model and Adaboost model before
and after PCA dimension reduction. The results show
that the Adboost method with random forest regressor
as base- estimator after principal components analysis
achieves the best performance.

The remainder of this paper is organized as follows.
Section II discusses the related work. The granary tem-
perature measurement system is presented in Section III.
Section IV describes grain temperature data measurement,
collection process, and data preprocessing, and Section V
discusses the SVRmodel and theAdaboostmodel. SectionVI
validates the performance of the proposed method using real
world data. Section VII summarizes this paper.

II. RELATED WORK
The methods of temperature prediction for grain storage are
mainly divided into two categories. The first one is based on
the thermodynamic field theory. The basic thermodynamic
laws and thermal conductivity differential equations are used
to derive the temperature field distribution and its variation
law of grain stack [19], [20]. Temperature and humidity are
two important factors affecting grain storage status, which
depict the change of temperature field of rice in silo dur-
ing a grain storage period. Through validation, the opti-
mum Chung-Pfost model of equilibrium humidity (EMC) is
obtained, which provides support for predicting the change
of temperature field and humidity field of rice during storage
period. However, due to the neglect of the coupling effect
of temperature field and humidity field, its prediction model
needs to be further improved [21]. The coupled model of heat
and moisture transfer is constructed by using the isothermal
adsorption equation of grain moisture and the principle of
local equilibrium of heat and mass, taking stored wheat and
paddy as research objects [22]–[24]. The Fortan language
programming is used to study the variation of the temperature
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field of the sorghum in the cylinder chamber with the temper-
ature and humidity of the environment [25]. The model estab-
lished by finite difference method can predict the changes of
temperature and humidity in wheat grain heap during ven-
tilation [26]. The work in [27]–[30] studies the mechanism
of moisture and mass transfer in grain stacks, and constructs
relevant mathematical models. On this basis, the distribution
and variation of grain temperature and moisture under dif-
ferent storage conditions (mechanical ventilation and non-
ventilation) are further studied by using computational fluid
dynamics (CFD) simulation technology.

In addition, some scholars have studied the law of grain
temperature change and mathematical model in high square
warehouse [31]. The research shows that the mathemati-
cal model of temperature, warehouse temperature and ‘‘hot
skin’’ temperature of grain stack are quadratic equation, and
the mathematical model of ‘‘cold core’’ temperature is lin-
ear equation. It shows that the external temperature has a
very obvious effect on warehouse temperature, and it has
a great influence on ‘‘hot skin’’ area of grain stack. The
effect of temperature in the region is also very obvious, but
it has little effect on the ‘‘cold core’’ area of grain stack.
The multi-point discrete characteristics of temperature data
in large grain depots are used to find out the temperature
distribution law, and the prediction method of temperature
development trend at any point in the grain depot is dis-
cussed [32]–[34]. However, the temperature predictionmodel
based on thermodynamic field theory relies on some assump-
tions about unsaturated wet porous media, and the model is
fixed and pertinent, which is not applicable to the storage
environment of different regions.

The second category is a data-driven solution that uses
machine learning or data mining methods to build predictive
models. An intelligent and optimized SVM model is pro-
posed to predict the temperature change of grain stack during
lateral ventilation. The grain situation prediction is realized
by analyzing a large number of environmental data collected
by the mining and monitoring center [35]. A temperature
recognition model based on depth confidence network was
established by using depth learning method to predict grain
heap temperature [36]. Existing data-driven solutions do not
take into account the characteristics of temperature gradient
with time series. For temperature, increasing or decreasing
temperature is a time-dependent gradient process, and its
trend is very important for temperature prediction. The exist-
ing models have insufficient ability to deal with the time
series correlation of temperature data, which leads to defects
in temperature prediction.Many high-precisionmathematical
models and improved measurement systems are proposed to
improve temperature monitoring and food storage manage-
ment capabilities [37]–[39]. However, the work of grain tem-
perature forecasting has been focused on time series models,
which does not consider the effect of external meteorological
factors. In fact, meteorological factors have been successfully
utilized for accurate solar intensity forecasting [40], [41].
Our models can exploit meteorological factors for grain pile

temperature forecasting, which is greatly different from the
exiting works.

III. THE TEMPERATURE MEASUREMENT SYSTEM
To collect grain temperature data, we deploy a set of tem-
perature sensors in the tall granary. Fig. 1 illustrates the
tall flat granary architecture, which is divided into 10 rows
from east to west, five regions from south to north, and four
layers from top to bottom. Then 200 temperature sensors are
deployed in this granary, and the sensors are encapsulated in
cables and the cables are inserted into the grain pile at certain
places. In the tall square granary, the temperature sensor
layout principle is that the distance between the horizontal
and horizontal temperature measuring cables should be no
more than 5 m, the distance between the vertical cables
should be no more than 2 m, and distance from the cables
to the grain surface, granary bottom, and granary wall should
within 0.3 m to 0.5 m.

FIGURE 1. The tall flat granary model.

FIGURE 2. The cross section view of a granary.

Fig. 2 presents a cross-sectional view of the granary. The
temperature monitoring system generally includes tempera-
ture sensors, temperature measuring cables, and a computer
monitoring terminal. Each vertical line in the figure repre-
sents a cable, and four temperature sensors are encapsulated
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FIGURE 3. Structure of the grain condition measurement and control
system.

in each cable. Tomonitor the abnormal change of temperature
in the early stage of grain damage, the distance between
the temperature measuring cables should be less than 0.5 m.
Therefore, a large number of cables are needed, which would
be hard to deploy (i.e., buried in the gain pile at precise
locations) and lead to high measurement cost. Fig. 3 is the
structural diagram of the grain condition measurement and
control system in the granary. The computer sends test com-
mands to the extension, receives test data from the exten-
sion, and then processes the receiving data. The extension
receives the computer command, detects temperature data,
and sends the results to the computer. The digital sensor is
encapsulated inside the cable and laid inside the barn. Both
digital temperature sensors and humidity sensors use a wire
bus communication protocol to report sensory data.

The inspection time of grain temperature is preferably from
9 am to 10 am every day, when the temperature is close to the
daily average temperature. While checking the temperature
of the grain, we should also check the temperature inside the
granary and the temperature outside the granary for analysis
and comparison. All data is sampled once a day.

IV. DATA COLLECTING AND PREPROCESSING
A. DATA COLLECTING
We measured and collected the grain temperature data of
the grain storage in the No. 1 Warehouse at Xishan Dis-
trict of Kunming, Yunnan, China for a period of 423 days
since January 1, 2017. Then we downloaded the meteorolog-
ical data of the corresponding region for the corresponding
period of time from China Meteorological Data Network
(http://data.cma.cn/). The meteorological metrics include air
pressure, air temperature, relative humidity, precipitation,
evaporation, wind speed, sunshine duration and 0 cm ground
surface temperature. The temperature samples of grain pile
are recorded by deployed sensors at 9 am every day. Then,
we measure how the surface temperature of the grain pile
changes with the meteorological variables and how these
variables are influenced by each other.

FIGURE 4. Average temperature of the first layer of the stored grain pile
and air temperature over days.

Fig. 4 presents the surface temperature of the grain pile
and the air temperature of the period. We find that the surface
temperature of the grain pile and the air temperature are
positively correlated. In other words, the temperature of the
first layer of the stored grain pile becomes higher or smaller as
the air temperature increases or decreases. However, there are
other factors that also contribute to the surface temperature
of the grain pile reading, since the surface temperature of the
grain pile has been delayed for several months compared to
the air temperature. It is noticed the highest air temperature
was in June, while the highest temperature of the first layer
of the grain pile was in September.

In Fig. 5, we can see that air temperature (subplot (a)),
0 cm ground surface temperature (subplot (b)), and relative
humidity (subplot (c)) are all positively correlated with the
surface temperature of the grain pile, especially at higher val-
ues. If the air temperature, 0 cm ground surface temperature,
or relative humidity become larger, the surface temperature
of the grain pile will likely increase too.

To study the correlation between the average temperature
of the first layer of the stored grain pile and the meteorologi-
cal metrics, we compute the Pearson correlation coefficients
between pair of the factors. Table 1 provides the Pearson
product moment correlation coefficients for all the meteoro-
logical variables and the surface temperature of grain pile.
The higher the absolute value of the correlation coefficient,
the higher the correlation between the two parameters. From
Table 1, we find that the surface temperature of grain pile has
higher correlations with air temperature, relative humidity,
0 cm ground temperature, but with a smaller correlation
with air pressure. Based on this study, we develop an SVR
algorithm and an Adaboost algorithm to predict the sur-
face temperature of grain pile using multiple meteorological
parameters, which is discussed in the following section.

In this section, SVR with different kernels and Adaboost
with random forest regressor as the base-estimator are utilized
to predict the surface temperature of grain storage.
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TABLE 1. Correlation matrix showing correlation between different forecast parameters.

B. DATA PREPROCESSING
Due to some outliers recorded by the sensors, the data units
are inconsistent; thus the raw data cannot be directly used by
the prediction models. Therefore, the data must be processed
first before prediction. The data processing module includes
outlier detection and data normalization, which are discussed
in the following.
• Outlier detection: Some abnormal values are reported by
temperature sensors. Outlier detection is used to recog-
nize bad data values, which should be removed from the
raw data. In this paper, we leverage the Pauta criterion
method and the linear trend at pointmethod to get rid of
outliers. The outlier detection method is as follows.
Step 1: Let Xi, i = 1, 2, ..., n, be the ith value of
meteorological metrics or the average temperature of the
first layer of grain pile.We calculate the arithmetic mean
value as

X̄ =
1
n

n∑
i=1

Xi. (1)

Step 2: We then obtain the residual ei as in (2) and the
standard deviation σ of the meteorological metrics or
the average temperature of the first layer of grain pile
as in (3).

ei = Xi − X̄ , i = 1, 2, ..., n (2)

σ =

√
1

n−1

∑n
i=1(Xi − X̄ )2. (3)

Step 3: For all Xi, i = 1, 2, ..., n, if |ei| > 3σ , we con-
sider Xi as an abnormal value and replace it with the
arithmetic mean value X̄ .
Step 4: Repeat the above three steps till all the Xis are
processed.

• Data normalization: To guarantee that the meteorologi-
cal data and the surface temperature of grain pile have
the same unit, we choose the zero-mean normalization
method to normalize all sampled data. The normalized
value Zi is computed as

Zi =
1
σ
· (Xi − X̄ ), i = 1, 2, ..., n. (4)

After data preprocessing, the training samples are

T = {(x1, y1), (x2, y2), ..., (xn, yn)}, (5)

where xi is a vector of eight calibrated meteorological metrics
in the ith sample, and yi represents the calibrated average
surface temperature of grain pile in the ith sample.

V. FORECASTING MODELS FOR GRAIN PILE
SURFACE TEMPERATURE
A. SUPPORT VECTOR REGRESSION (SVR)
The SVR model is utilized to learn a function f (x), which
is close to the gain surface temperature y as much as possi-
ble [13]. The function is defined by

f (x) = wT · φ(x)+ b, (6)

where w and b are the parameters to be determined, and φ(·)
is a generic function. A deviation ε is used to evaluate the
loss between the output f (x) of the model and the true grain
surface temperature y. In other words, when |f (x) − y| < ε,
the prediction result can be considered to be accurate.

The SVR problem can be formulated as follows.

min
w,b

1
2
‖w‖2 + C ·

n∑
i=1

lε (f (xi)− yi) , (7)

where C is a regularization constant and lε(·) is an insensitive
loss function of ε. Adding a slack variable to the loss met-
ric, problem in (7) can be transformed into a minimization
problem (8) as follows.

min
w,b,ξi,ξ̂i

1
2
‖w‖2 + C ·

n∑
i=1

(
ξi + ξ̂i

)
(8)

s.t. f (xi)− yi ≤ ξi + ε, i = 1, 2, ..., n (9)

yi − f (xi) ≤ ξ̂i + ε, i = 1, 2, ..., n (10)

ξi ≥ 0, ξ̂i ≥ 0, i = 1, 2, ..., n, (11)

where ξi and ξ̂i are slack variables. To solve problem (8),
we first obtain the following Lagrange function using the
Lagrange multiplier method, defined as follows.

L(w, b, α, α̂, ξ, ξ̂ , µ, µ̂)

=
1
2
‖w‖2 + C ·

n∑
i=1

(
ξi + ξ̂i

)
−

n∑
i=1

µi · ξi

−

n∑
i=1

µ̂i · ξ̂i +

n∑
i=1

αi ·
(
f (xi)− yi − ε − ξ̂i

)
+

n∑
i=1

α̂i · (yi − f (xi)− ε − ξi) , (12)

where µ, µ̂, α, and α̂ are Lagrange multipliers. Applying the
duality theory, the average temperature and humidity of the
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FIGURE 5. Average temperature of the first layer of the stored grain pile
generally increases with increased (a) air temperature, (b) 0 cm ground
surface temperature, and (c) relative humidity. (a) Air temperature.
(b) 0cm ground surface temperature. (c) Relative humidity.

grain surface can be estimated as

f (x) =
n∑
i=1

(
αi − α̂i

)
· φ (xi)T · φ (x)+ b. (13)

B. ADAPTIVE BOOSTING REGRESSION (ADABOOST)
In addition to SVM, we also consider Adaboost model for
grain pile temperature forecasting from meteorological fac-
tors, which is one of the most famous algorithms in the boost-
ing family. The working mechanism of boosting algorithm is
as follows: firstly, a basic learner is trained from the initial
training set and the distribution of training samples is adjusted
according to the performance of the basic learner, and then
the next basic learner is trained based on the adjusted sample
distribution. The above steps are repeated until the number of
basic learners reaches the predetermined value. All the basic
learners are combined according to the combination strategy
to obtain the final strong learner. Basic learners are weak
learners which are only better than random guesses, such as
a simple decision tree. The reason for using weak learners
instead of strong learners is that it is often much easier to
find a weak learner than a strong learner. Boosting method
is to start from the weak learner and build a strong learner
through repeated learning [42]–[44]. In perticular, the core
idea of Adaboost is to select a base estimator, fit a series
of weak estimators on a series of data, and according to the
accuracy of these estimators, provide each estimator a weight,
then multiply all estimators by their respective weights and
add them together to obtain the final prediction. The basic
principle of the Adaboost algorithm is shown in Fig. 6.

The input of Adaboost model is the training samples T ,
base learning algorithms L and the number of base learn-
ers M. The process is as follows:

Step 1: The weight distribution of initial training samples
is provided,

D1 = (w11, ...,w1i, ...,w1n), w1i =
1
n
. (14)

Step 2: For iteration round t = 1, 2, ...,M , we train a base
learner using training data set with current distribution Dt

ht = L(D,Dt ). (15)

Then, we compute the maximum sample error on the
training set

Et = max |yi − ht (xi)|, i = 1, 2, ..., n. (16)

We can then obtain the relative error of each sample eti, i.e.,

eti =
|yi − ht (xi)|

Et
. (17)

In addition, the regression error rate of the base learner ht on
training set is

εt =

n∑
i=1

wti · eti. (18)

The weight coefficient αt of the base learner ht is

αt =
εt

1− εt
. (19)
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FIGURE 6. Basic principle diagram of the Adaboost algorithm.

Then, we update the sample distribution Dt+1 = (wt+1,1, ...,
wt+1,i, ...,wt+1,n) of training set, that is,

wt+1,i =
wti
zt
· α

1−eti
t , (20)

where zt is the normalization factor, which is defined by

zt =
n∑
i=1

(
wti · α

1−eti
t

)
. (21)

Step 3: Finally, the basic learners are combined to obtain
the final strong learner

H (x) =
M∑
t=1

ln
(
1
αt

)
· g(x), (22)

where g(x) is the median of all αt · ht (x).

VI. PERFORMANCE EVALUATION
In this section, we evaluate the performance of our proposed
approach using real measurement data: the temperature data
of grain storage at the No. 1 Warehouse in the Xishan District
of Kunming, Yunnan, China for a period of 423 days. The
meteorological data of the corresponding region and period
are obtained from the China Meteorological Data Network
(http://data.cma.cn/).

A. PERFORMANCE EVALUATION OF SVR WITH
DIFFERENT KERNEL FUNCTIONS
Firstly, we leverage SVR to predict the surface temperature
of grain piles based on meteorological metric data. Because
of the poor thermal conductivity of the grain kernel itself and
the thermal insulation of the silo wall of the granary, some
samples cannot be linearly divided in the two dimensional
space. Thus, we consider a kernel function to map the samples
to a higher dimensional space, which can achieve a better

separability performance. Under Python 2.7 environment,
the training process of regression model is as follows: 8 mete-
orological factors are taken as independent variables, average
temperature of grain stack surface as dependent variables,
and independent variables and dependent variables are as
input of SVR. The mapping relationship between X and Y
is constructed by machine learning self-learning. In order to
ensure that the same training set and test set are segmented in
each run, the same random number seeds are set [13].

In this paper, the linear kernel function, the polynomial
kernel function, and the Gaussian RBF kernel function are
used to predict the average temperature of the first layer of the
stored grain pile [45]. We discuss the detailed experimental
results in the following.

The linear kernel function is defined as follows.

k (x, xi) = x · xi. (23)

We use a linear kernel for the SVR model, where the dimen-
sion of the feature space is the same as the input space.
It requires fewer parameters and also achieves a faster compu-
tational speed. The collected meteorological data of 423 days
and the corresponding average temperature of the first layer
of grain pile are used as data samples. The temperature of the
first layer of grain pile per day corresponds to eight metrics
of meteorology at the same time. We randomly select 80% of
the samples as the training set, and the remaining 20% of the
samples as the test set. The results of predicting the average
temperature of the first layer of grain pile using the linear
kernel function are presented in Fig. 7.

The polynomial kernel function is defined as follows.

k (x, xi) = ((x · xi)+ 1)d , (24)

where d represents the order of the polynomial. In our exper-
iment, we set d = 2, which achieves a good performance.
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FIGURE 7. Observation and predicted average temperature of the first
layer of the stored grain pile using the linear kernel function.

FIGURE 8. Observed and predicted average temperature of the first layer
of the stored grain pile using the polynomial kernel function.

Due to the ventilation and food turning operations during
grain storage, the sample size collected within a time period
is limited and the feature dimension is relatively small. The
polynomial kernel function can map the low-dimensional
input space to a high-dimensional feature space, but the corre-
sponding computational complexity is higher. The results of
predicting the average temperature of the first layer of grain
pile obtained by the polynomial kernel function are shown
in Fig. 8.

The Gaussian RBF kernel function is defined as follows.

k (x, xi) = exp

(
−
‖x− xi‖2

2δ2

)
. (25)

where δ is the parameter of the Gaussian RBF. This is a
locally strong kernel function that maps samples into a higher
dimensional space. It can achieve a good performance for
both large and small samples, and requires fewer parameters
than the polynomial kernel function. The results of predicting

the average temperature of the first layer of grain pile using
the Gaussian RBF kernel function are shown in Fig. 9.

FIGURE 9. Observed and predicted average temperature of the first layer
of the stored grain pile using RBF.

B. PERFORMANCE EVALUATION OF ADABOOST WITH
RANDOM FOREST REGRESSOR AS BASE-ESTIMATOR
The advantage of Adaboost is that various regression models
can be used to construct weak learners, and it is not easy
to appear over-fitting phenomenon. Its disadvantage is that
it is sensitive to abnormal samples. Abnormal samples may
have larger weight in iteration, which affects the prediction
accuracy of strong learners. Fortunately, we preprocess the
abnormal samples using outlier detection and data normal-
ization, which just overcomes the shortcomings of Adaboost.
Adaboost algorithm itself is a lifting algorithm. It can use
any learner as a base learner. Generally speaking, the most
widely used weak Adaboost learners are decision tree and
neural network. For decision tree, Adaboost classification
uses CART classification tree, while Adaboost regression
uses CART regression tree. According to the predictive per-
formance of SVR in section VI-A, we first select the SVR as
the base learner. Under the same number of basic learners and
learning rate, the linear kernel function, polynomial kernel
function and Gauss radial basis function of SVR are trained
respectively. It is found that when the polynomial kernel
function of SVR and the Gauss radial basis function are
used as the base learners, the calculation time is too long to
be applicable. Then we choose the linear kernel function of
SVR and the random forest regressor as the base learner. The
results show that the prediction error of using random forest
regressor as the base learner is small. In addition, because the
high accuracy and good anti-noise ability of random forest,
it is used as the basic learner of AdaBoost regression in this
paper. In order to prevent over-fitting, a regularization term
v is usually added to the Adaboost algorithm, which is often
referred as a learning rate. For the same training set, smaller
v means more iterations of weak learners. The step size and
the maximum number of iterations are usually used together
to determine the fitting effect of the algorithm.
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FIGURE 10. Observed and predicted average temperature of the first
layer of the stored grain pile using Adaboost.

Under Python 2.7 environment, the training process of
regression model is as follows: 8 meteorological factors
are taken as independent variables, average temperature of
grain stack surface as dependent variables, and independent
variables and dependent variables are as input of Adaboost
regression. In order to ensure that the same training set and
test set are segmented in each run, the same random number
seeds are set [13]. If the number of base learners M is too
small, it is easy to cause under-fitting, but if it is too large,
it will cause a large amount of calculation. When M reaches
a certain number, the model upgrade obtained by increasing
the value of M will be very small, so a moderate M value is
generally chosen. In our Adaboost model, the number of base
learners is 11, and the learning rate is 0.001. The collected
meteorological data of 423 days and the corresponding aver-
age temperature of the first layer of grain pile are used as data
samples. The temperature of the first layer of grain pile per
day corresponds to eight metrics of meteorology at the same
time. We randomly select 80% of the samples as the training
set, and the remaining 20% of the samples as the test set. The
results of predicting the average temperature of the first layer
of grain pile using the Adaboost algorithmwith random forest
regressor as base estimator is shown in Fig. 10. We can notice
that the proposed Adaboost algorithm has a better regression
performance compared with SVR based methods.

C. ELIMINATING REDUNDANT INFORMATION
As we show in Table 1, the correlation coefficients between
some meteorological factors are relatively large, which indi-
cates that there are strong correlations among these factors
such as air temperature and ground temperature, relative
humidity and evaporation. In Fig. 11, we can see that air
temperature and air pressure (subplot (a)), 0 cm ground sur-
face temperature and air pressure(subplot (b)) show negative
correlation with each other. 0 cm ground surface temperature
and air temperature (subplot (c)) show strong positive cor-
relation with each other. As a result, our regression models

FIGURE 11. The relationship of meteorological factors.

contain redundant information, which often decreases the
prediction accuracy of each model. PCA is a popular method
for removing redundant information from an input dataset,
thereby reducing its dimensionality [46]–[48]. Thus, we use
the PCA method to remove redundant information from our
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FIGURE 12. Observed and predicted average temperature of the first
layer of the stored grain pile using the linear kernel function after PCA.

FIGURE 13. Observed and predicted average temperature of the first layer
of the stored grain pile using the polynomial kernel function after PCA.

feature dataset. The PCA algorithm uses an orthogonal trans-
formation to convert a set of potentially correlated input
variables into a set of uncorrelated variables called principal
components. The number of principal components is less than
or equal to the number of original variables.

We choose the first seven (highest) eigenvalues and run
the regression method on the reduced feature set. The results
show that the prediction model is better than the full fea-
ture set when PCA is reduced to 7 dimensions. In Fig. 15,
the Adaboost algorithm with random forest as base learner
can achieve a minimum RMS-Error of 1.26 after PCA
and of 1.79 before PCA dimensionality reduction, respec-
tively. In Fig. 14, the RBF kernel can obtain a RMS-Error
of 3.94 after PCA and of 4.45 before PCA dimensionality
reduction, respectively. In Fig. 13, the polynomial kernel can
have a RMS-Error of 4.48 after PCA and of 4.69 before PCA
dimensionality reduction, respectively. In Fig. 12, the lin-
ear kernel can get a RMS-Error of 4.873 after PCA and
of 5.249 before PCA dimensionality reduction, respectively.

FIGURE 14. Observed and predicted average temperature of the first
layer of the stored grain pile using RBF after PCA.

FIGURE 15. Observed and predicted average temperature of the first
layer of the stored grain pile using Adaboost after PCA.

We also ran experiments for reducing the dimensionality of
the feature set from 7 to 6. However, we found that all three
SVM regression techniques performed worse compared to
the 7-dimensional feature set. The performance degradation
is that the information of the additional reduction in dimen-
sionality is not redundant.

D. COMPARISON
In order to quantitatively measure the prediction performance
of the SVR method using different kernel functions and
the Adaboost method with random forest regressor as base
estimator, the root mean square error (RMSE) is used as
the evaluation criteria. In addition, the execution time of
the algorithm is taken as another criterion for evaluation.
Using the different kernel functions in the SVR model and
random forest regressor as base estimator in the Adaboost
model to predict the average temperature of the first layer
of grain pile, the RMSE results are presented in Fig. 16.
It can be seen that all the three schemes are quite accurate,
while Adaboost method with random forest regressor as base
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TABLE 2. The RMSES and the execution time of different prediction models.

FIGURE 16. RMSEs achieved by SVR using different kernel functions and
Adaboost with random forest regressor as base estimator.

estimator achieves the smallest RMSE result. The polynomial
kernel function achieves a 10.50% reduction over the linear
kernel function. The Gaussian RBF kernel function achieves
a reduction of 15.08% and 5.12% over the linear and poly-
nomial kernel function, respectively. The Adaboost method
with random forest regressor as base estimator achieves a
reduction of 65%, 61%, and 59% over the linear kernel func-
tion, polynomial kernel function and Gaussian RBF kernel
function in SVR, respectively. Although the complexity of
the model has not changed, the number of features is reduced
after PCAdimensionality reduction. As a result, the execution
time is reduced and it reaches the minimum value when RBF
kernel function is used. The RMSEs and the execution time
of different prediction models are shown in Table 2.

VII. CONCLUSION
In this paper, we leveraged an SVR approach and anAdaboost
approach to predict the average temperature of the first layer
of the stored grain pile using meteorological metrics. Due to
the poor thermal conductivity of the grain kernel itself and the
thermal insulation properties of the granary wall, the average
temperature of the first layer is usually delayed by a certain
amount of time than the outside air temperature. Among eight
factors of meteorology, there are three factors, including air
temperature, 0cm ground temperature, and relative humidity,
that have a greater impact on the average temperature of the
first layer. We used different kernel functions in the SVR
model and chose the appropriate base-estimator and the num-
ber of estimators in the AdaBoost model. Grain temperature

data measured from a real granary and the corresponding
meteorological data were used in our study. The results
demonstrated that the Adboost method after PCA dimension
reduction can achieve a minimum RMS-Error of 1.26, which
is better than kernel based SVM methods.
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