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ABSTRACT In this paper, we study fingerprinting-based indoor localization in commodity 5-GHzWiFi net-
works. We first theoretically and experimentally validate three hypotheses on the channel state information
(CSI) data of 5-GHz OFDM channels. We then propose a system termed BiLoc, which uses bi-modality
deep learning for localization in the indoor environment using off-the-shelf WiFi devices. We develop
a deep learning-based algorithm to exploit bi-modal data, i.e., estimated angle of arrivings and average
amplitudes (which are calibrated CSI data using several proposed techniques), for both the off-line and online
stages of indoor fingerprinting. The proposed BiLoc system is implemented using commodity WiFi devices.
Its superior performance is validated with extensive experiments under three typical indoor environments
and through comparison with three benchmark schemes.

INDEX TERMS Indoor localization, fingerprinting, deep learning, 5GHz commodity WiFi, channel state
information, bi-modality fingerprinting.

I. INTRODUCTION
The wide use of mobile devices has fostered great interest
in indoor location-based services, such as indoor naviga-
tion [1]–[5], robot tracking in factories [6], locating work-
ers on construction sites [7], and activity recognition [8],
all requiring accurate identification of locations of mobile
devices indoors. The indoor environment results in a complex
radio propagation channel, including multipath propagation,
blockage, and shadow fading, and has stimulated consid-
erable research efforts involving indoor localization theory
and systems [9]. Among various indoor localization schemes,
WiFi-based fingerprinting is probably one of the most widely
used. With fingerprinting, a database is first built with data
collected from a thorough measurement of the field in the
offline training stage. The position of a mobile user can then
be estimated by matching the newly received data with the
information stored in the database. A unique advantage of this
approach is that no extra infrastructure needs to be deployed.

Many existing fingerprinting-based indoor localiza-
tion systems use received signal strength (RSS) for
indoor localization, because of its low requirements for
hardware [10], [11]. The Radar system is the first RSS-
based scheme that incorporates a deterministic approach for

indoor localization [10]. For higher accuracy, Horus, another
RSS-based fingerprinting scheme, adopts a probabilistic
method based on K -nearest-neighbor [9] for location estima-
tion [11]. The performance of RSS-based schemes is limited
by two inherent shortcomings. First, due to the multipath
effect and shadow fading, the RSS values are highly diverse,
even for consecutively received packets at the same position.
Second, an RSS value only reflects the coarse channel infor-
mation, which is the total power for all received signals.

Unlike RSS, channel state information (CSI) repre-
sents accurate channel information, which can currently be
extracted from several commodity wireless network interface
cards (NIC), e.g., Intel WiFi Link 5300 MIMO NIC [12],
the Atheros AR9390 chipset [13] and the Atheros AR9580
chipset [14]. CSI consists of subcarrier-level measurements
of orthogonal frequency division multiplexing (OFDM)
channels and provides amore stable representation of channel
characteristics than RSS. Several CSI-based fingerprinting
systems have been proposed and shown to achieve high local-
ization accuracy [15], [16]. FIFS [15] leverages the weighted
average of CSI amplitude data from three antennas for fin-
gerprinting based localization. To fully exploit the diversity of
multiple antennas and subcarriers, DeepFi [16] incorporates a
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deep auto-encoder network for training subcarriers’ data over
multiple antennas to extract the CSI features for indoor local-
ization. However, these CSI-based techniques only use CSI
amplitude data. The raw phase data is often highly random
and not directly usable [17].

Recently, two effective methods have been presented to
remove the randomness of raw CSI phase data extracted
from the Intel 5300 NIC in the 2.4GHz band. In [18], the
measured phases from 30 subcarriers are processed with a
linear transformation to mitigate the high randomness in the
CSI phase; the cleansed phase is then employed for passive
human movement detection. In [17], in addition to linear
transformation, the difference of the sanitized phases of two
antennas is obtained and used for line-of-sight (LOS) iden-
tification. Although both approaches can stabilize the phase
information, the mean value of the phase will be zero (i.e.,
lost) after such processing. This is caused by the firmware
design of the Intel 5300 NIC when it is operating on the
2.4GHz band [19]. To address this issue, Phaser [19] is the
first to exploit CSI phase in the 5GHzWiFi. Phaser constructs
an angle of arriving (AOA) pseudospectrum for phase cali-
bration in a single Intel 5300 NIC. Motivated by the above
studies, we explore the use of effectively cleansed phase data
for indoor localization with commodity 5GHz WiFi.

In this paper, we study the problem of fingerprinting-
based indoor localization using commodity 5GHz WiFi. We
first present three hypotheses on CSI amplitude and phase
information for 5GHz OFDM channels. The first hypothesis
states that the average amplitude of two antennas is more
stable than that of a single antenna, as well as, RSS. The
second hypothesis asserts that CSI phase difference values
from two antennas in 5GHz are highly stable. Due to the
firmware design of Intel 5300 NIC, the phase differences of
consecutively received packets form four clusters when oper-
ating in 2.4GHz. Such ambiguity makes the measured phase
differences unusable. However, we find this phenomenon
does not exit in the 5GHz band, where all the phase differ-
ences are concentrated around one value. We then design
simple multi-radio hardware for phase calibration which is
very different from the technique [19] that uses AOA pseu-
dospectrum searching with high computation complexity to
calibrate the phase of a single Intel 5300 NIC. As a result, the
randomness from the frequency and time difference between
the receiver and transmitter, and the unknown phase offset can
all be removed, and stable phase information can be obtained.
The third hypothesis is that the calibrated phase difference in
5GHz can be translated into AOA with considerable accu-
racy when there is a strong LOS component. We validate
these hypotheses with both extensive experiments and simple
analysis.

Next, we design BiLoc, Bi-modal deep learning for indoor
localization using commodity WiFi devices, to incorporate
the three hypotheses while building an indoor fingerprinting
system. In BiLoc, we first extract raw amplitude and phase
data from three antennas, each with 30 subcarriers, utilizing
amodified firmware.We then obtain bi-modal data, including

average amplitudes over pairs of antennas and estimated
AOAs, with the calibration procedure previously discussed.
In the training phase, we adopt a deep autoencoder network
to extract the unique channel features hidden in the bi-modal
data, and leverage the weights of the deep autoencoder net-
work as the extracted features (i.e., fingerprints). To reduce
the computational complexity, a greedy learning scheme is
leveraged to train the deep autoencoder network using a
Restricted Boltzmann Machine (RBM) model. In the test
phase, bi-modal test data is first collected from a mobile
device. Based on the radial basis function (RBF), a Bayesian
probability model is employed to estimate position.

The main contributions of this paper are summarized
below.

• We theoretically and experimentally validate the fea-
sibility of using bi-modal CSI data for indoor local-
ization. In particular, we analyze the measured phase
errors and design a multi-radio hardware for calibrating
the unknown phase offset difference in a single Intel
5300 NIC. To the best of our knowledge, we are the first
to employ both average amplitudes and estimated AOAs
for indoor fingerprinting with commodity 5GHz WiFi
networks.

• We propose a deep learning approach for indoor fin-
gerprinting. In particular, we design a deep autoencoder
network to extract OFDM channel features hidden in
the rich CSI bi-modal data, and use weights to build the
bi-modal fingerprint database. Furthermore, we propose
a probability fusion technique for accurately estimating
position with bi-modal test data.

• The BiLoc system is implemented using off-the-shelf
5GHz WiFi and is shown, through extensive exper-
imentation to achieve superior performance in three
typical indoor scenarios. Our test results demonstrate
that BiLoc outperforms three representative existing
schemes regarding localization accuracy.

In the remainder of this paper, the preliminaries and
hypotheses are presented in Section II. We introduce the
BiLoc system in Section III and validate its performance
in Section IV. Related work is discussed in Section V.
Section VI summarizes this paper.

II. PRELIMINARIES AND HYPOTHESES
A. CHANNEL STATE INFORMATION PRELIMINARIES
The OFDM technique is widely employed in the physical
layer (PHY) of Wi-Fi and LTE systems, where the total
spectrum is partitioned into multiple orthogonal subcarriers.
Moreover, the subcarriers can carry wireless data based on the
samemodulation and coding scheme (MCS), which mitigates
frequency selective fading. Leveraging the device driver for
the Intel 5300 NIC, we can extract CSI, which can reveal
the channel characteristics experienced by the received signal
such as the multipath effect, shadow fading, and distortion.

With OFDM technology, every WiFi subcarrier becomes
a narrowband flat fading channel. In the frequency domain,
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the channel can be modeled by

ER = CSI · ET + EN , (1)

where ER and ET are the received and transmitted signals,
respectively, and EN is the noise.

Although a WiFi receiver uses an OFDM system with 56
subcarriers for a 20 MHz channel, the Intel 5300 NIC can
report 30 out of 56 subcarriers. The subcarrier i CSI, CSIi, is
as follows:

CSIi = Ii + jQi = |CSIi| exp (j6 CSIi), (2)

where Ii and Qi are the in-phase component and quadrature
component, respectively; 6 CSIi and |CSIi| denote the phase
and amplitude values, respectively.

B. DISTRIBUTION OF AMPLITUDE AND PHASE
In general both Ii and Qi can be modeled as i.i.d. AWGN of

variance σ 2. The amplitude response is |CSIi| =
√
I2
i +Q2

i ,
which follows a Rician distribution when there is a strong
LOS component [20]. The probability distribution func-
tion (PDF) of the amplitude response is defined by

f (|CSIi|) =
|CSIi|
σ 2 exp

(
−
|CSIi|2 + |CSI0|2

2σ 2

)
× I0

(
|CSIi| · |CSI0|

σ 2

)
, (3)

where |CSI0| is the amplitude response without noise,
I0(·) is the zeroth order modified Bessel function of the
first kind. When the signal-to-noise-ratio (SNR) is high, the
PDF f (|CSIi|) will converge to the Gaussian distribution as
N (
√
|CSI0|2 + σ 2, σ 2) [20].

The phase response of subcarrier i is computed by
6 CSIi = arctan(Qi/Ii) [20]. The phase PDF is expressed as:

f ( 6 CSIi)

=
1
2π

exp
(
−
|CSI0|2

2σ 2

)(
1+
|CSI0|
σ

√
2π cos(6 CSIi)

× exp
(
|CSI0|2 cos2(6 CSIi)

2σ 2

)
×

(
1− Q

(
|CSI0| cos( 6 CSIi)

σ

)))
,

where Q(·) is the Q-function. In the high SNR regime, the
PDF f (6 CSIi) also converges to a Gaussian distribution as
N
(
0, (σ/|CSI0|)2

)
[20]. The distribution of amplitude and

phase of the subcarriers would be useful to guide the design
of localization algorithms.

C. HYPOTHESES
We have the following three important hypotheses about the
5GHz CSI data, which are demonstrated and tested with our
measurement study and theoretical analysis.

FIGURE 1. The standard deviations CDF of normalized average
CSI amplitude, a single CSI amplitude, and a single RSS in the
5GHz OFDM channel for 90 positions.

1) HYPOTHESIS 1
The average CSI amplitude value over two adjacent antennas
for the 5GHz OFDM channel is highly stable at a fixed
location.
We find CSI amplitude values exhibit great stability for

continuously received packets at a given location. Fig. 1
presents the cumulative distribution functions (CDF) of the
standard deviations (STD) of (i) the normalized CSI ampli-
tude averaged over two adjacent antennas, (ii) the normalized
CSI amplitude from a single antenna, and (iii) the normalized
RSS amplitude from a single antenna, for 90 positions. At
each position, 50 consecutive packets are received by the Intel
5300 NIC operating in the 5GHz band. It can be seen that
90% of the testing positions are below 10% of the STD in
the case of averaged CSI amplitudes, while the percentage
is 80% in the case of a single antenna CSI and 70% in
the case of a single antenna RSS. Thus, averaging over two
adjacent antennas can make CSI amplitude highly stable for a
fixed location with 5GHzOFDM channels.We conducted the
measurements over a long period of time, during both busi-
ness hours and overnight hours. No obvious difference in the
stability of CSI is observed over different times, while RSS
values exhibit large variations even for the same position.
This finding motivates us to use average CSI amplitudes of
two adjacent antennas as one of the features of deep learning
in the BiLoc design.

Recall that the PDF of the amplitude response of a sin-
gle antenna is Gaussian in the high SNR regime. Assum-
ing that the CSI values of the two antennas are i.i.d. (true
when two adjacent antennas are separated by more than a
half wavelength [17]), the average CSI amplitudes also fol-
low the Gaussian distribution, as N (

√
|CSI0|2 + σ 2, σ 2/2),

but with a smaller variance. This proves that stability can
be improved by averaging CSI amplitudes over two anten-
nas [21](as observed in Fig. 1). On the other hand, we con-
sider the average CSI amplitudes over two antennas instead
of three antennas or only one antenna, because BiLoc system
employs bi-model data, such as estimated AOAs and average
amplitudes. This requires that we use the same amount of
nodes as input to a deep autoencoder network.
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2) HYPOTHESIS 2
The difference of CSI phase values between two antennas of
the 5GHz OFDM channel is highly stable, compared to that
of the 2.4GHz OFDM channel.

Although the CSI phase information is also available from
the Intel 5300 NIC, it is highly random and cannot be directly
used for localization, due to noise and the unsynchronized
time and frequency of the transmitter and receiver. Recently,
two useful algorithms have been used to remove the ran-
domness in the CSI phase. The first approach is to make a
linear transformation of the phase values measured from the
30 subcarriers [18], [22]. The other one is to exploit the phase
difference between two antennas in 2.4GHz and then remove
the measured average [17]. Although both methods can stabi-
lize the CSI phase in consecutive packets, the average phase
value they produce is always near zero, which is different
from the real phase value of the received signal.

FIGURE 2. The measured phase differences of the 30 subcarriers between
two antennas for 200 consecutively received packets in the 5GHz (blue)
and 2.4GHz (red) bands.

Switching to the 5GHz band, we find the phase difference
becomes highly stable. Fig. 2 shows the measured phase
differences of the 30 subcarriers between two antennas for
200 consecutively received packets in the 5GHz (in blue)
and 2.4GHz (in red) bands. The phase difference of the
5GHz channel varies between [0.5, 1.8], which is consid-
erably more stable than that of the 2.4GHz channel (varies
between [−π, π]). To further illustrate this finding, we plot
the measured phase differences between the 5th subcarrier of
two antennas using polar coordinates in Fig. 4. We find that
all the 5GHz measurements concentrate around 30◦, while
the 2.4GHz measurements form four clusters around 0◦, 90◦,
180◦, and 270◦. The latter occurs because of the firmware
design of the Intel 5300 NIC when operating on the 2.4GHz
band, which reports the phase of channel modulo π/2 rather
than 2π on the 5GHz band [19]. Compared to the ambiguity
in the 2.4GHz band, the highly stable phase difference in the
5GHz band could be very useful for indoor localization.

As in Hypothesis 1, we also provide an analysis to vali-
date the observations made from our experiments. Let 6 ĈSI i
denote the measured phase of subcarrier i, which is provided

by [14], [23]

6 ĈSI i = 6 CSIi + (λp + λs)mi + λc + β + Z , (4)

where 6 CSIi is the true phase from wireless propagation,
Z is the measurement noise, β is the initial phase offset
because of the phase-locked loop (PLL), mi is the subcarrier
index of subcarrier i, and λp, λs and λc are phase errors
from the packet boundary detection (PBD), the sampling
frequency offset (SFO) and central frequency offset (CFO),
respectively [23], [24], which are expressed by

λp = 2π
1t
N

λs = 2π (
T ′ − T
T

)
Ts
Tu
n

λc = 2π1fTsn,

(5)

where 1t is the packet boundary detection delay, N is the
FFT size, T ′ and T are the sampling periods from the receiver
and the transmitter, respectively, Ts is the length of the data
symbol plus the guard interval, Tu is the data symbol length,
n is the sampling time offset for the current packet, and
1f is the difference between the center frequencies at the
transmitter and receiver. We cannot obtain the exact values of
1t , T

′
−T
T , n,1f , and β in (4) and (5). Moreover, λp, λs and λc

vary for different packets with different 1t’s and n’s. Thus,
the true phase 6 CSIi cannot be derived from the measured
phase value.

However, note that the three antennas of the Intel 5300 NIC
use the same clock and the same down-converter frequency.
Consequently, the measured phases of subcarrier i from two
antennas have identical packet detection delay, sampling peri-
ods and frequency differences (and the same mi) [19], [24].
Thus the measured phase difference on subcarrier i between
two antennas can be approximated as

1 6 ĈSI i = 1 6 CSIi +1β +1Z , (6)

where1 6 CSIi is the true phase difference of subcarrier i,1β
is the unknown difference in phase offsets, which is in fact a
constant [19], and 1Z is the noise difference. We find that
1 6 ĈSI i is stable for different packets because of the above
equation (6) without 1t and n.
In the high SNR regime, the PDF of the phase response

of subcarrier i for each of the antennas is N (0, (σ/|CSI0|)2).
Due to the independent phase responses, the measured
phase difference of subcarrier i is also Gaussian with
N (1β, 2σ 2(1+ 1/|CSI0|2)). Note that although the variance
is higher compared to the true phase response, the uncertainty
from the time and frequency differences is removed, leading
to much more stable measurements (as shown in Fig. (4)).

3) HYPOTHESIS 3
The calibrated phase difference in 5GHz can be translated
into the angle of arriving (AOA) with considerable accuracy
when there is a strong LOS component.
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Themeasured phase difference of subscriber i can be trans-
lated into an estimation of angle of arrival (AOA), as

θ = arcsin
(
1 6 ĈSI iλ

2πd

)
, (7)

where λ is the wavelength of subcarrier i and d is the
separation between the two antennas (set to d = 0.5λ in
our experiments). Although the measured phase difference
1 6 ĈSI i is highly stable, we still wish to remove the unknown
phase offset difference 1β to further reduce the error of
AOA estimation. For commodity WiFi devices, the existing
approach for one NIC is to search for 1β within an AOA
pseudospectrum in the range of [−π, π], which, however, has
a high time complexity [19].

FIGURE 3. The multi-radio hardware design for calibrating the unknown
phase offset difference 1β.

FIGURE 4. The measured phase differences of the 5th subcarrier
between two antennas for 200 consecutively received packets in the
5GHz (blue dots) and 2.4GHz (red crosses) bands.

For the proposed Biloc system, we design a novel method
to remove the unknown phase offset difference 1β using
two Intel 5300 NICs. As in Fig. 3, we use one Intel 5300
NIC as the transmitter and the other as the receiver, while
a signal splitter is used to route the signal from antenna 1 of
the transmitter to antennas 1 and 2 of the receiver through
cables of the same length. Since the two antennas receive the
same signal, the true phase difference1 6 CSIi of subcarrier i
is zero. We can thus obtain 1β as the measured phase offset
difference between antennas 1 and 2 of the receiver. We also
use the same method to calibrate antennas 2 and 3 of the
receiver and to obtain the unknown phase offset difference

between them as well. The unknown phase offset difference
is found to be relatively stable over time.

FIGURE 5. The estimated AOAs from the 30 subcarriers using the MUSIC
algorithm, while the real AOA is 14◦.

After calibrating the unknown phase offset differences for
the three antennas, we then use the MUSIC algorithm for
AOA estimation [25]. In Fig. 5, the AOA estimation using
MUSIC with the calibrated phase information for the 30 sub-
carriers is plotted for a high SNR signal with a known incom-
ing direction of 14◦. We can see in Fig. 5 that the peak occurs
at around 20◦, indicating anAOAestimation error of about 6◦.
In fact, there are multiple paths indoor environments. Thus,
using only three antennas still cannot obtain accurate angle
estimation. Moreover, we implemented more experiments for
angles estimation by using MUSIC indoor environments; we
find that the estimated angles change for different locations
because of NLOS paths. Although the calibrated phase differ-
ences are not available for estimating angles when using three
antennas, we believe that the new phase calibrated method
can be used for future WiFi systems, such as IEEE 802.11ac,
that have more than three antennas.

We can obtain the true incoming angle with MUSIC when
the LOS component is strong. To deal with the case of strong
NLOS paths (typical in indoor environments), we adopt a
deep autoencoder network to learn the estimated AOAs and
the average amplitudes of adjacent antenna pairs as finger-
prints for indoor localization. As input to the deep network,
the estimated AOA is obtained as follows.

θ = arcsin
((
1 6 ĈSI i −1β

) λ

2πd

)
+
π

2
, (8)

where 1β is measured with the proposed multi-radio hard-
ware experiment. The estimatedAOA is in the range of [0, π].

III. THE BiLoc DESIGN
A. BiLoc SYSTEM FRAMEWORK
The overall framework of BiLoc is illustrated in Fig. 6. The
BiLoc design uses one mobile device and one access point,
each equipped with an Intel 5300 NIC, serving as receiver
and transmitter, respectively [26], [27]. All the communica-
tions are on the 5GHz band. We can collect 90 CSI data for
every received packet from the three antennas of the NIC.
We then calibrate the phase information from the received
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FIGURE 6. The BiLoc system architecture.

CSI data using our multi-radio hardware design (see Fig. 3).
Both the estimated AOAs and average amplitudes of two
adjacent antennas are used as location feature for building the
fingerprint database.

A unique feature of BiLoc is its bi-modal design. With
the three receiving antennas, we can obtain two groups of
data: (i) 30 estimated AOAs and 30 average amplitudes from
antennas 1 and 2, and (ii) those from antennas 2 and 3. BiLoc
utilizes estimated AOAs and average amplitudes for indoor
fingerprinting for two main reasons. First, these two types of
CSI data are highly stable for any given position. Second, they
are usually complementary to each other under some indoor
circumstances. For example, when a signal is blocked, the
average amplitudewill be significantly reduced. However, the
estimated AOAwill be less affected. On the other hand, when
the NLOS components are stronger than the LOS component,
the average amplitude will help to improve the localization
accuracy.

Another unique characteristic of BiLoc is the use of
deep learning to produce feature-based fingerprints from the
bi-modal data in the offline training stage, which is quite dif-
ferent from the traditional approach of storing the measured
raw data as fingerprints. Specifically, the weights in the deep
autoencoder network will be used as features-based finger-
prints for every position. By obtaining the optimal weights
with the bi-modal data on estimated AOAs and average
amplitudes, we can establish a bi-modal fingerprint database
for the training positions. The third feature of BiLoc is the
probabilistic data fusion approach for location estimation
based on received bi-modal data in the online test stage.

B. OFFLINE TRAINING FOR BI-MODAL
FINGERPRINT DATABASE
In the offline stage, BiLoc leverages deep learning to train
and store the weights to build a bi-modal fingerprint database,

which is a deep autoencoder network that involves three
phases: pretraining, unrolling, and fine-tuning [16], [28]. In
the pretraining phase, a deep autoencoder network with three
hidden layers and one input layer is used to learn the bi-modal
data. We denote hi as the hidden variable with Ki nodes at
each layer i, for i = 1, 2, 3, and h0 as the input data with
K0 nodes at the input layer. Let the average amplitude data
be v1 and the estimated AOA data be v2. To build the bi-
modal fingerprint database, we set h0 = v1 and h0 = v2

for database 1 and 2, respectively, each of which is a set of
optimal weights. We denote W1, W2 and W3 as the weights
between the adjacent layers.

To reduce the computational complexity of obtaining train-
ing weights, a greedy learning algorithm is developed to learn
the weights layer after layer based on an RBM stack [29].
We consider an RBM as a bipartite undirected graphical
model [29] with joint distribution Pr(hi−1, hi), as

Pr(hi−1, hi) =
exp(−E(hi−1, hi))∑

hi−1
∑

hi exp(−E(hi−1, hi))
, (9)

whereE(hi−1, hi) denotes the free energy between layer (i−1)
and layer i, which is represented by

E(hi−1, hi) = −bi−1hi−1 − bihi − hi−1Wihi, (10)

where bi−1 and bi are the biases for layer (i − 1) and
layer i units, respectively. To obtain the joint distribution
Pr(hi−1, hi), we use a contrastive divergence with a one step
iteration (CD-1) algorithm to solve it as [29]{

Pr(hi−1|hi) =
∏Ki−1

j=1 Pr(hi−1j |h
i)

Pr(hi|hi−1) =
∏Ki

j=1 Pr(h
i
j|h

i−1),
(11)

where Pr(hi−1j |h
i), and Pr(hij|h

i−1) are given by the sigmoid
belief network as follows:Pr(h

i−1
j |h

i) =
(
1+ exp (−bi−1j −

∑Ki
t=1W

j,t
i hit )

)−1
Pr(hij|h

i−1) =
(
1+ exp (−bij −

∑Ki−1
t=1 W

j,t
i hi−1t )

)−1
.

For the layer i RBM model, we estimate ĥi−1 by sampling
from the conditional probability Pr(hi−1|hi). By sampling the
conditional probability Pr(hi|ĥi−1), we can obtain an estimate
ĥi [30].We thus have the following equations for updating the
parameters. 

1Wi = ε(hi−1hi − ĥi−1ĥi)
1bi = ε(hi − ĥi)
1bi−1 = ε(hi−1 − ĥi−1),

(12)

where ε is the step size.
When the pretraining is over, we then unroll the deep

autoencoder network using forward propagation to obtain the
reconstructed input data in the unrolling phase. Finally, in the
fine-tuning phase, the backpropagation algorithm is used to
train the weights in the deep autoencoder network accord-
ing to the error between the reconstructed and input data.
The optimal weights are obtained by minimizing the error.
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In BiLoc, we use estimated AOAs and average amplitudes
as input data, and obtain two sets of optimal weights for the
bi-modal fingerprint database.

C. ONLINE DATA FUSION FOR POSITION ESTIMATION
In the online phase, we adopt a probabilistic approach to
location estimation using the stored bi-modal fingerprints and
the bi-modal test data. We derive the posteriori probability
Pr(xi|v1, v2) using Bayes’ law as

Pr(xi|v1, v2) =
Pr(xi) Pr(v1, v2|xi)∑K
k=1 Pr(xk ) Pr(v1, v2|xk )

, (13)

where xi is the ith training position, K is the total number of
training positions, and Pr(xi) is the prior probability, which
is uniformly distributed for any training position xi [30]. The
posteriori probability Pr(xi|v1, v2) becomes

Pr(xi|v1, v2) =
Pr(v1, v2|xi)∑K
k=1 Pr(v1, v2|xk )

. (14)

In BiLoc, we approximate Pr(v1, v2|xi) with an RBF to
model the degree of similarity between the reconstructed
bi-modal data and the test bi-modal data, given by

Pr(v1, v2|xi) = exp
(
−(1− ρ)

‖v1 − v̂1‖
η1σ1

− ρ
‖v2 − v̂2‖
η2σ2

)
,

(15)

where v̂1 and v̂2 are the reconstructed average amplitude and
reconstructed AOA, respectively; σ1 and σ2 are the variance
of the average amplitude and estimated AOA, respectively;
η1 and η2 are the parameters of the variance of the average
amplitude and estimated AOA, respectively; and ρ is the ratio
for the bi-modal data.

For (15), the average amplitudes v̂1 and the estimated
AOAs v̂2 are the input to the deep autoencoder network. Then,
by employing test data v̂1 and v̂2, we compute the recon-
structed average amplitude v̂1 and reconstructed AOA v̂2

based on database 1 and database 2, respectively, which are
used to compute the likelihood function Pr(v1, v2|xi).

The location of the device is finally determined as a
weighted average of all the reference positions, that is:

x̂ =
K∑
i=1

Pr(xi|v1, v2) · xi. (16)

IV. EXPERIMENTAL STUDY
A. TEST CONFIGURATION
We will present our experimental study with BiLoc in the
5GHz band in this section. In the experiments, a Dell laptop
serves as the mobile device and a desktop computer serves
as the access point, both of which are furnished with an Intel
5300 NIC. Our implementation of BiLoc is executed on the
Ubuntu desktop 14.04 LTS OS at both the access point and
mobile device. We use QPSK modulation and a 1/2 coding
rate for the OFDM system. The access point is set in the
monitor mode. The two adjacent antennas are separated by a

distance of d = 2.68 cm, which is half of a wavelength for the
5GHz band. The mobile device transmits at 100 packets per
second using only one antenna in injection mode. 5GHz CSI
data can be obtained by using the packet injection technique
based on LORCON version 1. Then, we extract bi-modal data
for the training and test stages as described in Section III-B.

We built three representative schemes from the literature,
i.e., Horus [11], FIFS [15], and DeepFi [16], which are
discussed in Section I. Moreover, the same dataset captured
in the 5GHz band is used by all the schemes to ensure
a fair comparison. We conduct extensive experiments with
the schemes in the following three representative indoor
environments.

FIGURE 7. The floor plan of the computer laboratory: training locations
are represented as red squares and testing locations are represented as
green dots.

1) COMPUTER LABORATORY
We utilize a 6 × 9 m2 computer laboratory, a cluttered envi-
ronment with metal tables, chairs, and desktop computers,
blocking most of the LOS paths. The floor plan is shown
in Fig. 7, with 15 chosen training positions (marked as red
squares) and 15 chosen test positions (marked as green dots).
The distance between two adjacent training positions is 1.8m.
The single access point is put close to the center of the
room. The bi-modal CSI data from 1000 received packets
is collected for each training location, and that from 25
received packets is collected for each test location. The deep
autoencoder network used for this scenario is configured as
{K1 = 150, K2 = 100, K3 = 50}. Also, the ratio ρ for the
bi-modal data is set as 0.5.

2) CORRIDOR
The 2.4 × 24 m2 corridor is illustrated in Fig. 8. In this
scenario, the AP is installed at the left end of the corridor
and there are plenty of LOS paths. Ten training positions
(red squares) and 10 test positions (green dots) are arranged
along a straight line. The distance between two adjacent
training positions is 1.8 m as before. We again collect bi-
modal data from 1000 packets for each training position and
from 25 packets for each test position. The deep network used
for this scenario is configured as {K1 = 150, K2 = 100,
K3 = 50}, and the ratio ρ for the bi-modal data is set as 0.1.
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FIGURE 8. The floor plan of the corridor: training locations are
represented as red squares and testing locations are represented
as green dots.

FIGURE 9. The floor plan of the two corridors: training locations are
represented as red squares.

3) TWO CORRIDORS
Employed are a 2.4 × 24 m2 corridor and a 2.4 × 20 m2

corridor, as shown in Fig. 9. In this scenario, six APs are
placed in the two corridors and there are enormous LOS
paths. Eighteen training positions (red squares) are arranged
along the two corridors, and a number of test positions,
which are not shown in Fig. 9, are randomly chosen in the
two corridors. The separation between two adjacent training
locations is again 1.8 m. As previously, we measure bi-modal
data from 1000 packets for each training position and from
25 packets for each test position. Other parameters in the deep
network are set in the same way as in the above, one corridor
case. We use this deployment scenario to study the effect of
the number of access points on indoor localization accuracy
for different schemes.

B. ACCURACY OF LOCATION ESTIMATION
We present the mean and STD of localization errors and the
execution time of the four schemes for the two scenarios,
respectively, in Tables 1 and 2. In the laboratory environment,
the mean error of BiLoc is 1.5743 m and the STD error is
0.8312 m for the 15 test points. In the corridor experiment,
because only one access point is used for this larger space,
the mean error of BiLoc is 2.1501 m and the STD error is
1.5420 m for the 10 test points. BiLoc outperforms the other
three benchmark schemes with the smallest mean error, as
well as with the smallest STD error, i.e., it is the most stable
scheme in both scenarios. We also compare the online test
time of all the schemes. Due to the use of bi-modal data

TABLE 1. Mean/STD error and execution time of the laboratory
experiment.

TABLE 2. Mean/STD errors and execution time of the corridor
experiment.

and the deep network, the mean executing time of BiLoc
is the highest among the four schemes. However, the mean
execution time is 0.6653 s for the laboratory case and 0.5440 s
for the corridor case, which are sufficient for most indoor
localization applications.

FIGURE 10. CDF of localization errors in 5GHz for the laboratory
experiment.

In Fig. 10, we plot the CDF of location errors of the four
methods in the laboratory scenario. In this complex propa-
gation environment, with BiLoc, 100% of the test positions
have an error smaller than 2.8 m, while DeepFi, FIFS, and
Horus achieved an error of less than 2.8 m in approximately
72%, 52%, and 45% of the test locations, respectively. For a
much smaller error of 1.5 m, the percentage of test positions
having a smaller error are 60%, 45%, 15%, and 5% for BiLoc,
DeepFi, FIFS, and Horus, respectively. BiLoc achieves the
highest precision among the four schemes, due to the use of
bi-modal CSI data (i.e., average amplitudes and estimated
AOAs). In fact, when the amplitude of a signal is strongly
influenced in the laboratory environment, the estimated AOA
can be utilized to mitigate this effect by BiLoc. However, the
other methods based solely on CSI or RSS amplitudes will be
affected.
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FIGURE 11. CDF of localization errors in 5GHz for the corridor experiment.

In Fig. 11, we plot the error CDFs achieved by the four
techniques in the corridor case. Only one access point is used
at one end for this 24 m long corridor; thus, it is hard to
determine the device’s position. With BiLoc, more than 90%
of the test positions have an error smaller than 4 m, while
with DeepFi, FIFS, and Horus, near to 70%, 60%, and 50%
of the test positions, respectively, have an error smaller than
4 m. For a tighter 2 m error threshold, BiLoc has 60% of
the test positions with an error below this threshold, while
it is 40% for the other three schemes. Regarding the corridor
scenario, BiLoc primarily utilizes the average amplitudes of
CSI data, because the estimated AOAs are similar for all
the training/test positions (recall that they are aligned along
a straight line with the access point at one end). This is a
challenging scenario for differentiating different test points
and the BiLoc mean error is 0.5758 m higher than that of the
laboratory scenario.

C. 2.4GHz VERSUS 5GHZ
We also compare the 2.4GHz channel and 5GHz channel
using the BiLoc scheme. For a fair comparison, we conduct
the experiments at night, because the 2.4GHz band is much
more crowded than the 5GHz band during the day.

Fig. 12 presents the CDF of localization errors in the
2.4GHz and 5GHz band in the laboratory environment, where
both average amplitudes and estimated AOAs are effectively
used by BiLoc for indoor localization. We can see that for
BiLoc, about 70% of the test positions have an error smaller
than 2 m in 5GHz, while 50% of the test positions have
an error under 2 m in 2.4GHz. In addition, the maximum
errors in 2.4GHz and 5GHz are 6.4 m and 2.8 m, respec-
tively. Therefore, the proposed BiLoc scheme achieves much
better performance in 5GHz than 2.4GHz. In fact, the phase
difference between two antennas in 2.4GHz exhibits great

FIGURE 12. CDF of localization errors in 5GHz and 2.4GHz for the
laboratory experiment.

variations, which lead to lower localization accuracy. This
experiment also validates our Hypothesis 2.

D. IMPACT OF PARAMETER ρ
Recall that the parameter ρ is used to trade off the impacts
of average amplitudes and estimated AOAs in location esti-
mation as in (15). We study the impact of ρ on localization
accuracy under the two environments. With BiLoc, we use
bi-modal data for online testing, and ρ directly influences
the likelihood probability Pr(v1, v2|xi) (15), which in turn
influences the localization accuracy.

Table 3 illustrates the mean localization errors for increas-
ing ρ in the laboratory and corridor experiments. In the
laboratory experiment, when ρ is increased from 0 to 0.3,
the mean error decreases from 2.6 m to 1.5 m. Furthermore,
the mean error remains around 1.5 m for ρ ∈ [0.3, 0.7], and
then increases from 1.5m to 2 m when ρ is increased from
0.6 to 1. Therefore, BiLoc achieves its minimum mean error
for ρ ∈ [0.3, 0.7], indicating that both average amplitudes
and estimated AOAs are useful for accurate location estima-
tion. Moreover, BiLoc has higher localization accuracy with
the mean error of 1.5m, compared with individual modality
such as the estimated AOAs with that of 2.6m or the average
amplitudes with that of 2.0m.

In the corridor experiment, we can see that the mean error
remains around 2.1 m when ρ is increased from 0 to 0.1.
When ρ is further increased from 0.1 to 1, the mean error
keeps on increasing from 2.1 m to about 4.3 m. Clearly, in
the corridor experiment, the estimated AOAs provide sim-
ilar characteristics for deep learning and are not useful for
distinguishing the positions. Therefore BiLoc should mostly
use the average amplitudes of CSI data for better accuracy.
These experiments provide some useful guidelines on setting
the ρ value for different indoor environments.

TABLE 3. Mean localization error versus parameter ρ.
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E. EFFECT OF THE NUMBER OF PACKETS
We study the effect of the number of packets used in the
online test stage of BiLoc. In this experiment, we estimate
the location of the mobile device using different numbers of
packets for the two indoor environments. Although 1000 test
packets are received for each position, we only use 25, 50,
100, and 300 of them in the online test for location estimation.
We also randomly select the parameter ρ value to guarantee
the consistency of localization results obtained with different
number of packets.

TABLE 4. Mean localization error versus the number of
packets used in the online test stage.

In Table 4, we plot the average errors for different numbers
of packets in the corridor and laboratory experiments. We can
see that the mean distance error in the laboratory experiment
is lower than that in the corridor experiment for different
amounts of packets. Moreover, with the increase of packets,
the mean distance error for both experiments is decreased.
Also, we can find that the maximum distance errors for the
laboratory and corridor experiments are 1.7 m and 2.3 m,
respectively, while the minimum distance errors for the labo-
ratory and corridor experiments are 1.58 m and 2.1 m, respec-
tively. In fact, with the increase in packets, the decrease of
mean distance error is small for both experiments. Therefore,
we choose 25 packets for the test phase in the proposed BiLoc
system, which can obtain a lower computational complexity
and a satisfactory localization performance.

F. EFFECT OF THE NUMBER OF NODES
IN THE DEEP NETWORK
We study the impact of the number of nodes in deep network
on localization results of our BiLoc system. Although there
are lots of values we can set for the parametersK1,K2 andK3,
the number of all nodes (K1 + K2 + K3) in deep network is
selected. In addition, we choose the number of nodes as 200,
300 and 400, respectively, for the two indoor cases.

TABLE 5. Mean localization error versus the number of
nodes in the deep network.

In Table 5, we plot the mean errors for the increased
number of nodes in the deep network for the laboratory and
corridor experiments. We can see that the mean distance error
decreases with the increasing number of nodes in the deep
network in both experiments. It is noticed that the difference
of the mean errors is small for different numbers of nodes,
where the mean error is from 1.8m to 1.5m in the laboratory

experiment, and that is from 2.2m to 2.1m in the corridor
experiment. This demonstrates that our BiLoc is robust for
different number of nodes in the deep network. Thus, we
select the proper number of nodes with 300 that is K1 = 150,
K2 = 100 and K3 = 50, thus obtaining the lower cost.

G. IMPACT OF THE NUMBER OF APs
Finally, we study the impact of the number of APs on local-
ization results for different methods, where we consider the
two corridors deployment with six APs. For multiple APs,
we evaluate the online localization scheme by multiplying
equation (14) for all APs to obtain the fusion likelihood
function for every location [15]. Moreover, we implement
the proposed BiLoc system without calibration for indoor
localization. Also, we take into account the transmitter device
can access the maximum three APs.

FIGURE 13. Mean errors versus the number of APs for the two corridors
experiment.

Fig. 13 presents the mean distance errors for the increased
number of APs based on five different schemes in the two
corridors environment. It is noticed that, the mean error is
decreased with more APs for all the schemes. Moreover, for
the BiLoc system, we can see that with the increase of the
number of APs from 1 to 3, the distance error is decreased
from approximately 2.4 m to 1.8 m, which can improve the
localization accuracy. However, we can see that, compared
with other traditional methods such as Horus and FIFS, the
improvement of localization accuracy is minor. Moreover, we
can find that the proposedmethod with a single AP can obtain
even higher accuracy than other methods. Furthermore, we
also find that the BiLoc system has a better localization
performance than BiLoc system without calibration. Thus,
we consider using one AP for the BiLoc system based on the
proposed method, which achieves the lower localization error
and device cost.

V. RELATED WORK
Indoor localization has been widely studied in the last two
decades [31]. This work is closely related to two types of
indoor localization schemes, i.e., fingerprinting-based and
AOA-based schemes, which are discussed in the following.
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Fingerprinting is a mainstream approach for indoor
localization [32], [33]. RADAR [10] is the one of the
first works for RSS-based indoor localization and uses
K -nearest-neighbor for location estimation. Another RSS-
based scheme, Horus [11] uses a probabilistic method for
indoor fingerprinting, thus improving localization accuracy.
Furthermore, CSI data are exploited for indoor fingerprinting
to improve the localization accuracy. FIFS [15], PinLoc [34],
PhaseFi [22], [30] and DeepFi [16], [35] are all CSI-based
schemes that leverage CSI data to achieve reliable finger-
prints. Although these systems achieve good localization
performances, they require offline calibration to create the
fingerprint database via war-driving. An effective approach to
reducing the burden of war-driving is crowdsourcing, where
the load of fingerprinting is shared by multiple users [36].
A example is the Zee system [37], which leverages the inertial
sensors and WiFi data to estimate a user’s moving trajectory
and to build fingerprints during crowdsourcing.

AOA-based indoor localization leverages array antennas
to estimate the arriving angle and then uses geometric rela-
tionships to obtain the user location. Recently, the CUPID
system [13] achieved a mean error of about 20◦ using the
MUSIC algorithm [25]. CUPID uses the Atheros chipset
and three antennas, from which CSI can be obtained for
AOA estimation. The relatively large angle error is due to
the low resolution of the antenna array. To achieve high
angle accuracy, the Array-Track system [38] is implemented
with two WARP FPGA-based software radios equipped with
16 antennas for AOA estimation. It can then obtain the
direct path by using spatial smoothing for indoor localization.
Array-Track requires a large number of antennas, which may
not be practical for commodity mobile devices.

The proposed BiLoc system is motivated by these inter-
esting prior works. To the best of our knowledge, it is the
first to utilize bi-model data, i.e., both estimated AOAs and
average amplitudes, for indoor localization with commodity
5 GHz WiFi. It exploits both the spatial diversity from mul-
tiple antennas and the spectral diversity of OFDM channels
based on a deep autoencoder network, thus overcoming the
limitation of the low resolution of antenna array in off-the-
shelf wireless devices.

VI. CONCLUSIONS
We proposed BiLoc, a bi-modal deep learning system for
fingerprinting-based indoor localization with 5GHz com-
modity WiFi NICs. In BiLoc, we first extracted and cali-
brated CSI data to obtain bi-modal CSI data, including aver-
age amplitudes and estimated AOAs, which were used in
both the offline and online stages. In the training phase, we
leveraged a deep autoencoder network to train the bi-modal
data, and the weights were used to represent the bi-modal
fingerprints. In the test phase, a Bayesian approach based
probability model was employed for estimating position
with bi-model test data. We evaluated the performance of
BiLoc with extensive experiments under three representa-
tive indoor environments. The experimental results validated

the superior performance of BiLoc over several benchmark
schemes.
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