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AIGC for RF-based Human Activity Sensing
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Abstract—Radio Frequency (RF) sensing has been considered
as an effective approach to human perception of non-intrusive
and high-privacy scenarios. However, the existing wireless sensing
techniques mostly rely on extensive labeled RF sensing data for
offline training, while wireless sensory data collection is highly
time-consuming and costly. To ridge this gap, we investigate the
problem of generalized dataset augmentation with an Artificial
intelligence (AI) Generated Content (AIGC) approach, termed
RF-AIGC, for wireless sensing, which can not only purposefully
generate new RF sensing data but reduce the data collection cost
by augmenting a limited training dataset with synthesized RF
data. We propose a conditional Recurrent Generative Adversarial
Network (termed RF-CRGAN) to generate labeled synthetic RF
data for specified human activities for multiple wireless sensing
platforms, such as WiFi, Radio-Frequency Identification (RFID),
and millimeter wave (mmWave) radar. We also propose a holistic
quantitative method to help evaluate and explain the effects of
the synthesized data. The experimental results demonstrate that
the proposed approach can effectively enhance the diversity of
training data and achieve similar performance as real data.

Index Terms—3D human pose estimation, Artificial intelligence
generated content (AIGC), Generative Adversarial Network
(GAN), Radio frequency (RF) sensing, Data augmentation.

I. INTRODUCTION

Wireless communication technologies are extensively em-
ployed in in our daily lives, and RF signals (e.g., WiFi channel
state information (CSI), millimeter wave (mmWave) radar,
and Radio-Frequency Identification (RFID)) are becoming the
frontier of intelligent human perception. These signals are
refracted, scattered, or reflected by nearby objects or human
body, while the frequency, phase, and attenuation variations
can be exploited for sensing, especially for Human Activity
Recognition (HAR). Compared to the use of computer vi-
sion (CV) or wearable devices, RF-based sensing offers the
desirable device-free, low-cost, and non-intrusive advantages.
In the past decade, considerable progress has been made in
Machine Learning (ML)-powered wireless communications
and networking [1], and among various ML algorithms, Deep
Neural Networks (DNN) have been used as an essential
technique for HAR tasks [2]. To achieve a satisfactory HAR
performance, a huge amount of training data often needs to
be collected, processed, and labeled. However, unlike text
or image data, RF data is significantly harder to collect
and has distinct randomness properties. First, the open-space
propagation environment greatly affects the sensitivity of RF
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data; any change in the transceivers’ locations or the surround-
ings could result in a very different data domain. Second,
measured RF data is highly susceptible to various factors,
such as transceiver devices, waveforms, frequency ranges,
and protocols. For example, a 77 GHz mmWave channel is
substantially different from a 900 MHz RFID channel, even in
the same propagation environment. Third, there are significant
time-varying fluctuations in the wireless channel according
to the time of day, day of the week, and months. Owing
to these intermingled spatial, spectral, and temporal features,
collecting RF datasets is a very expensive undertaking, and
what’s worse, the usefulness of a collected RF dataset may be
severely restricted for a different setting.

Recently, artificial intelligence-generated content, or AIGC,
has started a prominent revolution in the ML world. Un-
paralleled products such as Sora, ChatGPT, Gemini, and
MidJourney are paving the way towards Artificial General
Intelligence (AGI). Generative adversarial networks (GANs),
Transformers, and diffusion models are used to create new data
that closely resemble existing data, and are the driving force
behind these AI products, while they are mainly developed
in the context of text-to-image generation or text-prompted
AI agents. A natural question is raised: Can we exploit
the potentials of AIGC to address wireless communication
problems, especially, to generating RF data that can be useful
in different settings? Data augmentation has been explored
for RF sensing data, but has focused heavily on pre-defined
transformation on a single RF sensing data source of WiFi
CSI [3]. Generative Adversarial Networks (GANs), a repre-
sentative AIGC technique, can provide cutting-edge realism
and adaptability. Pan et al. [4] devised a GAN-based system
to control the manipulation of images, achieving flexibility,
precision, and generality. GANs have also been deployed in
the RF sensing domain. However, they are only employed as
a performance booster via fine-tuning or augmentation [5],
[6]. It is important to mention that AIGC demands creatively
generating and manipulating data of quality and diversity. The
simplistically synthesized data would have limited usefulness
for RF sensing applications, including HAR and 3D human
pose estimation. In conclusion, the currently available ap-
proaches are not generalizable enough to support the synthesis
of various human activity-related RF sensing data.

To this end, we take one step further and propose the RF-
AIGC system to precisely generate activity-enriched RF data
that is generalized across an array of RF platforms [7], [8]. We
investigate the similarities between vision-based 3D human
pose data and RF sensing data. They both demonstrate dis-
tinctive features with different activity movement variations,
subject skeletons, viewpoints, and locations. We find that by
augmenting new 3D human pose data, RF data can be gen-
erated corresponding to the augmentations, hence achieving
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AIGC on both labels and RF data. However, simple supervised
learning with a one-to-one ratio between human pose data
and RF data does not make the system adaptive to various
augmented human pose data. To address this problem, we
first pretrain an offline generator using collected ground truth
data. We then fine-tune this base generator with augmented
pose data via a weakly-supervised learning approach to create
an online RF sensing data generator, termed RF-CRGAN.
Note that only the offline training involves Kinect data, which
is not needed in the online mode. Hence our framework is
non-intrusive and privacy preserving. We also devise a pose
augmentation method that allows users to precisely control the
augmentation process. Extensive experiments are conducted
to validate the high data generation ability and diversity of
the proposed RF-AIGC system. An overview of the proposed
system is presented in Fig. 1.

The main contributions of this study are summarized in the
following.
• To the best of our knowledge, this is the first work to

design an end-to-end AIGC framework conditioned on
3D human pose data for generating a diverse set of RF
sensing data with fine-grained specifications. To achieve
this goal, we design an online augmentation module that
allows users to easily augment 3D human pose, which can
then be mapped into the corresponding RF sensing data.
The cost of training dataset collection can be significantly
reduced.

• We investigate a generalization solution to data augmen-
tation for multiple RF platforms. The proposed RF-AIGC
system is able to synthesize high-quality RF sensing data
across four different RF platforms.

• We prototype the proposed system and qualitatively and
quantitatively evaluate the performance of our synthe-
sized data through various metrics, including the Struc-
tural Similarity (SSIM) Index, fidelity, diversity, and
multimodality. Via different downstream tasks and cross-
dataset testing, the high utility of our synthesized data is
demonstrated and measured.

The remainder of this paper is structured as follows. We
review related work in Section II and discuss the challenges
in RF data collection in Section III. The system design is
elaborated in Section IV. Section V presents our experimental
study and Section VI concludes this paper.

II. RELATED WORKS

A. RF sensing of human activity

Various wireless technologies have been applied for HAR,
such as RFID, WiFi, and mmWave radar. RFID is a near-
field communication technology consisting of a reader and
low-cost tags. Because tags can be classified due to their
stored Electronic Product Code (EPC), they can be attached to
different human body parts as wearable sensors. This sensing
technology has a higher tolerance against environmental in-
terference compared to other RF methods. Commodity RFID
readers, e.g., the Impinj R420 reader used in this work, can
extract useful information from the signals reflected from tags,
including Received Signal Strength Indicator (RSSI), Doppler

frequency, and phase angles. RFID has been applied for HAR
ranging from simulating virtual touch screens in the air [9],
human object interaction detection system [10], to free-weight
exercise monitoring [11]. Similarly, WiFi CSI has become one
of the most dominant RF sensing technologies in recent years
for its ability to reveal fine-grained information at subcarrier
level. CSI of the orthogonal frequency division multiplexing
(OFDM) channel can be collected by leveraging a few open-
source toolkits, such as amplitude, phase, and Doppler shift,
which play a huge role in various motion sensing tasks [12]–
[16]. Recently, FMCW radar has also been applied for HAR
tasks, typically by detecting the direction and velocity of
human body movements. Commodity devices such as Texas
Instruments’ (TI) IWR1443BOOST have gained increasing
popularity for their lower cost and ease of deployment. Chirp
frequency differences (also beat frequencies) can be utilized
to derive distance, velocity, Doppler frequency, and angle
information of the target object or human body. More activity-
sensitive features such as micro-Doppler signatures can be
obtained through short-time Fourier transform (STFT) [17].
These useful features from FMCW radar have also been
explored for tasks involving tracking of the human body for
fall detection [18], vital sign monitoring [19], and dynamic
hand-gesture sensing [20].

This paper an AIGC-empowered method that is centered
on large-scale HAR (instead of small-scale HAR such as
vital signs and hand gesture recognition), which is essential
in our daily lives because of its ability to deduce high-
level knowledge about complex human behaviors [21]. All
the aforementioned RF devices are suitable for large-scale
HAR tasks, specifically 3D human pose estimation and daily
activity classification. 3D human pose estimation typically
requires a recurrent DNN to map the RF features into joint
rotations for smooth 3D human movements [22]–[24], while
classifier-oriented DNNs are mainly used for human activity
recognition [25]–[27]. The main challenge is that these DNNs
require a large amount of high quality training data, which
takes huge amounts of time, labor, and computing power to
collect and process. Moreover, the scarce labeled RF data
impedes the development of DNNs that can generalize to
unseen scenarios.

B. Data augmentation for RF sensing

Data augmentation is an important technique for camera-
and sensor-based HAR to address the challenges mentioned
above. In [28], inertial measurement unit (IMU) sensor data
was generated and the generated data helped boost the HAR
performance. However, this method has not been proven
effective for RF sensing technologies due to the random char-
acteristics and dynamic environments. A majority of studies
that explore data augmentation in the RF domain leverage
data transformation to modify existing data. For instance, the
authors in [29] applied three operations to generate mmWave
point cloud samples with varying distances, angles, and human
motion velocities. Additionally, the work [30] synthesized
different activity data through various transformations on CSI
spectrograms. In spite of boosting the performance of the
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models by adding generated data, these methods are limited to
specific RF data formats of specific devices and do not convey
complex movement characteristics.

Recently, data augmentation for mmWave Doppler radar
data-based HAR received significant attention due to its unique
Doppler-range and radial velocity features that can capture
complex human activities. In [31], mmWave Doppler data
were software-synthesized by deploying a virtual radar system
within the 3D space that was constructed through vision-based
data. Nevertheless, this application does not generalize to un-
seen activities, while still requiring extensive knowledge of the
complex mmWave signal. Generative Adversarial Networks
(GANs) [32] were applied to synthesize mmWave radar micro-
doppler spectrums for enhanced HAR accuracy. Our previous
work [33] leveraged a conditional GAN to synthesize RF
samples of various types of modulation and different signal-
to-noise (SNR) levels for automatic modulation classification.
In [7], we utilized a GAN-based framework to generate
synthesized RFID-based human pose data for augmentation
purposes. However, these prior works lack the ability to
generalize to unseen scenarios including different subjects,
activities, downstream tasks, and RF platforms, which will be
addressed in this work.

C. AIGC for RF-based human activity sensing

AIGC brings unparalleled freedom for users to create vari-
ous forms of contents by simply providing a prompt. The most
current backbones of AIGC are transformers and diffusion
models. The Diffusion model [34] is an advanced method in
the field of image generation with its high speed of generation
and ease of engagement. Coupled with transformer-based
architectures such as BERT [35] and CLIP [36], powerful text-
to-image applications like stable diffusion [37] and DALL-
E [38] are used by customers around the world. Recently,
Wang et al. proposed a unified weighted conditional diffusion
model (UN-CDM) to generate realistic human flow data for
enhanced wireless sensing [39].

The field of 3D human pose estimation also had the oppor-
tunity to capitalize on the power of AIGC. A novel human
motion diffusion model can generate various 3D human poses
of high fidelity and diversity for user entered text descriptions,
activity class labels, or poses [40]. However, the unprecedented
capabilities of the above models have a solid foundation that
cannot be ignored, which is an abundant amount of natural
language descriptions and data for training the model. The
field of RF activity sensing, on the other hand, has not yet been
able to utilize what the best AIGC models can offer due to the
lack of RF data and labels, let alone the challenge on prompts
to describe RF data. In this paper, we make one step forward,
proposing a GAN-based RF activity data generative model.
Using a 3D human skeleton and a target activity as prompt,
the RF data corresponding to the given subject and activity
can be generated. In addition, with simple manipulation of
the Blender animation software [41], small disturbances can be
introduced to the 3D human pose data for improved diversity.

III. CHALLENGES IN RF SENSING DATA COLLECTION

Different from vision-based techniques, it is difficult to
perform human perception tasks based on RF signals. Due to
the complex format and highly random nature of RF signals,
the translation from RF signals to human activities is not
straight-forward. In recent years, deep learning (DL) models
have been considered as effective approaches to extract human
activity features from RF signals. With a suitable DL model
and sufficient training data, the trained model can translate
RF signals into activity information. However, the currently
proposed DL-based approaches require an extensive labeled
dataset for supervised training, which consists of synchronized
activity information (i.e., label) and RF signal, especially
for complicated human sensing tasks. Moreover, to achieve
adaptability, the training dataset should be collected from a
large number of subjects, diverse environments, different RF
devices, and RF data modality (e.g., RSSI, phase, range profile,
and so on). Training data collection for RF sensing systems is
a dauntingly high-cost process.

The challenges of the training data collection for RF sensing
mainly come from the following three aspects.

1) High labor and time costs. First, RF sensing data collection
is simply labor-intensive and time-consuming. For example, it
requires around 6 minutes of data under one setting (the same
subject, viewpoint, location/environment, and RF platform) for
the RF-Pose model to estimate recognizable poses similar to
ground truth poses, based on seen poses and subjects during
training, and around 18 minutes for the model to estimate
smooth pose movements [22]. For the dataset to be useful,
these will be repeated for a large number of different subjects,
locations/environments, viewpoints, RF platforms, etc., costing
huge amounts of efforts and time. The diversity in training
subjects, environments, and activity types also needs to be
tested in a cross-dataset scenario.

2) Synchronized multi-modal data. Second, most existing
pose sensing models require synchronized multi-modal data,
i.e., vision data and RF data, for supervised training, which
requires synchronization of the multi-modal data collection
devices, usually with different sampling rates. Data collection
is needed again if the misalignment in time is larger than half
of the duration of a performed activity.

3) Diversity in RF devices. Lastly, considerable diversity
exists in the RF signal representations collected from different
RF devices, operating on different frequency bands with
different protocols, waveforms, and hardware designs. There
is no universal data type for various platforms to work at
the same time. The same propagation environment will look
very different, e.g., RFID in 900 MHz versus FMCW radar
in the mmWave band, and the same human activity will be
transformed into diverse representations of RF data. Different
RF devices also have different issues on data collection. For
example, RFID tags need to be attached to human body,
while WiFi and FMCW radar are device-free. Due to the
interrogation protocol, RFID data is usually extremely noisy
and sparse; data imputation is needed to make the collected
data useful [22]. On the other hand, 2.4G WiFi CSI data
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is highly susceptible to interference and movements in the
surroundings, often leading to poor recognition performance.

IV. AIGC FOR LABELED HUMAN ACTIVITY RF DATASET

We propose to leverage the power of data augmentation
to effectively reduce the RF data collection efforts. Data
augmentation aims to increase the amount of data by adding
slightly modified copies of the existing samples or creating
new, synthetic data. For image data used in computer vision
tasks, an effective method is to perform a combination of affine
image transformations such as rotation, reflection, scaling, and
color modification (e.g., changing contrast or brightness, white
balancing, sharpening, and blurring).

Obviously, such methods will not work for RF data. Pose,
however, is more similar to image data and can be manipu-
lated and modified more easily in terms of pose movement
variations, body forms, camera viewpoints, and locations. We
leverage GANs in our system because they provide a powerful
framework for generating high-quality and diverse RF sensing
data directly from 3D human pose data. Unlike traditional
GANs that generate data from random Gaussian distributions,
the autoencoder-based GAN leverages a structured latent space
that can be manipulated using pose data, allowing more control
over the variations in generated RF data. Additionally, the
adversarial training mechanism of GANs enables the model
to learn to generate realistic RF data rather than data that
might closely resemble the input pose data. Compared to other
methods like simulation-based synthesis, our approach sim-
plifies the generation process, requiring less domain-specific
knowledge while enabling the generation of diverse and robust
datasets.

We find that joint kinematics of 3D human pose data can
be seamlessly mapped into credible RF data by our proposed
RF-CRGAN network. By enhancing the diversity of pose data,
we can, in turn, augment RF data by mapping the augmented
pose data into high-quality RF data. We propose the end-to-end
framework RF-AIGC, which involves both augmentation and
generative modules. Fig. 1 presents an overview of the RF-
AIGC architecture, which comprises two main modules: an
RF-CRGAN model and an artificial-poses generating module.
We next present the detailed design of RF-AIGC.

A. RF data collection and pre-processing

As in our prior work [42], we aim to develop a general
framework that works for different wireless technologies,
using RFID, WiFi, and FMCW radar as examples. We first
describe how the RF data is collected and preprocessed using
these wireless technologies. The RF features for our model
to learn are selected and processed. A suitable amount of RF
features are then chosen to match the joint rotations of 3D
human pose data.

1) RFID platform. We attach 12 passive RFID tags as
wearable sensors to the 12 joints of the test subject [22].
While the subject performs various poses, a reader with three
antennas queries the tags and collects phase variation data (i.e.,
the differences between two consecutive phase samples) from

tag responses for the kinematics RF mapping network. The
phase variations can be expressed as follows:

∆φRFID = mod
{

4π(St − St−1)fα
c

, 2π

}
, (1)

where St denotes the tag-to-antenna distance for the tth
sampled data on channel α, and c is the speed of light.
(St − St−1) represents the change of relative distance in the
last sample, rendering it suitable for tracking the movement
of the tag. The sampling rate of RFID phase data is 110 Hz.

2) WiFi platform. A commodity WiFi platform is built to
capture WiFi CSI (both in 2.4 GHz and 5 GHz), which is a
fine-grained feature representation of the OFDM channel. The
CSI data used in this paper refers to the differences of phase
values between adjacent antennas for the nth subcarrier:

∆φCSI = (φk,n − φ(k+1) mod 3,n) + ε, (2)

where k denotes the antenna that collects the phase data, and
ε is the random noise. We collect 30 subcarrier-level phase
information from each antenna to obtain 90 phase difference
samples for one time frame of the activity being captured. A
mean absolute deviation-based selection method is chosen to
filter out the top k(36) most reliable subcarriers for activity
sensing. Joint kinematics can be learned from the CSI data
because human activities (moving and rotating body parts)
can cause considerable variations in the WiFi channel. The
sampling rate of CSI phase difference data is 10 Hz.

3) FMCW radar platform. A commodity FMCW radar (TI’s
IWR1843BOOST) is utilized in this study. The intermediate
frequency (IF) signal’s (between transmitting and receiving
chirps) frequency is fIF = S2d/c, i.e., directly proportional
to the range between the reflecting object and radar d (where
S is the slope of the frequency modulation and c is the speed
of light). Therefore, a Range-FFT (1D Fast Fourier Transform
(FFT) across multiple IF signal frequencies) can be used to
obtain range profile X[k] (i.e., the power of reflected signals)
at different distances, through a discrete Fourier transform
(DFT) on the Ns sampled IF signal, as

X[k] = AejφIFPNs

(
2πk

Ns
− ωIF

)
, 0 < k ≤ Ns, (3)

where φIF and ωIF are the phase and discrete angular
frequency of the IF signal, respectively, and PN (ω) is the
Fourier transform of a square window function of length N .

During the experiment, we find that range profile alone
carries enough periodic information of human movements.
Microdoppler signatures can capture more movement infor-
mation, but a format of 2D range-Doppler feature map for
one each frame can induce computation complexity, while a
format of time-Doppler feature map lacks the characteristics
of moving joints across different range bins. One range profile
data frame consists of the time duration of active chirp pro-
cessing, ADC, and DSP (FFT). Due to the 256-point Range-
FFT, the range bin resolution is around 0.044m. Such precision
is sufficient to capture the movements of different joints of
human body. The length of such range bins is adequate for the
supervised learning network to learn the transformation. We
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Figure 1. Overview of the architecture of the proposed RF-AIGC system: The primary function is to generate RF sensing data from pose data, and there
are five main sections. (a) Real RF and pose data collection from different RF sensing platforms and kinect camera. (b) Online pose data simulation for
enhanced diversity. (c) Real RF data and simulated pose goes through a weakly-supervised training: synthesized RF data from simulated pose data undergoes
adversarial training with real RF data for a better and more generalized generator. (d) Our synthetic RF data can be used as AIGC data for augmentation to
help training the models of different downstream RF sensing tasks as mentioned in (e).

only choose to use 36 points, in which range the test subject is
performing the activities. The sampling rate of FMCW radar
is also 10 Hz.
4) Training-ready RF and pose data. Since the frame rate of
Kinect video data is 30 Hz, we first synchronize the three types
of distinctive RF data with the Kinect data to 10 Hz utilizing
recorded timestamps for time dimension alignment. Following
that, the background information are effectively removed by
Hampel filters. The three types of distinctive RF data are
in upstream formats of typical RF data preprocessing, and
synthesized data in such format can be later processed further
(e.g., Doppler FFT on the range profile data) for more in-depth
downstream tasks. We design a universal representation for the
RF data: the input to our AIGC network is SN1:T , with N being
the RF features, and T being the total number of time frames.
We set T to 30 (or 3 seconds). Denote the 3D human pose data
as XP

1:T , where P represents the number of joint positions. We
choose 3 seconds for T because this will includes roughly 1 to
2 cycles of a complete activity performed by the test subject.

B. The proposed RF-CRGAN system design

Our proposed neural Kinematic RF transformer network
for RF sensing data synthesis is illustrated in Fig. 2, which
consists of two stages: The first stage is to pretrain a baseline
Generator that can produce synthesized RF data; then in the
second stage, we fine-tune the Generator and start alternately
optimizing the Generator G and Discriminator D. We aim
to enrich the diversity of our generative model, instead of
generating homogeneous RF data that only closely resemble
the ground truth data, which is lacking the ability of out-
of-distribution generation. We introduce two effective aug-
mentation methods, i.e., Temporal Gaussian Noise Perturba-
tions (TGNP) and Pose-related characteristics modifications
(PoseMod), to increase the diversity of pose data (i.e., pose
augmentation). The Generator G can then transform such

pose data into their corresponding RF data (i.e., RF data
synthesis). However, there is no such RF data label available
for the Discriminator D to use. Therefore, a weakly-supervised
mechanism is incorporated by making the Discriminator D

treat such synthesized RF data as “fake” samples. Intuitively,
this enforces the RF features learned from ground truth data
(with labels) to be adapted to augmented RF data through
adversarial learning.

1) Pretraining the Generator G. Following the GAN design of
our previous work [7], we first pretrain the baseline RF feature
transformer (i.e., Generator G) leveraging collected ground
truth pose and RF data with a supervised one-to-one ratio. An
RNN-based autoencoder is deployed to map joint rotations of
3D pose data into RF features, and a 1D convolutional layer-
based Discriminator takes the synthetic RF data as “fake” data,
in contrast to the real RF data, to learn how to distinguish them
for improving the network’s generation ability. After training,
we simply discard the Discriminator and use the trained RNN-
based autoencoder as our Generator G.

2) Generator fine-tuning and adversarial learning. We pre-
serve the weights of the trained Generator during the first stage
to maintain knowledge of ground truth data, which captures
the most realistic RF distributions. We modify the RNN
autoencoder by conditioning on the skeletons Ŝ and global
motions Gt (regarding translations and rotations) through the
RNN hidden dimension. 3D pose data is represented during
the autoencoder stage as XP ′

t = [LP
′

t , Gt ∈ R1×3], consisting
of local joint motions and global motions, where P ′ represents
the number of joint positions (x, y, z). The RNN encoder and
decoder are denoted by ε and ψ, respectively. Conditioned
on previous time steps via an RNN hidden representation, we
synthesize the current 3D pose at time step t. The temporal
consistency in the pose sequences can be captured as

hεt = RNNε(XP ′

t , hεt−1;W ε), (4)
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Figure 2. Internal architecture of the RF-CRGAN network.

where hεt is the encoded representation of the input pose up
to time step t. The encoded features are then fed to the RNN
decoder to transform pose data into RF data through

hψt = RNNψ(L̃P
′

t−1, G̃t−1, Ŝ, h
ε
t , h

ψ
t−1;Wψ), (5)

S̃Nt = WSThψt , (6)

where hψt is the hidden representation of ψt, S̃nt is the
transformed RF data at time step t, and W ε,Wψ,WST ∈
R1×3P ′

are learnable parameters. As can be seen in the above
equations, the RNN decoder ψ is able to turn local joint
motions L̃p

′

t−1 conditioned on pose skeletons Ŝ, and global
motions G̃t−1 into RF data S̃Nt . Hence our RNN Autoencoder-
based Generator F is also called the Neural Kinematics RF
Mapping Network in this paper.

After pretraining and fine-tuning the Generator G, we alter-
natively optimize G and D as in the following minimax game:

min
G

max
D

[Lce(D(SN2:T − SN1:T−1), 1) (7)

+ Lce(D(S̃N2:T − S̃N1:T−1), 0)],

where the inputs to D (SN2:T −SN1:T−1 and S̃N2:T − S̃N1:T−1) are
the RF feature differences between two adjacent time steps,
and the fake samples S̃N1:T are generated through F (XP ′

1:T ).
Lce is the cross entropy loss between the logits calculated by
D and the actual labels y, defined as

Lce(logits, y) = −y log(logits)−(1−y) log(1−logits). (8)

The RF feature differences help the adversarial training
generate RF data with not only high fidelity but also temporal
coherence comparable to real RF sensing data. During training
and within each batch, half of the samples are fake data
generated by G given an augmented pose through augmen-
tation methods (either by TGNP or PoseMod), and the rest
are real samples. This way, a more generalized discriminator
is trained, which in turn helps to train a better generator. On
the other hand, the Generator G tries its best to generalize an
RF-activity-sensing plausible data for a given augmented pose
to fool the Discriminator D through minimizing the following:

min Lce(D(S̃N2:T − S̃N1:T−1), 1). (9)

In summary, the superiority of our adversarial learning lies
in that, by learning a better discriminator with a weakly-
supervised learning manner, we boost the ability of our neural
kinematics RF transformer to generalize RF activity data
with unprecedented diversity, while also creating labels (i.e.,
augmented poses) for generative RF data. During the learning
process, the initial synthesized RF data from augmented poses
are visually and physically invalid in the meaning of RF sens-
ing, and are easily distinguishable from the ground truth RF
data. Hence, there is high incentive to improve the generator
G to better fool D and generate results of better quality. We
also find that the training process would converge faster and
get relatively better performance with a pretrained generator.

C. Augmentation techniques for poses

The privacy of test subjects is largely preserved during
our data collection process, since our ground truth 3D pose
data are in the format of 3D joint locations (x, y, z). The
Python Numpy files are converted to animation frames using
the Blender software [41] with bones and meshes that can be
freely manipulated. These pose data will then go through pose
augmentation for enhanced diversity. We design two methods
for pose augmentation, one with an emphasis on automation
(termed TGNP), and the other with a focus on richer diversity
(termed PoseMod).

1) TGNP. The TGNP augmentation method aims to make
the augmentation process simple, swift, and virtually auto-
matic, yet effectively introducing pose diversity and model
robustness. TGNP has real-life inspirations in which human
motions in videos can often be occluded for a period of time,
resulting in a noisy 3D pose. Given a ground truth 3D pose
XP

1:T over time frames T , we randomly perturb p < P joints
within j ≤ T frames with additive Gaussian noise N(0, σ2)
to create XP ′

1:T (TGNP ). The variance needs to be relatively
small, so that the contaminated signal still have an SNR in
the range of 30 dB to 50 dB. An SNR smaller than 30 dB
will cause a large disturbance to joint locations and hence
result in uncanny poses, but an SNR larger than 50 dB will
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only introduce negligible perturbations. On the other hand,
Gaussian noises added to all time frames could introduce
too much jittering, rendering the pose and potentially the
transformed RF data lacking temporal smoothness. In addition,
we also briefly modify the skeleton sizes after a certain amount
of time to induce proper diversity at low cost when operating
this augmentation method.

2) PoseMod. The PoseMod augmentation method emphasizes
curating poses to introduce richer and more sophisticated
diversity. We try to introduce perturbations to various skeletons
and activity-specific pose movements, and find that skeleton
sizes, pose movement variations, and frequencies, along with
locations and camera viewpoints, are the key features for
augmentation. By artificially introducing small perturbations to
these features, PoseMod can increase the diversity of generated
RF data, thereby induce higher robustness in RF-CRGAN
training. Unlike TGNP that only introduce small perturbations
to a pose, PoseMod can also generate new poses, which can
then be transformed into plausible RF data seamlessly cor-
responding to the augmentation operations. There are mainly
three operations for PoseMod as illustrated in Fig. 3.

• Skeleton and limb size: The overall size of a skeleton
(height and width) and the lengths of limbs can be
freely modified using Blender [41]. Such modifications
correspond to the use of different test subjects.

• Pose movement variations: Modify the positions of cer-
tain joints during the key frames of a pose (the frames
at which a key activity-specific movement is being per-
formed, e.g., the locations of arms and legs reaching a
peak location before moving backward). Furthermore, the
frequencies of pose movements can also be adjusted. Our
arguments for such operations are that the RF-CRGAN
network is intended to learn the joint kinematics of poses
across time steps, hence the movement variations and
frequencies of the poses are the most dominant features,
especially at joint locations such as arms and legs where
the motions are the most obvious. This operation offers
simple and meticulous options during augmentation with-
out sacrificing the fidelity of natural pose movements.

• Global motions: Adjust translation regarding the physical
x-y plane, and rotation regarding the z plane. This is
to simulate a real-life data collection scenario where the
target subject needs to change locations and orientations
in front of both RF devices and Kinect camera. Such
modifications make the pose data to be situation aware,
which can then be transferred into RF data for more
generalized data synthesis.

For each activity class, we perform the second and third
operations on various modified subject skeletons achieved
by the first operation. We term the augmented pose
through PoseMod XP

1:T (PoseMod). We then define a gen-
eral augmented pose using either of the methods for train-
ing the RF-CRGAN model in Section IV-B as XP ′

1:T =
{XP

1:T (TGNP ), XP
1:T (PoseMod)}. Our pose augmentation

techniques conform to the designs in several state-of-the-art
3D pose estimation works [43]–[45], while having the unique
novelty in that our augmented poses are for generating new

Figure 3. Examples of the PoseMod augmentation method.

AIGC RF data, instead of only aiming at improving the
generalization of the 2D-to-3D pose estimation network.

V. IMPLEMENTATION AND EXPERIMENTAL STUDY

A. Prototype system

To evaluate the proposed RF-AIGC framework, a prototype
is developed using several representative RF technologies,
including UHF RFID, 2.4GWiFi, 5G WiFi, and FMCW
radar. An off-the-shelf Impinj R420 reader, passive ALN-9634
(HIGG-3) tags, and three S9028PCR polarized antennas make
up the RFID platform. The RFID system hops among 50
channels from 902 MHz to 928 MHz, and it remains on each
channel for 0.2 s. A standard Intel 5300 network interface card
(NIC) operating at either 2.412 GHz or 5.3 GHz is used as
the WiFi CSI platform. Finally, an IWR1843 Boost single-chip
FMCW mmWave sensor operating at 76∼ 81 GHz is deployed
in the mmWave platform. We use a Lenovo laptop with a
GTX 1660 Ti GPU for signal processing, model training, and
inference. The system setup is illustrated in Fig. 4.

To demonstrate the advantages of the data augmentation
strategy, the synthesized RF data are used for training the mod-
els of two different downstream tasks: (i) 3D pose estimation
(a regression task) and (ii) Human activity classification (HAC,
a classification task). We train the same machine learning
model in these two tasks using synthesized data, augmented
data, and real data, respectively, and compare the performance
of the trained models.

B. Dataset construction and composition

RF data is collected by sampling activities performed by
a test subject in front of the RF sensing platforms and a
Kinect 2.0 device. The individual performs eleven types of
distinct activities, including drinking (DK), raising the left arm
(LA), raising the left leg (LA), standing still (ST), squatting
(SQ), boxing (BX), twisting (TW), walking (WA), kicking
(KI), waving up and down (UD), and weight lifting (WL).
Data is sampled when the participant continuously repeats
the full range of specific activities. The configurations for
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Figure 4. The configuration of the experimental RF-AIGC system.

three RF sensing platforms are as follows. We conduct RFID-
based sampling by attaching 12 passive RFID tags to 12
selected joints on the subject’s body, including the neck, left
shoulder, left elbow, left wrist, right shoulder, right elbow,
right wrist, pelvis (root joint), left hip, left knee, right hip,
and right knee. We use a reader with three polarized antennas
to interrogate the tags, which helps make sure that each
RFID tag is covered by at least one antenna. As for WiFi
platforms, we set the WiFi transmitter to the injection mode,
and the receiver to the monitor mode. The frequency bands
used are 2.412 GHz and 5.3 GHz, respectively. This setup
enables us to measure the impacts of different bands under
the same WiFi platform. Last but not least, the FMCW radar
of model IWR1843 Boost is used to generate range profiles
for the scanned area where the test subject locates. These four
settings can all independently capture human activities well.
The Kinect device will capture vision data that is synchronized
with the RF data for supervised training of the models.

To comprehensively examine the performance of the RF-
AIGC framework, a holistic evaluation plan of real and syn-
thesized data is designed. For real data, we use limited and
sufficient amounts of training data as baselines. If training
data is limited and homogeneous (e.g., little diversity within
the dataset), the performance is less than satisfactory, while
a model trained on sufficient and heterogeneous real data
(higher diversity including subjects, activities, and locations)
can achieve excellent results. The generated new RF sensing
data are synthesized data by RF-AIGC. The downstream
task models, i.e., for 3D pose prediction and HAC, trained
on synthesized data alone can have adequate performance.
Synthesized data is also utilized to augment the real data for
better and more robust model performance. It often takes a
few times more synthesized data for the model performance
boost to be effective due to the domain gap problem of GANs.

For simplicity, we would abbreviate these dataset terms
when needed in figures or tables: “lim.” for limited, “suffi.”
for sufficient, and “synth.” for synthesized. Six test subjects
are involved in the collection of real RF and Kinect data,
denoted by S1, S2, ..., S6, respectively. S1, S2, and S3
are collected under homogeneous settings (i.e., similar body
shapes, viewpoints, and locations), while S4, S5, and S6 are
collected under heterogeneous settings. S4 and S5 are of
similar body shapes and at the same location, which is different

from S1 to S3. S6 has a different body shape, activity-related
movement variations, locations, and viewpoints compared to
S1 to S3 or S4 to S5. For each of the test subjects, we collect
data for the eleven activities each for around 7.8 minutes,
reaching a total of 46.9 minutes. In order to capture the
temporal dependencies, a sliding window of 3 seconds with
a sliding rate of 1 second is used on collected and processed
data files to obtain 5 basic data units of the same length of 3
seconds. The 1-second sliding factor is chosen to create more
diversity within the collected data since activities can change
moderately in this time window. In the end, we obtain a total of
99 minutes of training-ready data (9 minutes for each activity)
for both Kinect and RF data. Test data are separate from
training data and are dynamic in different testing scenarios.

C. Quality of synthesized RF data

We first examine the quality of RF-AIGC generated data.
The Structural Similarity Index (SSIM) [46] has been used
in computer vision to evaluate the brightness, contrast, and
structural quality of reconstructed images. Since SSIM uses
the structural index to measure not only the mean intensity and
standard deviation, but also the specifics and overall pattern
of features inside a picture, it has also been acknowledged as
a valuable metric for assessing how similar the synthesized
data is to the real data. Similar to how the structural index is
naturally suited for locating the key features across all pixels
in an image, it can also be used to analyze the pattern of
movement features across time frames and RF features. For
real data x and synthesized data x′, SSIM is defined as

SSIM(x, x′) ,
(2µxµx′ + C1)(2σxx′ + C2)

(µ2
x + µ2

x′ + C1)(σ2
x + σ2

x′ + C2)
, (10)

where µx and µx′ denote the mean intensity, and σx and σx′

the standard deviation of real and synthesized data, respec-
tively, and σxx′ is their covariance. C1 and C2 are constants.
SSIM takes a value between 0 and 1. A value of 1 indicates
full structural similarity between real and synthesized data.

As can be seen in Fig. 5, for a specific activity of boxing,
the RF-AIGC synthesized RF data visually conforms to the
ground truth RF data in terms of sharpness, contrast, and
brightness to a large extent across all the four RF platforms.
Furthermore, we utilize SSIM score to measure the quality of
our synthesized RF data compared to our collected ground
truth RF data. SSIM score involves the product of three
measurement metrics including luminance, contrast, and struc-
ture. Luminance and contrast seamlessly grasp how similar
the values learned by RF-AIGC are to the ground truth RF
data in terms of mean and variance. The structure index,
by utilizing covariance, measures how well our RF-AIGC
network learns the short-time delicate movement details and
long-time frequency patterns of the collected ground truth RF
data. The SSIM map shown in Fig. 5, where each pixel is
evaluated with a score (yellow denotes high similarity, and
blue for low similarity), visually and quantitatively confirms
the quality of these synthesized samples.

As shown in Table I, our proposed RF-AIGC system is
able to achieve satisfactory SSIM scores across all the four

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3482256

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Auburn University. Downloaded on October 21,2024 at 19:16:26 UTC from IEEE Xplore.  Restrictions apply. 



9

Figure 5. Demonstration of real RF signal examples, the corresponding
synthesized RF signal examples, and SSIM score maps that specifically show
how well the synthesized RF data match the real RF data.

Table I
SSIM SCORES ACHIEVED BY RF-AIGC FOR THE FOUR RF PLATFORMS

RF Platforms SSIM Score ↓ SSIM Structure Score ↓

RFID 0.8995 0.9310
5G WiFi 0.8363 0.8675

FMCW Radar 0.8282 0.8563
2.4G WiFi 0.7473 0.7718

RF platforms. The RFID Platform achieves a high score close
to 90% and a high structure score of 93.1%. 5G WiFi and
FMCW radar platforms have similar scores, with 5G WiFi
being slightly better. 2.4G WiFi, however, has a relatively
lower score albeit visually still quite competitive in sharpness
and brightness. This is because the 2.4 GHz WiFi has a
larger coverage and is more susceptible to interference and
movements in the surroundings.

In our RF-AIGC, PoseMod allows users to precisely control
and modify many factors of the pose data, and TGNP to
introduce Gaussian noises to the pose data. As a result,
in addition to performing exceptionally well at generating
homogeneous data that is similar to the training set (which
results in high SSIM scores), our model also produces high-
quality RF data with considerable diversity, which is necessary
to train a strong model. Since SSIM is not adequate to capture
such diversity, we employ the Frechet Inception Distance
(FID) [47] to assess how close the distributions of generated
and actual RF data are through the distance in the high
dimensional latent space between the feature vectors from both
parties. The lower the FID score, the higher the fidelity of the
generated RFID data as compared to the real data. We also
incorporate two additional metrics, termed diversity and multi-
modality, to measure the inter-activity-class and intra-activity-
class variance within generated and real RF data. Contrary to
FID, the higher the metric value, the stronger the diversity and
multimodality. FID, diversity, and multimodality, together as a
holistic metric system, can help to comprehensively quantify
the model performance on synthesizing RF data. The three
metrics are defined as:

FID = ‖µ− µ′‖22 + Tr(Σ + Σ′ − 2
√

Σ× Σ′) (11)

Diversity =
1

Sdiv

Sdiv∑
i=1

‖fi − f ′i‖2 (12)

Table II
COMPARISON OF FID, DIVERSITY, AND MUTLIMODALITY SCORES FOR

GENERATED AND REAL RF DATA

FID ↓ Diversity ↓ Multimodality ↓

PoseMod Synth. 58.128±0.103 10.843±0.266 9.008±0.317

TGNP Synth. 50.500±0.091 9.594±0.287 8.058±0.414

Sufficient Real 6.216±0.025 9.329±0.230 8.392±0.391

Limited Real 4.548±0.008 8.584±0.243 7.353±0.409

Table III
COMPARISON OF FID SCORES FOR SELECTED SYNTHESIZED ACTIVITY

CLASSES

Standing still Waving Walking boxing

35.293±0.034 31.564±0.041 44.698±0.096 70.344±0.113

Multimodality =
1

ZSmul

Z∑
z=1

Smul∑
i=1

∥∥fz,i − f ′z,i∥∥2 , (13)

where Σ and Σ′ denote the covariance matrices of the real and
generated feature vectors, respectively, µ and µ′ denote the
feature-wise means of the real and generated feature vectors,
respectively, and Tr(·) refers to the trace linear algebra oper-
ation. The feature vectors between the two distributions are
obtained by the inceptionv3 neural network model [48],
and fi and f ′i represents the feature vectors. For diversity,
we randomly select two subsets of samples of the same size
Sdiv , and calculate the variance of the RF data across all
activity classes. Sdiv is set to 200 in our experiments. For
multimodality, we choose a set of RF data with Z action types.
For each action z, we randomly sample two subsets with the
same size of Smul to calculate the diversity within each class.

The overall metrics for all activity classes are shown in
Table II. For fair comparison, each experiment is repeated
25 times, and a statistical interval with 95% confidence is
presented. Among the four metrics, FID is the most important
indicator in evaluating the overall performance of a model. A
better FID helps different downstream tasks tremendously, but
diversity and multimodality are also important especially when
FID is not optimal. The table shows that limited real data has
the lowest diversity and multimodality score, while sufficient
real data has great overall scores regarding a low fidelity, and
higher diversity and multimodality scores. Synthesized data
from either augmentation method have evidently lower fidelity
scores in exchange for better diversity and multimodality.
PoseMod offers more adaptability than TGNP, and poses
more challenges for GAN to synthesize, hence the lower
fidelity. There is still a non-negligible domain gap between
generated data and real data. Generally, better diversity and
multimodality mean better generalization. So with the cost of
using computers to generate a large amount of synthesized
data, the augmented dataset can achieve a performance on par
with sufficient real data. We randomly select 80 synthesized
RF data for four representing activity classes and demonstrate
their FID scores in Table III. For a simpler activity involving
only limb movements such as waving up and down, the FID is
relatively better, while complex activities involving four limbs
have worse FID scores.
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Figure 6. Pose estimation errors achieved by models trained on five different combination of real and synthesized data for different sensing methods.

D. Downstream task I: RF-Pose prediction

For 3D pose estimation task, the mean per joint position
error (MPJPE) for each time frame evaluates the distance
between the RF-predicted joint positions and the ground truth
after aligning the root joint. The precision indicates the fine-
grained RF features learned by our synthesized RF data, which
can be transformed into plausible 3D geometric structures.
To evaluate how PoseMod augmentation affect MPJPE, we
first perform testing on seen data classes during training (i.e.,
S1, S2, and S3) with five different combinations of training
data. From Fig 6, we can see that the RFID platform has the
best overall median estimation error across 4 RF platforms.
This can also be seen from the largest median error being
less than 50cm, while other platforms can be as large as
100cm, causing total joint displacements. The reason is that
there are a fair amount of outlier joints for the estimated
pose. The blue curve and red curve denote the limited real
model (S1, S2, and S3) and the sufficient real (S1, S2, S3, S4,
S5, and S6) model, respectively. They serve as baselines for
limited (5.62cm) and optimal (2.26cm) performance achieved
by real data only. The yellow and purple curves indicate
synthesized training models with increasing data. The green
curve highlights the superiority of our synthesized RF data in
that combined with only a limited amount of real data, the
augmented model achieves performance better than sufficient
real model, reaching 1.72cm. This is where diversity and

multimodality come into play since without PoseMod, median
error is 3.78cm even when there are only five types of
activities [8]. Fig. 7 shows that the position error for each
of the 11 joints of the augmented model is smaller than that
of the sufficient real model. It is important to note that for
synthesized model, satisfactory pose estimation performance is
achieved (6.08cm), but with flaws such as a lack of temporal
smoothness and sometimes, extreme outliers for some joint
positions. This is largely due to the domain gap between
synthetic and real data, as can be inferred from the FID score.

Because of the limited set up for 3D pose estimation (lack of
transcievers for an all-around scanning of the human body) for
the other three platforms, the baseline estimation performance
is suboptimal. However, it is evident that augmented models
are able to achieve performance boost (more than 20%) over
limited models for 5GWiFi-Pose and 2.4GWiFi-Pose. As for
the FMCW platform, the augmented model achieves a worse
median error than limited real model, but still excels overall
where the 90 percentile error is 15 cm, significantly better than
35.97cm from the limited model.

One of the main purposes of the proposed system is to
improve the pose estimation performance across seen skeletons
and activity types when there is only a limited number of
real data available, and the above results have validated this
design goal. However, the more impressive characteristics of
the system is to surgically augment desired data under different
scenarios. Activity classes and subject skeletons are the two
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Figure 7. A comparison of localization error for each of the 11 joints for the
activity type of walking between sufficient real and augmented model.

Figure 8. The advantages of augmentation illustrated via cross activities test-
ing (test the trained RF-Pose network on unseen activities) with a comparison
of CDF curves and bar graphs on 8 activity classes.

most important factors in pose estimation tasks, and the
experiments below can effectively showcase such advantages.
1) Cross-activity testing. When a model is specifically trained
on certain activities, it is possible that the model learns to
only reconstruct the similar activity classes, and might break
down when it comes to unseen activity classes during training.
In Fig. 8, we plot the CDF curves and bar graph results
of the two models trained with different training data. The
baseline model is trained with 5 classes of real activities,
and the augmented model is trained with both real activities
and 3 unseen classes of synthesized activities. There are
1.5 minutes of data in each real class, and 4.5 minutes in
each synthesized class. Section V-D has shown the abilities
of the pose augmentation techniques for elevating the pose
estimation through an extensive amount of synthesized data,
while the results here demonstrate that our data augmentation
can be quick and effective for improving the generalization
of pose estimation models on untrained activity classes with
a relatively lower cost of generating synthesized data. As the
CDF curve shows, the model performs worse when the activity
class is not seen during training. In the bar graph, unseen
activity classes can have errors higher than 10 cm, while none
of them estimated by augmented models reach higher than
10 cm, and it is clear that the augmented model achieves a
performance boost on each of the unseen activity classes.
2) Cross-skeleton testing. Subject skeletons play a crucial role
in RF-Pose estimation tasks. We conduct experiments using
four subjects to study how unseen skeletons affect the pose
estimation performance and how pose augmentation mitigates
the performance degradation. The training dataset is made up
of the homogeneous S1, S2, and S3 data, while one untrained
subject S4 is used for testing. The model trained on S1, S2, and
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Figure 9. The advantages of augmentation illustrated via cross-skeleton test-
ing (test the trained RFPose predictor on unseen subjects) with a comparison
of CDF curves across all activity classes.

S3 suffers greatly and only achieves a median error of 7.41cm.
Furthermore, even with the addition of a limited amount of real
data from S4, the median error of 4.72cm is still not optimal.
However, when we add 22 minutes of synthesized data of S4,
the model can attain a median error of 3.19cm, improving
considerably. We can see from Fig. 9 that the overall CDF is
worse than that of Fig 6 considering the less amount of data
we use. This experiment helps validate the cost-effectiveness
of our synthesized data on unseen test subjects.

Holistic results of pose augmentation on RF-Pose estima-
tion performance are shown in Fig. 10. The baseline results
(Limited and Sufficient real model) are shown in light blue
and red curves. When no augmentations are applied, median
errors of 5.62 cm and 2.26 cm are achieved by the limited
real and Sufficient real model, respectively. The failure of
limited real model is caused by overfitting over the small
number of training examples. The sufficient real model has
excellent performance at the cost of far more data collection
time. The augmented results improve as the number of TGNP
synthesized training examples increase, up to the saturation
of around 2.51 cm where adding more synthesized data
with different skeletons and iterations of temporal Gaussian
noises fail to further improve the classification results, and the
augmented results do not surpass the Sufficient real model.
The cyan and dark blue curves show that it takes the more
diverse PoseMod augmentation method and around 3 times
the amount of synthesized training data to achieve a superior
performance of 1.72cm all the way from 5.62cm. In [49],
the authors showed recent text-based generative models also
experience the same synthetic data efficiency problem.

E. Downstream task II: RF-HAC classifier

Our synthesized RF data can also be deployed effectively for
Human Activity Classification (HAC), as they consist of high-
quality differentiable features for distinct human activities.
The recognition accuracy indicates the correlation of the RF
sensing data and its activity class.
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Figure 10. CDF plots of model performance with the increase of training set
size and diversity

In this study, a custom 2D Convolutional Neural Network
(CNN) model is first utilized to extract salient features of the
RF data, and then a Bidirection LSTM network is employed
for the final human activities features classification. In the
feature extraction network, there are 4 Convolutional layers
with a filter size of 3 and the numbers of filters are 16, 32, 64,
and 1, respectively. All Convolutional layers use the “relu” ac-
tivation function. Convolutional layers 1-3 use “same” padding
whereas Convolutional layer 4 applies “valid” padding. The
Convolutional layer 2 is followed by a Maxpooling2D layer
with a pool size of 2, further followed by a dropout layer 0.5.
Every other Convolutional layer is tailed by only the dropout
layer. Convolutional layer 4 with a filter size of 1, along with
a reshape layer, is used for dimensionality reduction which
prepares the output for bi-directional LSTM networks. This is
because LSTM networks require the input to be 3 dimensional
with the format of samples, time steps, and features, while
the output of a typical 2D CNN network consists of an extra
dimension of channels. The LSTM classifier network has a
relatively simpler architecture where two LSTM layers work
in parallel to make up a bi-directional LSTM layer. In contrast
to the unmodified input that is fed into the first layer, the
input to the second layer is a reverse replica of the data. A
bi-directional LSTM layer can help capture the information
from both the future and the past. Both of the networks use
the Adam optimizer with a learning rate of 0.0001. The batch
size is set to 16. Dropout layers are important for preventing
the model from overfitting.

We find RFID is more resilient to environment interference.
Such advantages enable RFID data to have richer features of
human motions. Furthermore, more reliable human movement
features can be better conveyed through RFID tags attached
to the subjects joints than by other platforms, especially in
dynamic environments. Just as the RF-Pose predictor has
better performance on RFID data, RF-HAC achieves superior
classification performance on both accuracy and F1 score for
the RFID platform. For the RFID-based human activity feature
classifier, a simple dense layer with a softmax activation
function without bi-directional LSTM layers is capable of

Figure 11. RF-HAC training and validation performance across 250 epochs
with the RFID platform.

Figure 13. Synthesized model performance with 5-shot of real data per class

achieving high classification accuracy as well. The training
and validation performance can be found in Fig. 11, where
the augmented model (using 10.5 mins of real data and 99
mins of synthetic data) converges much faster than the limited
real model (using 10.5 mins of real data). For the limited
real model, the validation accuracy only reaches lower 50%
when the training accuracy is 84%. This is a serious overfitting
problem. The training curves perfectly explain why the limited
real model suffers when it comes to HAC. On the other hand,
even though the overfitting problem is still present, the gap
between the training and validation performance has reduced
significantly. There are 32 minutes of test data in total for the
6-class RF-HAC task. The test data are real data separately
collected from training data and belong to S1, S2, S3, S4, and
S5.

The confusion matrices are presented in Fig. 12. The
augmented model exhibits exceptional performance that is on
par with the sufficient real model regarding both Accuracy
and F1 score across the four platforms. However, it is worth
noting that the synthesized models fail to achieve a decent per-
formance on test data and have an overfitting problem. This is
largely due to the domain gap issue discussed in various works
using GAN-based synthesized data for augmentation [50],
which is evidenced by the low FID scores. We synthesize new
RF data using TGNP or PoseMod to obtain better diversity at
the cost of fidelity since we do not use one-to-one mapped RF
data from ground truth data. Sometimes, the synthesized model
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Figure 12. Confusion matrix of models with limited real, synthesized, sufficient real, and augmented data (limited real+PoseMod synthesized data), respectively
from left to right, and in the order of RFID, WiFi 5G, 2.4G, and FMCW platforms from top to bottom.
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Figure 14. F1 scores of the models trained with the progressive increase of
training dataset size and diversity

would collectively misclassify one particular class (walking)
as shown in the top row for RFID platform in Fig. 12, and

sometimes the model would have a considerable bias on one
or two classes shown in the second row for the FMCW
radar platform. The synthesized models still function well for
some of the classes. When the training and testing classes are
reduced to 3 classes, results of up to 85% can be achieved.

The synthesized model can be improved effectively with 5-
shots of real RF data which are easily to collect. The metrics
are raised to the upper 70% level as shown in Fig. 13, and
the overfitting problem is effectively alleviated where one
particular class is not dominantly recognized anymore. Despite
the inadequate performance of the synthesized model, the five-
shot classification is enabled on the basis of a large quantity
of diversely synthesized data, which further demonstrates the
benefits of our augmentation framework. RF-HAC requires
less synthesized data than RF-Pose due to the reduced dif-
ficulty of the task from pose tracking to classification.

Fig. 14 shows a comparison of the F1 scores of the RF-HAC
classifier models at different scales of augmented training
samples and diversity across training epochs. Light blue and
red curves are again the baseline for limited and sufficient
model performance with real data. We find that adding more
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TGNP synthesized data improves F1 scores to a saturated
score of around 87%. Only with more diverse synthesized data
(PoseMod), and almost 3 times the amount of training data as
sufficient real data, can the augmented model truly achieve a
superior performance. This conforms to the synthesized data
efficiency as the performance of RF-Pose. When augmented
with 331.2 minutes of synthesized data, the F1 curve reaches
0.92. Compared with the limited real model, there is around
a 30% gain in F1 scores across almost all epochs. This
experiment validates that the proposed RF-AIGC system can
effectively improve the accuracy of CNN-based HAC.

VI. CONCLUSIONS

In this paper, we proposed an AIGC for RF sensing ap-
proach to address the challenge of lacking RF data, to enable
more free-form RF data generation. The proposed RF-AIGC
framework utilizes a recurrent GAN model conditioned on 3D
human pose data to generate RF sensing data. The high quality
and functionalities of the synthesized data by the proposed RF-
AIGC system were demonstrated through the metrics of SSIM,
FID, diversity, and multimodality, as well as two representative
downstream tasks. The proposed RF-AIGC system not only
achieved the generation of RF data with high quality and
diversity across four different RF sensing platforms, but also
significantly mitigated the prohibitive costs associated with
traditional RF data collection methods.
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