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Vital sign (e.g., respiration rate) monitoring has become increasingly more important because it offers useful clues about

medical conditions such as sleep disorders. There is a compelling need for technologies that enable contact-free and easy

deployment of vital sign monitoring over an extended period of time for healthcare. In this article, we present a SonarBeat

system to leverage a phase-based active sonar to monitor respiration rates with smartphones. We provide a sonar phase

analysis and discuss the technical challenges for respiration rate estimation utilizing an inaudible sound signal. Moreover,

we design and implement the SonarBeat system, with components including signal generation, data extraction, received

signal preprocessing, and breathing rate estimation with Android smartphones. Our extensive experimental results validate

the superior performance of SonarBeat in different indoor environment settings.
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1 INTRODUCTION

With the rapid development of mobile techniques and the growth in living standards, healthcare has become

one of the main application areas for the Internet of Things (IoT) [Wang et al. 2017a; Islam et al. 2015]. The

healthcare IoT architecture mainly consists of three layers: (1) the sensing layer for monitoring vital signals,

such as body temperature, heart rate, respiration rate, and blood pressure; (2) the gateway layer for collecting

data from the sensing layer and transmitting them to the third layer, the cloud layer [Cicalo et al. 2016]; and (3)

the cloud layer consisting of data centers in the cloud to store, process, and analyze multimodal medical datasets
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[Moon and Lee 2017; Müeller and Unay 2017; Baytas et al. 2016; Henriquez et al. 2017; Yuan et al. 2016] and

deliver the analysis results to medical centers. Particularly, the respiration signal is one of the key vital signs to

be collected in the first layer, which is indispensable for physical health monitoring, since such vital signals can

offer important information for personal health problems such as sudden infant death syndrome (SIDS) [Hunt

and Hauck 2006]. Traditional systems in the sensing layer require a person to wear special devices such as a

pulse oximeter [Shariati and Zahedi 2005] or a capnometer [Mogue and Rantala 1988] to monitor breathing

rates, which are not convenient for monitoring vital signals for elders and infants, and are hard to be used for an

extended period of time. Thus, technologies that can enable contact-free, easy deployment, and long-term vital

sign monitoring are highly desirable for healthcare provisioning.

Existing vital signal monitoring systems are mainly focused on radio frequency (RF)-based techniques, which

leverage RF signals to capture breathing and heart movements [Lubecke et al. 2000]. The existing techniques can

be classified into (1) radar-based and (2) WiFi-based approaches. Examples of radar-based vital sign monitor-

ing include Doppler radar [Droitcour et al. 2009; Nguyen et al. 2016; Lubecke et al. 2002; Droitcour et al. 2001],

ultra-wideband radar [Salmi and Molisch 2011], and frequency-modulated continuous wave (FMCW) radar [Adib

et al. 2015], all of which require a piece of customized hardware working on high frequency. Existing WiFi-based

techniques include UbiBreathe [Abdelnasser et al. 2015] and mmVital [Yang et al. 2016], which exploit the re-

ceived signal strength (RSS) of 2.4 GHz WiFi and 60 GHz millimeter wave (mmWave) signals (i.e., 802.11ad),

respectively. Liu et al. [2015a] employ the amplitude of WiFi channel state information (CSI) data to track vi-

tal signs for a sleeping person, while our prior works PhaseBeat Wang et al. [2017b], Wang et al. [2020] and

TensorBeat [Wang et al. 2017c] exploit the CSI phase difference data for vital sign monitoring for single and

multiple persons, respectively. Although RF-based techniques work over a relatively long distance, they could

be susceptible to environmental change, such as the movements of other persons nearby.

To this end, the smartphone can serve as an excellent platform for vial sign monitoring by exploiting its built-in

sensors, such as the accelerometer, gyroscope [Aly and Youssef 2016], and microphone [Ren et al. 2015]. Usually

the smartphone should be placed near the body, or the person needs to wear special types of sensors that connect

to the smartphone. The device-free and contact-free monitoring techniques aim to relieve the burden of attached

sensors. Nandakumar et al. [2015] propose to use an active sonar built into the smartphone by leveraging the

FMCW technique for respiration monitoring. The scheme is shown to work well, but the FMCW-based technique

requires an accurate estimation of the distance between the smartphone and the chest. When the body suddenly

moves (e.g., rolling over in bed), the system needs to detect the new smartphone-chest distance, thus leading to a

large time complexity. Alternatively, the Low-Latency Acoustic Phase (LLAP) system employs continuous-wave

(CW) radar to measure distance and achieves device-free hand tracking using sonar phase information [Wang

et al. 2016], while Nandakumar et al. [2016] use the phase of acoustic orthogonal frequency-division multiplexing

(OFDM) signals for finger tracking.

Motivated by these interesting studies, we employ sonar phase data with a smartphone implementation to

monitor the periodic signal caused by the rises and falls of the chest (i.e., inhaling and exhaling). We find that

the sonar phase information can effectively track the periodic signal of the breathing rate with high accuracy.

Compared with other existing systems such as Doppler shift and FMCW [Nandakumar et al. 2015], the sonar

phase-based scheme has a lower latency and complexity. In addition, the sonar phase data is highly robust to

different orientations, distances, and respiration rates of different persons.

Specifically, we first present a rigorous sonar phase analysis, which proves that the sonar phase information

can accurately capture the respiration rate with the same frequency. Built upon analysis, we design SonarBeat,

a smartphone-based active Sonar phase for Breathing rate monitoring system. The name also indicates the

SonarBeat design on detecting the periodic chest movements (like heartbeat) for respiration rate estimation.

The SonarBeat system consists of four modules, including signal generation, data extraction, received signal

preprocessing, and breathing rate estimation. First, it transmits an inaudible sound signal in the frequency range

of 18 to 22 KHz from the smartphone speaker, which serves as a CW radar. Then, the reflected signal from the
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chest of the monitored subject is received by the microphone of the same smartphone. The received signal is

then calibrated and the breathing signal will be recovered. We implement SonarBeat with an Android smartphone

and validate its performance with extensive experiments that involve five persons over a period of 3 months in

three different environments, including an office scenario, a bedroom scenario, and a movie theater scenario.

The experimental results show that SonarBeat can achieve a low estimation error for breathing rate estimation,

with a medium error of 0.2 breaths per minute (bpm) in most experiments. We also find that SonarBeat is highly

robust to different experimental parameters and settings.

The main contributions of this article are as follows:

—Through analysis and experiments, we validate the feasibility of leveraging the active sonar phase infor-

mation for breathing rate estimation. To the best of our knowledge, this is the first work to employ active

sonar phase information for breathing monitoring with smartphones.

—We design SonarBeat based on the analysis and address the technical challenges in using the active sonar

phase. We implement several signal processing algorithms, including signal generation, data extraction,

received signal preprocessing, and breathing rate estimation. Specially, we propose an adaptive median

filter approach to remove the static vector in the received signal, which allows to effectively extract the

inaudible phase information.

—We prototype the SonarBeat system with Android smartphones and validate its superior performance

by comparing it with an existing scheme in three different indoor scenarios. Our extensive experimental

results demonstrate the superior performance of SonarBeat under different environmental factors and

different experimental parameters.

In the remainder of this article, Section 2 reviews related work. Then, we present the sonar phase analysis and

technical challenges in Section 3. We describe the SonarBeat design in Section 4 and validate its performance in

Section 5. Section 6 concludes this article.

2 RELATED WORK

The work is related to the prior works on sensing systems and mobile health systems based on audible signals

with smartphones. We review the key related works in this section.

Mobile sensing systems with audible signals have attracted great attention [Li et al. 2017; Stowell et al. 2015].

Such systems are increasingly convenient for people’s lives and healthcare. In the meantime, by using mobile

audible sensing systems with smartphones, people do not need to pay extra money for new devices. Tradition-

ally, mobile audible sensing systems can be classified into two categories, including passive and active sensing

systems. First, the passive audible sensing systems mainly focus on how to leverage the microphone to sense and

recognize the surround audible signal [Fu et al. 2015]. The work on AAmouse leverages an inaudible sound pulse

at different frequencies to transform a mobile device into a mouse by exploiting the Doppler shift, speed, and

distance estimation [Yun et al. 2015]. Moreover, the CAT system implements a distributed FMCW for tracking

devices, such as Virtual Reality/Augmented Reality (VR/AR) headsets. This work mainly is focused on synchro-

nizing two smartphones and using the microphone as a mouse, which can interact with VR/AR headsets for

more accurate localization [Mao et al. 2016]. In addition, an audible-based sensing technique is used for wireless

a virtual keyboard with smartphones. Keystroke snooping [Liu et al. 2015b] and Ubik systems [Wang et al. 2014]

can obtain the sound signal with a smartphone’s single or dual microphones and leverage the time-difference-

of-arrival (TDOA) measurements to monitor finger strokes on the table. Then, the strokes are transformed into

related alphabets in the same position as a computer keyboard. SilentWhistle is a lightweight indoor localiza-

tion system using acoustic sensing for obtaining users’ locations [Qiu and Mutka 2017]. Another work, Dhwani,

builds an acoustics-based NFC system with smartphones, using a technology called JamSecure. It can provide a
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secure communication channel between devices, which is an OFDM channel for audible signals [Nandakumar

et al. 2013].

On the other hand, active inaudible sensing systems transfer a smartphone to an active sonar using ultrasonic

sound waves at 18 KHz to 22 KHz, which is closely related to the proposed SonarBeat system [Nandakumar

and Gollakota 2017]. OFDM-based sensing systems such as FingerIO can track the finger movement in a 2-D

domain through tracking echoes from the finger that are received by the microphone to measure the finger

position [Nandakumar et al. 2016]. BatMapper employs an acoustic sensing-based system for fast and accurate

floor plan construction using commodity smartphones [Zhou et al. 2017]. Moreover, LLAP leverages the principle

of CW radar to measure distance and implement device-free hand tracking [Wang et al. 2016]. This work is closely

related to SonarBeat, because both systems use the phase-based CW signal to sense movements. The difference

between the two systems is that SonarBeat is more robust to different environments with the adaptive median

filter technique. On the other hand, the AudioGest system employs a pair of built-in speakers and microphones

to send inaudible sound and leverage the echoes to sense the hand movement [Ruan et al. 2016]. Our SonarBeat

system is motivated by the active inaudible acoustic sensing systems and transforms a smartphone into active

sonar with ultrasonic sound waves.

Mobile health applications and research have become an important part of the IoT [Dimoulas 2016]. Smart-

phones and other wearable devices can provide people with a more convenient way to monitor their health

conditions without the need for professional equipment [Bernal et al. 2017]. The work on Burnout leverages

accelerometers to sense skeletal muscle vibrations, which does not require one to wear a suit embedded with

sensors [Mokaya et al. 2016]. Yang et al. [2017] propose to capture the depth video of a human subject with

Kinect 2.0 to monitor heart rate and rhythm. Moreover, wearable devices for monitoring exercise and body are

widely available. For example, the FEMO system achieves an integrated free-weight exercise monitoring service

with RFID tags on the dumbbells and leverages the Doppler shift for recognition and assessment of free-weight

exercise [Mokaya et al. 2016]. For vital signal monitoring, fine-grained sleep monitoring using a microphone in

the earphone can record human breathing sounds to monitor people’s heath signals when they are sleeping [Ren

et al. 2015], which adopts a passive audible method. The Apnea system uses an active sonar with smartphone to

monitor the breathing signal [Nandakumar et al. 2015]. This work leverages the FMCW technique for respiration

signal monitoring, which requires the system to estimate the distance between the smartphone and the chest of

the subject.

3 SONAR PHASE ANALYSIS AND TECHNICAL CHALLENGES

3.1 Sonar Phase Analysis

We propose to use smartphones to monitor respiration signals by utilizing an inaudible sound signal, where

the speaker and microphone of the smartphone emulate an active sonar system. In particular, the speaker

transmits an inaudible sound signal in the frequency range of 18 to 22 KHz, in the form of a CW signal as

C (t ) = A cos(2π f t ), where A is the amplitude and f is the frequency of the sound. Then the signal is reflected

by the chest of the test subject and received by the microphone. One unique advantage of the smartphone-based

design is that, because the speaker and microphone use the same frequency, there are no carrier frequency offset

(CFO) errors between the sender and receiver. Thus, we can exploit the phase of the received inaudible signal to

accurately estimate the vital sign.

In communications theory, a modulated signal S (t ) can be written as S (t ) = I × cos(2π f t ) +Q × sin(2π f t ),
where I is the In-phase Component and Q is the Quadrature component. A demodulator can be used to recover

the I and Q functions, which are then used to recover the baseband signal. To extract the phase of the CW signal,

we need to design a coherent detector to down-convert the received sound signal R (t ) to the I-component and

Q-component of a baseband signal in Figure 1. The I-component and Q-component of the baseband signal can

represent a complex vector, which can be used to obtain the amplitude and phase information of the baseband
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Fig. 1. I/Q demodulation for the received signal.

signal. For the SonarBeat system, we mainly exploit the phase information extracted from the I-component and

Q-component of the baseband signal, thus capturing the period signal caused by the movement of the chest

such as inhaling and exhaling. The SonarBeat design is to first split the received sound signal into two identical

copies. Then, these two copies are multiplied with the transmitted signalC (t ) = A cos(2π f t ) and its phase-shifted

versionC ′(t ) = −A sin(2π f t ). Finally, the corresponding In-phase and Quadrature signals are obtained by using

a low-pass filter (LPF) to remove the high-frequency components.

We first present a simple analysis for the ideal case that there is no multipath effect (or, for the high signal-to-

noise (SNR) regime, where the line-of-sight (LOS) component is the dominant part of the received signal). Under

this assumption, the inaudible signal travels through a single path (i.e., from the speaker to the chest and then

back to the microphone) and the propagation delay can be modeled as

d (t ) = (D0 + D cos(2π fbt ))/c, (1)

where D0 is the constant distance of the reflected path; D and fb are the amplitude and frequency of the chest

movements, respectively; and c is the speed of sound. The received inaudible signal from this path can be modeled

as R (t ) = Ar cos (2π f t − 2π f d (t ) − θ ), whereAr is the amplitude of the received inaudible signal and θ is a con-

stant phase offset due to the delay in audio recording and playing. To estimate the phase of the inaudible signal,

we need to remove the high-frequency components. Multiplying the received signal with C (t ) = A cos(2π f t ),
we have

Ar cos(2π f t − 2π f d (t ) − θ ) ×A cos(2π f t ) (2)

=
ArA

2
(cos (4π f t − 2π f d (t ) − θ ) + cos(−2π f d (t ) − θ )).

The first term in Equation (2) has a high frequency of 2f , which can be removed with a properly designed

low-pass filter. Thus, the I-component of the baseband is extracted as I = Ar A
2 cos (−2π f d (t ) − θ ). With a sim-

ilar approach (i.e., multiplying by C ′(t ) and removing the high-frequency component), we can estimate the Q-

component of the baseband signal asQ = Ar A
2 sin (−2π f d (t ) − θ ). We then demodulate the phase of the inaudible

signal data as

φ (t ) = arctan(Q/I ) = −2π f d (t ) − θ
= −2π f (D0 + D cos(2π fbt ))/c − θ . (3)

Note the phase signal φ (t ) has the same frequency as the respiration signal. In the general case, the received

inaudible signal is a complex signal, which includes a static component and a dynamic component due to the

multipath effect in indoor environments. For example, Figure 2 shows complex I/Q traces for the received audio

signal, with the static vector and dynamic vector in the I-Q plane. To track the breathing rates, we need to

demodulate the phase from the I/Q components by removing the static vector. Figure 3 shows the complex I/Q
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Fig. 2. Complex I/Q traces of the received audio signal.

Fig. 3. Complex I/Q traces of the received audio signal after removing the static vector effect.

traces of the received audio signal after removing the static vector. It is noticed that the demodulated phase is a

good indicator of the breathing-caused chest movements.

3.2 Technical Challenges

3.2.1 Mitigate the Static Vector Effect. The main challenge for respiration monitoring with phase-modulated

data is to mitigate the static vector effect, which directly influences the sensitivity and correctness of the phase

data. The larger the stationary component, the larger the error in the extracted phase data. This is because the

SNR at the receiver will become low when there is a large static component, making it hard to demodulate

the phase data. Wang et al. [2016] adopt the local extreme value detection (LEVD) to remove the stationary

components for hand tracking. However, this method may not be effective for respiration monitoring, because

the LEVD method needs to set an empirical threshold for each different environment. In this article, we propose

an adaptive median filter method to deal with this challenge, which is shown to be effective for removing the

stationary component in different scenarios.

3.2.2 Adapt to Body Movements and Environment Noise. The second challenge for tracking breathing signals

is adapting to body movements and environment noise. Body movement is unavoidable in the monitoring phase

ACM Transactions on Computing for Healthcare, Vol. 2, No. 2, Article 15. Publication date: February 2021.
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Fig. 4. Illustration of adapting to body movements by eliminating the static vector.

(e.g., during sleep), and its impact should be mitigated. The FMCW-based scheme in Nandakumar et al. [2015]

requires estimating the distance between the smartphone and chest before respiration monitoring. When the

body suddenly moves, the system needs to seek the new distance, thus leading to large time complexity. The

proposed sonar phase-based approach is effective in adapting to body movements. For example, Figure 4 illus-

trates the idea of adapting to body movements by eliminating the static vector in SonarBeat. When there is an

unexpected small body movement, the magnitude of the breathing signal becomes larger, leading to a smaller

SNR. After eliminating the static vector, we can mitigate the effect of body movement and still obtain a neat

respiration signal, as shown in the lower part of Figure 4.

Furthermore, consider the case of multiple persons in the testing environment. Not only do their movements

cause interference to the reflected respiration signal, but also the background noise could be high (e.g., when

they are talking). We employ coherent I/Q demodulation in SonarBeat to remove the environment noise from

external audio sources.

3.2.3 Real-Time Monitoring with Lower Delay. For a vital sign monitoring system to be really useful, it should

work in real time, with good interactions with the user. Real-time monitoring is challenging since most smart-

phones have a high sampling rate of 48 KHz, which leads to 96,000 multiplication operations per second for the

coherent detector to down-convert the received sound signal to the baseband. To address this challenge, we per-

form down-sampling for I/Q demodulation, which can reduce the computation complexity while still capturing

the breathing rate.

For better interaction with the user, SonarBeat operates in three stages. In the first stage of 15 seconds, it

performs respiration monitoring in real time without FFT-based breathing rate estimation. In the second stage

of 15 seconds, SonarBeat analyzes the data collected in a 15-second sliding window to extract the respiration

signal and plots the respiration signal on the screen to give the user some preliminary testing results. In the final

stage, after 30 seconds, SonarBeat applies FFT to all the captured phase data to achieve an accurate breathing

rate estimation.

4 THE SONARBEAT SYSTEM

4.1 SonarBeat System Architecture

According to the sonar phase analysis, SonarBeat can effectively exploit sonar phase information to monitor

respiration signals. First, the phase information can track the periodic breathing rates with high accuracy, and

the phase information is sensitive to the small breathing-induced chest movements. Second, compared with

other traditional methods, such as Doppler shift and FMCW [Adib et al. 2015], the phase-based approach has a

lower latency and complexity. Finally, the sonar phase data is robust to different orientations, different distances,
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Fig. 5. The SonarBeat system architecture.

different cloth thicknesses, and different breathing rates of different persons. It is also robust to large body

movements, which only leads to a change of the stationary component of the phase data, which can be effectively

removed with the proposed adaptive median filter method.

Figure 5 presents the SonarBeat system architecture, which includes four basic modules: (1) Signal Generation,

(2) Data Extraction, (3) Received Signal Preprocessing, and (4) Breathing Rate Estimation. The Signal Genera-

tion module mainly implements a Pulse-code Modulation (PCM) of the inaudible signal, where a CW signal at

18 KHz to 22 KHz is generated and modulated with the PCM technique. The Data Extraction module is to detect

the audio signal, which employs a Short-Time Fourier transform (STFT) for audio signal detection. A threshold-

based method is proposed for detecting the beginning part of the received inaudible signal. The Received Signal

Preprocessing module consists of (1) I/Q demodulation, which implements down-sampling followed by a coherent

phase detector; (2) static vector effect reduction, which implements the proposed adaptive median filter method

to remove the static vector of the In-phase and Quadrature signals; (3) phase extraction, where the sonar phase

information is extracted and calibrated; and (4) data calibration, where a median filter is applied as a simple

Low-Pass finite impulse response (FIR) filter to remove noise. The Breathing Rate Estimation module employs an

FFT-based method to estimate the breathing rate.

4.2 Signal Generation

The signal generation module uses one speaker of the smartphone as the transmitter, to produce the inaudible

signal. We implement the signal generation module as a PCM-based modulator on the Android platform. Specif-

ically, the speaker generates an inaudible sound signal in the frequency range of 18 to 22 KHz in the form of a

CW signal, that is, C (t ) = A cos(2π f t ). We produce the sampled analogy signal and then use PCM to digitally

represent the sampled CW signal. To generate a PCM stream, the amplitude of the analog CW signal is sampled
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Fig. 6. STFT-based method for audio signal detection.

at uniform intervals, where each sampled value is quantized. The PCM-based inaudible signal modulation is

implemented with the AudioTrack class.

4.3 Data Extraction

We use the speaker of the smartphone to transmit the CW inaudible signal at 18 kHz to 22 kHz, which does

not contain any user information (just a cosine wave). The microphone of the smartphone is used to receive the

inaudible signal reflected from the chest with a sampling rate of 48 KHz. The microphone may also record other

signals at different frequencies from the surrounding environment. Although the human voice and other audible

sounds are both captured by the microphone in the raw acoustic signal, these audible signals are considered

as noise and filtered out by the low-pass filters as illustrated in Figure 1. Thus, the privacy of the user is well

protected because no audible sound is recorded by the system. We implement an audio signal detection method

to identify the beginning of the desired signal as follows.

The proposed audio signal detection method is based on STFT. At the beginning of the signal, there will be a

drastic increase of power at the carrier frequency. A threshold-based method is used to detect the beginning of

the inaudible signal. Figure 6 illustrates the STFT-based method for audio signal detection, where the carrier fre-

quency is 20 KHz. We can see that before 0.25 seconds, the microphone only receives audio frequencies from the

surrounding environment. After 0.25 seconds, the microphone detects the inaudible signal, since the magnitude

of the 20 KHz spectrum becomes much stronger than other audio frequencies (see the bright yellow, horizontal

strip at 20 KHz). We adopt a window size of 512 in STFT for estimating the spectrum. Moreover, we set a thresh-

old of 200 for the power change to detect the beginning of the inaudible signal. In fact, if we detect the power

change with the threshold method, the beginning of the inaudible signal can be set as the end of the STFT chirp.

4.4 Received Signal Preprocessing

We describe the four components of the Received Signal Preprocessing module in this section, including I/Q

Demodulation, Static Vector Effect Reduction, Phase Extraction, and Data Calibration.

4.4.1 I/Q Demodulation. Before I/Q Demodulation, we need to down-sample the received signal R (t ) =
Ar cos(2π f t − 2π f d (t ) − θ ) for reducing computation complexity, which is necessary for real-time monitor-

ing. The original system with sampling frequency of 48 KHz is reduced to 480 Hz with a down-sampling ratio
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Fig. 7. The adaptive median filter for removing the static vector in the baseband I-component.

Fig. 8. The adaptive median filter for removing the static vector in the baseband Q-component.

of 100. Then, we implement the I/Q demodulation to obtain the I-component and Q-component of the baseband

signal using a coherent detector. The design is to split the received audio signal into two identical copies. Due

to the down-sampling ratio of 100, these two copies should be multiplied with the signal A cos(2π
f

100t ) and its

phase-shifted version −A sin(2π
f

100t ) to obtain the I-component and Q-component of the baseband signal, re-

spectively. Because we use phase modulation for breathing monitoring, down-sampling only reduces the number

of samples of the amplitude of the breathing signal, rather than the phase information.

Finally, an LPF is employed to obtain the corresponding In-phase and Quadrature signals, which has a cutoff

frequency of 1 Hz, a sampling rate of 480 Hz, and a resonance of 2. This setting has been shown to be effective

for removing the high-frequency components and environment noises. In Figures 7 and 8, we plot the raw I-

component and Q-component of the baseband signal, respectively, after the LPF (the dashed curves), which,

however, still include their static vectors.

4.4.2 Static Vector Effect Reduction. As discussed, the performance of SonarBeat largely depends on how the

effect of the static vector is mitigated in multipath environments. This is because usually the static vector is much

stronger than the dynamic vector that represents the small chest movements. It is difficult to detect the weak
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ALGORITHM 1: The Adaptive Median Filter Method

1 Input: One baseband signal component: X (n), n = 0, 1, . . . ,N − 1, and the window size w ;

2 Output: The baseband signal component with static vector removed: O (n), n = 0, 1, . . . ,N − 1;

3 //Initialization

4 nw : number of windows;

5 r : number of remaining elements of X (n), which cannot form a full window of size w ;

6 W [1, 2, . . . ,w]: sublists with window size w ;

7 R[1, 2, . . . , r ]: sublist with the remaining r elements;

8 //Find the median for each window

9 for i = 0 : nw do

10 if ((i + 1) ∗w ) <= N then

11 W [1, 2, . . . ,w]← X ((w ∗ i ) to ((i + 1) ∗w − 1));

12 M ← the median ofW [1, 2, . . . ,w];

13 for j = w ∗ i : (i + 1) ∗w do

14 O (j ) = X (j ) −M ;

15 end

16 end

17 else if r � 0 then

18 R[1, 2, . . . , r ]← X ((w ∗ i ) to (w ∗ i + r − 1));

19 M ← the median of R[1, 2, . . . , r ];

20 for j = w ∗ i : (i + 1) ∗w do

21 O (j ) = R (j ) −M ;

22 end

23 end

24 end

25 Return O (n), n = 0, 1, . . . ,N − 1;

breathing signal if we directly use the received sound signal. Recently, there were two methods proposed for static

vector effect mitigation. The Dual-Differential Background Removal approach is used for hand tracking with

60 GHz mmWave signals [Wei and Zhang 2015]. The method is susceptible to environment noise and has large

latency, which is not effective for real-time respiration monitoring. The second scheme, termed Local Extreme

Value Detection (LEVD) [Wang et al. 2016], was also developed for tracking hand movements. The method

requires an empirical threshold for detecting the static vector, which is not robust for different environments

and different test subjects.

In Algorithm 1, we present an adaptive median filter method for removing the static vector, which has a low

latency and is robust to different environments. The idea is to use a window to obtain the median for estimating

the static vector. The only parameter is window sizew , which is robust for different environments. For baseband

signal component I (n) or Q (n), n = 0, 1, . . . ,N − 1, we partition it into multiple non-overlapping sublists, each

denoted byW [1, 2, . . . ,w]) with window sizew , and a single sublist R[1, 2, . . . , r ] with window size r < w , where

r is the number of remaining elements of I (n) or Q (n) not included in the previous W sublists. The sublists

W [1, 2, . . . ,w] and sublist R[1, 2, . . . , r ] are used to estimate the medians for the first nw − 1 windows and the

last window, respectively, where nw = �N /w�. Finally, the outputO (n), n = 0, 1, . . . ,N − 1, can be obtained as in

Steps 14 and 21 by removing the static vector. The proposed method is simple and robust for real-time processing

of received data in different environments with a low delay.

Figure 7 and Figure 8 illustrate how the adaptive median filter method removes the static vectors in the base-

band signal components. We can see that the estimated static vector can represent well the average amplitude
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Fig. 9. Respiration curve for phase data with removing static vector effect.

information of the baseband signal components. After the adaptive median filter, the components I and Q are

roughly centered at zero; the improved SNR makes it easier for extracting the breathing signals they carry.

4.4.3 Phase Extraction. After removing the static vector, we next extract the phase data in the I-Q plane,

which only includes the dynamic breathing component. Let OI (t ) and OQ (t ) denote the outputs of Algorithm 1.

The phase of the inaudible signal can be computed with Equation (3), that is:

φ (t ) = arctan

(
OQ (t )

OI (t )

)
. (4)

With Equations (3) and (4), we find the phase value φ (t ) for the respiration signal reflected from the chest.

Although the reflected respiration signal may still have multipath components, these multipath signals have the

same breathing frequency but with different phase shifts, each of which is a constant. Thus, the breathing rate

will not be affected by the dynamic multipath effect. This is different from hand tracking, which requires only

one path from the smartphone and the hand. Thus, our SonarBeat can estimate the breathing rate using a single

subcarrier rather than multiple subcarriers.

Figure 9 presents the respiration curve obtained from the phase data with static vectors removed. It is noticed

that the magnitude of the breathing signal is large, which is periodic if we can remove the sudden phase changes.

Thus, we need to implement a data calibration scheme for the demodulated phase data with better periodicity.

4.4.4 Data Calibration. We implement a phase unwrapping scheme for recovering the correct phase values,

as well as a median filter for reducing the environment noise. To estimate breathing rates, we need to obtain the

right breathing curve for phase data. Because the phase value will have a change of 2π for every wavelength

distance, we implement a phase unwrapping scheme to process the demodulated phase data.

Figure 10 shows the respiration curve obtained from the phase data after phase unwrapping. It is a clear

breathing signal, but still with smaller environment noises. Moreover, we adopt the median filter method to

remove the environment noise, where the filter window size is set to 300. Figure 11 presents the respiration

curve for the unwrapped phase data after the median filter, which is next used for accurate breathing rate

estimation.

4.5 Breathing Rate Estimation

SonarBeat operates in three stages for breathing monitoring, for better interactions with the user. In the first

stage of 15 seconds, we cannot effectively estimate the breathing rate but just record the extracted respiration
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Fig. 10. Respiration curve for phase data after unwrapping the phase data.

Fig. 11. Respiration curve for unwrapped phase data after the median filter method.

signal, because the phase data in a window can continually change when new data arrive. In the second stage

of 15 seconds, we analyze the collected phase data in a 15-second sliding window to extract the breathing signal

and plot it on the smartphone screen. In the final stage, after 30 seconds, we use all the collected phase data for

breathing rate estimation with FFT, which can achieve a higher estimation accuracy (since more data is available

now). In fact, the frequency resolution depends on the window size of FFT. If the window size becomes larger, the

estimation accuracy will be higher, but a larger window size also leads to a lower time domain resolution. Thus,

for online breathing rate estimation, we use the same window size as that of the STFT-based method. It balances

the tradeoff between the frequency domain resolution and the time domain resolution. Figure 12 illustrates the

FFT-based respiration rate estimation. We can see that the estimated breathing frequency is 0.23 Hz, which is

approximately the same as the true breathing rate measured by the NEULOG Respiration Monitor Belt Logger

Sensor during the experiment. In our experiments, no thoracic breathing (i.e., breath performed only by the chest

when the abdomen does not move) is involved, so the abdomen movement captured by the NEULOG belt can

be used as accurate ground truth in the system evaluation.
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Fig. 12. Respiration rate estimation based on FFT.

Table 1. Participant Characterization

Subject Index Gender Age BMI

Subject 1 Male 31 21

Subject 2 Male 28 26

Subject 3 Male 29 24

Subject 4 Male 28 24

Subject 5 Female 29 19

5 EXPERIMENTAL STUDY AND DISCUSSIONS

5.1 Experiment Configuration

We prototype the SonarBeat system on the Android platform in Java and the Android SDK, as a smartphone

app. The first edition of SonarBeat is implemented with the minimum version of Android 5.1.1 OS (API 21). So it

works with all the more recent Android systems such as Android 6.0 and Android 7.0. The app is evaluated with

Samsung Galaxy S6 and Samsung Galaxy S7 Edge smartphones. For respiration monitoring, we use one speaker

and one microphone to transmit and receive the inaudible audio data, respectively, while the microphone and

speaker are fixed at the bottom of the smartphone. Furthermore, we use the AudioTrack class to play inaudible

sound and the AudioRecord class to record sound. The buffer of the recording thread is set to 1,920 points with

a sampling rate of 48 KHz. Therefore, we set the real-time signal processing unit to 1,920 points, which is about

40 ms.

We conduct extensive experiments using SonarBeat with five persons over a period of 3 months. The charac-

terization of all the subjects is presented in Table 1. The test scenarios include an office, a bedroom, and a movie

theater, as shown in Figures 13, 14, and 15, respectively. The office is a 4.5 × 8.8 m2 room, which is crowded

with tables and PCs, forming a complex propagation environment. In this office environment, we test SonarBeat

under different parameter settings. The second environment is a bedroom of 3.9 × 6 m2, where we test breathing

monitoring for a single person. The third setup is a movie theater of a large 27 × 40 m2 area, where many people

are watching a movie, with strong audio interference from the movie and other people. The office and bedroom

scenarios are implemented over longer periods with multiple times in different days as compared to the movie

cinema, which is tested in 1 hour for watching a movie. During these periods, multiple experiments are con-

ducted, each lasting for 30 seconds. In each experiment, the smartphone is either held in hand or placed on a

ACM Transactions on Computing for Healthcare, Vol. 2, No. 2, Article 15. Publication date: February 2021.



Smartphone Sonar-Based Contact-Free Respiration Rate Monitoring • 15:15

Fig. 13. Experimental setup in the office scenario.

Fig. 14. Experimental setup in the bedroom scenario.

Fig. 15. Experimental setup in the movie theater scenario.
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Fig. 16. The office experiment, where the NEULOG Respiration Monitor Belt Logger Sensor records the ground truth (shown

on the laptop screen).

Fig. 17. CDFs of estimation errors in breathing rate estimation.

desk, with the speaker and microphone facing the subject. Moreover, the proposed system mainly focuses on

estimating the breathing rate for a single person, where we consider other persons to have above 60 cm distance

away from the smartphone. For comparison purposes, we use the NEULOG Respiration Monitor Belt Logger

Sensor to record the ground truth of the breathing rate (see Figure 16).

For breathing rate estimation each time, we use all the collected data for breathing rate estimation with FFT

for 30 seconds. In each experiment, we measure the error in respiration rate in bpm by comparing to the ground

truth. Moreover, we use the cumulative distribution function (CDF) of breathing errors as the measurement

metric, which can be employed to account for the random factors in the measurement. We also consider the

mean estimation error as another evaluation metric for measuring the impact of various environmental factors

and the impact of various system parameters.

5.2 Performance of Breathing Rate Estimation

Figure 17 presents the CDFs of estimation errors in breathing rate estimation with SonarBeat. Besides, we also

compare our SonarBeat system with the LEVD-based system [Wang et al. 2016], where the LEVD method is used

for estimating the static vector and all other signal processing methods are the same as in SonarBeat. The figure
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Fig. 18. Mean estimation error for three different scenarios: office, bedroom, and movie theater.

shows that the median errors of SonarBeat and the LEVD-based method are 0.2 bpm and 0.3 bpm, respectively.

This illustrates that both systems can effectively estimate breathing rates. However, it is worth noting that for

SonarBeat, 95% of the test results are under 0.5 bpm, while only 60% of the test results with the LEVD-based

method are under 0.5 bpm. Moreover, the maximum estimation error of SonarBeat and the LEVD-based method

are 2.4 bpm and 5 bpm, respectively. This is because the LEVD-based method requires setting the empirical

threshold based on the standard deviation of the baseband signal in a static environment. It is not very robust in

varying environments where the same threshold will not work. However, the adaptive median filter method used

in SonarBeat is more robust to environmental interference, which leads to a higher and more stable breathing

rate estimation accuracy than the LEVD-based baseline scheme.

Figure 18 presents the mean estimation errors for the three different scenarios, which are 0.22 bpm, 0.11 bpm,

and 0.33 bpm for the office, bedroom, and movie theater scenarios, respectively. We plot the 95% confidence

intervals as error bars. The mean estimation error of the bedroom case is the minimum, because the bedroom

is a better environment, with smaller noise and no sound interference from other persons. This shows that

SonarBeat is suitable for breathing monitoring during sleeping, which helps to detect apnea or other sleeping

problems. For breathing monitoring in the office, the performance is worse than the bedroom. This is because

the propagation environment is more complex and there is interference from other people. Furthermore, higher

noises from computers, air conditioners, and other equipment in the lab also influence the received inaudible

signal. The movie theater test has the largest mean error and variance because of the more complex environment

and stronger noises. In fact, breathing monitoring in the theater is still quite accurate given the extremely adverse

environment. These experiments validate that SonarBeat is highly accurate and robust in different scenarios.

5.3 Impact of Various Environmental Factors

Figure 19 shows the impact of different persons in the office scenario. In the experiment, we test five persons

including three men and two women. The purpose is to show the impact of different subjects on the Sonar-

Beat performance. Each result in the figure is obtained with a different experiment. Every volunteer wears the

NEULOG Respiration unit to record the ground truth for breathing data. From Figure 19, we can see that Per-

sons 3 and 5 have a relatively lower mean error. This is because they work out quite often and have a stronger

respiration, leading to stronger breathing signals. On the other hand, the other three persons have weaker breath-

ing magnitudes, but their estimation errors are still under 0.5 bpm, which is acceptable. Thus, we can see that

SonarBeat is adaptive for different persons.
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Fig. 19. Breathing rate results for five different persons.

Fig. 20. Impact of different breathing rates.

Figure 20 shows the impact of different breathing rates in the office scenario, where the test subject controls

his or her breathing at slow, normal, and fast breathing rates, which are in the ranges from 6 bpm to 10 bpm,

13 bpm to 18 bpm, and above 30 bpm, respectively. It is noticed that with the increase of breathing rate, the mean

estimation error will be increased. The reason is that with a higher breathing rate, the stability of the breathing

signal becomes weaker. In other words, with fast breathing, the chest movements are more irregular, leading to

large variations in the captured breathing curve. Moreover, we adopt the FFT-based breathing estimation. When

there are multiple breathing frequencies embedded in the captured breathing signal, FFT does not produce good

frequency estimation. Nevertheless, SonarBeat can still effectively capture the different breathing rates with a

mean error of a little over 0.4 bpm in the fast breathing case.

Figure 21 illustrates the impact of the distance between the chest and the smartphone. When the distance is

increased, the accuracy of breathing estimation becomes lower. Particularly, we can see that for a distance of

55 cm, the mean estimation error becomes 1 bpm with a large variance. In this experiment, we find that the

ultrasound wave in 18 KHz to 22 KHz experiences a large attenuation, and the microphone will receive lower

power from the chest reflection if the distance is increased beyond 50 cm. Moreover, breathing rate estimation

with SonarBeat depends on I/Q demodulation. The magnitude of the I/Q components becomes weaker when the
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Fig. 21. Impact of the distance between the test subject and the smartphone.

Fig. 22. Breathing rate results when the smartphone is held in hand or put on a desk.

distance is increased, leading to higher errors. To improve the measurement coverage, we leverage the parameter

resonance of the low-pass filter to strengthen the amplitude of the inaudible signal near the cutoff frequency,

thus improving the magnitudes of the I/Q components. In the experiment, we set the cutoff frequency to 40 Hz

for a sampling rate of 48 KHz. We can see that under 50 cm, the proposed system can achieve very high accuracy.

The effective range of the system implies that both chest and abdomen can be effectively captured by the system,

as long as the smartphone is close to the upper body of the subject. Thus, SonarBeat can work well whenever

the subject is having abdominal breathing or thoracic breathing.

Figure 22 presents the breathing rate errors when the smartphone is held in hand or put on a desk. We find

the error is low in both cases, which is 0.22 bpm when the smartphone is held in hand and 0.16 bpm when it is

put on a desk. Moreover, the variance of breathing rate estimation errors with a handheld smartphone is larger.

This is because the small hand movements will affect the reflected signal. Although the small hand movements

do not influence the basic estimation accuracy, it still causes a larger variance of the estimation error. On the

other hand, because we use the adaptive median filter to effectively remove the static vector, the mean breathing

rate estimation results can be guaranteed for both cases.

ACM Transactions on Computing for Healthcare, Vol. 2, No. 2, Article 15. Publication date: February 2021.



15:20 • X. Wang et al.

Fig. 23. Impact of cloth thickness.

Fig. 24. Impact of user orientation relative to the smartphone.

Figure 23 shows the impact of cloth thickness. In the experiment, the test subject wears clothes of different

types and thicknesses. The distance between the user and the smartphone is kept between 10 cm and 15 cm. It is

noticed that, with the increase of cloth thickness, the mean error becomes larger. This is because the ultrasound

wave at 18 KHz to 22 KHz experiences larger attenuation when the clothes get thicker, which leads to a smaller

received breathing signal and a lower SNR. In fact, the maximum breathing estimation error is about 0.37 bpm

in this experiment, which is still acceptable.

Figure 24 shows the impact of chest orientation relative to the smartphone in the office scenario, where we

consider three cases of 0◦, 45◦, and 90◦. It is noticed that at 0◦ direction with the front orientation relative to the

smartphone, we can obtain the minimum mean estimation error, which is about 0.22 bpm. At the 90◦ direction,

the maximum mean estimation error becomes 0.39 bpm. The received inaudible signal is the strongest when the

person faces the smartphone speaker.

Figure 25 presents the impact of different poses, including sitting, standing, and sleeping, in the bedroom

scenario. For the sitting case, the smartphone is put on a desk and the distance between the smartphone and

the chest is about 15 cm. For the standing case, the person holds the smartphone at the same distance. For the

sleeping case, the person wearing a night-gown is lying in the bed, facing the smartphone on the desk at the

same distance. We can see that for the sitting and standing poses, the mean estimation errors are smaller than
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Fig. 25. Impact of different poses.

Fig. 26. Estimation error results with two different smartphone platforms.

that of the sleeping pose. This is because the strength of the received signal in the sleeping scenario is smaller

than that of the other two cases.

5.4 Impact of Various System Parameters

We evaluate the impact of various system parameters in this section. Figure 26 presents the estimation errors

with a Samsung Galaxy S6 with Android 6.0 and a Samsung Galaxy S7 Edge working with the latest version,

Android 7.0. The speaker and microphone are on the bottom of both smartphones. We can see that the Samsung

Galaxy S7 Edge has a similar performance as the Samsung Galaxy S6, with mean error of 0.21 bpm and 0.22 bpm,

respectively. We find that the Samsung Galaxy S7 Edge has stronger processing power, and thus it can obtain

better real-time performance than the Samsung Galaxy S6.

Figure 27 shows the impact of different frequencies for the CW signal, including 18 KHz, 20 KHz, and 22 KHz.

With the increase of frequency, the mean error also gets slightly larger. The maximum mean estimation error is

0.22 bpm, while the minimum mean estimation error is 0.17 bpm. This shows that SonarBeat is robust to different

frequencies. On the other hand, we also know that for ultrasound signals propagating in the same transmission

medium, the power attenuate becomes larger for higher signal frequencies, resulting in a smaller SNR for the

received breathing signal. Thus, the higher the frequency, the larger the mean breathing rate estimation error.
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Fig. 27. Impact of the frequency of the inaudible acoustic signal.

Fig. 28. Impact of different down-sampling rates.

Figure 28 shows the impact of different down-sampling rates. When the down-sampling rate is increased from

60 to 100, the mean breathing rate estimation error will be increased from 0.19 bpm to 0.23 bpm, a small increase.

Thus, we choose a down-sampling rate of 100 for SonarBeat. Because SonarBeat uses a sampling frequency

of 48 KHz, we can reduce it to 480 Hz by a down-sampling rate of 100. As shown before, the down-sampling

operation does not affect the breathing rate embedded in the phase-modulated signal. Thus, down-sampling the

I- and Q-components with a rate of 100 can not only reduce the computational complexity for real-time breathing

monitoring with the smartphones but also achieve a high accuracy.

Figure 29 presents the results with different window sizes for the adaptive median filter. Recall that the window

size is used in the static vector effect mitigation stage. Breathing rate estimation with SonarBeat mainly depends

on reduction of the static vector effect. The only parameter of the proposed adaptive median filter approach is

the window size, which should be robust for different tests. From Figure 29, we can see that when the window

size is increased from 7,400 to 7,700, the mean breathing rate estimation error is only increased slightly from

0.21 bpm to 0.26 bpm. Moreover, the larger window sizes from 7,400 to 7,700 are almost half of the signal points,

which is effective for removing the static vector. Thus, we choose a window size of 7,500 for SonarBeat, which

can achieve the best breathing estimation accuracy.
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Fig. 29. Impact of different window sizes of the adaptive median filter.

Fig. 30. Impact of different sizes of the median filter window.

Figure 30 shows the impact of different median filter window sizes on the mean error, which is used in the

data calibration stage of SonarBeat. We find that when the median filter window size is set to 100 or 300, a similar

mean error of 0.21 bpm is achieved. On the other hand, when the median filter window size is increased from 600

to 1,000, the mean estimation error is increased from 0.25 bpm to 0.38 bpm. This is because a smaller window size

can process the local breathing curve, to effectively remove the environment noise. On the other hand, a larger

median filter window size omits the local breathing noise, causing a higher error. Based on this experiment, we

set the median filter window size to 300, which can not only achieve a higher breathing estimation accuracy but

also lead to the better breathing curves for real-time breathing monitoring.

5.5 Discussions

In this section, we discuss the limitations of SonarBeat, as well as potential solution directions. First, SonarBeat

works well when the distance between the chest and the smartphone is under 50 cm, due to the large attenuation

of acoustic signals. Second, SonarBeat works well for a single person but is not suitable for monitoring multiple

subjects simultaneously. Figure 21 shows that when the distance between the testing subject and the smartphone

is longer than 50 cm, the breath signal will be too weak to be extracted. Thus, the testing subjects should be within

50 cm away from the smartphone to be monitored. The distance will be too close/unlikely for daily life. Third,
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SonarBeat does not work well when the sleeping subject is covered with blankets, which will greatly reduce

the SNR of the received signal. These limitations are mainly due to the fact that ultrasound waves in 18 KHz

to 22 KHz experience a large attenuation, and the microphone will receive low power from the chest reflection

when the distance is large or when there are obstacles. Note that SonarBeat uses the off-the-shelf smartphone

system with fixed transmit power and maximum frequency. The performance can be significantly improved if

the transmit power or the frequency of the signal can be increased.

In addition, the performance of SonarBeat largely depends on how the effect of the static vector is mitigated

in multipath environments (see Figure 4). This is because the static vector is much stronger than the dynamic

vector induced by the small chest movements, and the static component from the speaker to the microphone

will greatly influence the SNR of the received signal. When the subject is moving, the static component suffers

from considerable interference caused by the moving human body. The current median filter method cannot

effectively deal with the unstable static component, so it will be difficult to detect the weak breathing signal

directly from the continuously moving subject.

To further improve the performance of SonarBeat, three schemes will be considered in our future work. First,

a new static vector removal algorithm should be developed. For example, we can employ two microphones and

use the difference for self-interference cancellation. The second scheme is to consider modulated signals, such

as FMCW and OFDM. Finally, signal decomposition techniques should be considered, such as tensor decompo-

sition [Wang et al. 2017c] and independent component analysis (ICA). These techniques help to separate small

signals, such as the heartbeat signal, from the received signal. Moreover, they can also be used to estimate breath-

ing rates for multiple subjects.

6 CONCLUSIONS

In this article, we presented SonarBeat, a system that exploits phase-based sonar to monitor breathing rates

with smartphones. We first provided a rigorous sonar phase analysis and proved the sonar phase-based method

can obtain breathing signals. Also, we discussed the technical challenges for breathing estimation based on

active sonar signal, including removing the static vector effect, adaption for body movements and environment

noise, and online breathing monitoring with lower delay. We then described the SonarBeat design in detail,

including signal generation, data extraction, received signal preprocessing, and breathing rate estimation. Finally,

we implemented SonarBeat with two different smartphones and conducted an extensive experimental study with

three setups. The experimental results validated that SonarBeat can achieve superior performance on respiration

rate estimation for different factors and parameters.
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