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Recently, wireless sensing techniques have been widely used for Internet of Things (IoT) applications. Unlike

traditional device-based sensing, wireless sensing is contactless, pervasive, low cost, and non-invasive, mak-

ing it highly suitable for relevant IoT applications. However, most existing methods are highly dependent

on high-quality datasets, and the minority class will not achieve a satisfactory performance when suffering

from a class imbalance problem. In this article, we propose a time–frequency semantic generative adversarial

network framework (i.e., TFSemantic) to address the imbalanced classification problem in human activity

recognition using radio frequency (RF) signals. Specifically, the TFSemantic framework can learn semantic

features from the minority classes and then generate high-quality signals to restore data balance. It includes

a data pre-processing module, a semantic extraction module, a semantic distribution module, and a data aug-

menter module. In the data pre-processing module, we process four different RF datasets (i.e., WiFi, RFID,

UWB, and mmWave). We also develop Fourier semantic feature convolution and attention semantic feature

embedding methods for the semantic extraction module. A discrete wavelet transform is utilized for recon-

structed RF samples in the semantic distribution module. In data augmenter module, we design an associated

loss function to achieve effective adversarial training. Finally, we validate the effectiveness of the proposed

TFSemantic framework using different RF datasets, which outperforms several state-of-the-art methods.
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1 INTRODUCTION

Human activity recognition (HAR) has received increasing attention from both academia and
industry. HAR aims to accurately sense different activities (e.g., gestures, movements, and poses)
in the physical space, which can be used for many Internet of Things (IoT) applications, such
as health monitoring, human–computer interaction, augmented reality, and virtual reality [4, 38].
Generally, there are two types of HAR, i.e., device based and device free. Device-based HAR utilizes
wearable devices, such as smartphones or watches, to recognize human gestures or activities [19].
However, device-free HAR does not require wearable devices, where radio frequency (RF) sig-
nals are used for contactless sensing [1, 24, 26, 27, 39, 50]. Device-free HAR is less intrusive and
more suitable for monitoring elders’ or babies’ activity.

Recently, deep learning-based methods have been proposed for RF-based HAR to achieve high
classification accuracy [52]. Various RF technologies, such as millimeter wave (mmWave) radar,
ultra-wideband (UWB) radar, WiFi, and RFID have been utilized in prior works. For exam-
ple, Pantomime exploits the spatio-temporal properties of mmWave signals with a deep learning
model for contactless gesture recognition [33]. WiFi channel state information (CSI), such as
CSI amplitude or phase, have also been used in several HAR systems, For example, a dense long

short-term memory (LSTM) is to handle WiFi CSI amplitude data for HAR [48]. RFID-based
techniques usually leverage the physical layer information (e.g., phase) for, e.g., activity recog-
nition [40] and three-dimensional (3D) pose tracking [44]. Although RF-based HAR with deep
learning can achieve pretty good classification performance, it still faces two major challenges: (i)
generalization to different RF environments and (ii) high cost of data collection. To address these
challenges, a few-shot HAR method is proposed to use deep learning for feature extraction and
classification, while model parameters are transferred [42]. Meta-learning has also be used for
one-shot RF-based HAR, which can adapt to different environments with minimum efforts [8].

Unlike the above model generalization methods (e.g., few-shot learning and meta-learning), our
work is focused on a new research problem of RF-based HAR with imbalanced data. Various wire-
less devices (e.g., mmWave, WiFi, and RFID) have been used for HAR, which usually generate
imbalanced datasets in different domains (e.g., different deployment environments), including con-
siderable environment noise, interference, and missing values. The presence of a “long tail” effect
in RF sensing has been identified due to sample selection bias, which can be observed when data
are sorted by the frequency of occurrence of different categories from highest to lowest. Figure 1
shows the long-tailed label distribution of four public RF-based HAR datasets [25, 29, 47, 53] with
a total of 55 gesture classes. We find that some common gesture classes (e.g., push, pull, slide left,
and slide right) have a large number of samples in each dataset, while some designed gestures
(e.g., sign language) only occupy much fewer samples. For such imbalanced datasets, the training
process naturally favors larger classes (i.e., with more samples) and has lower accuracy for smaller
classes (i.e., with fewer samples). Although the class imbalanced problem has been extensively in-
vestigated and tackled in computer vision and natural language processing, wireless sensing data
includes several unique characteristics (e.g., complex-valued and high-dimensional data), which
makes the imbalanced RF data greatly impact the performance of HAR classification tasks.

In this article, we develop a time–frequency semantic generative adversarial network (GAN)

framework (i.e., time.frequency semantic (TFSemantic)) to generate high-quality datasets, aim-
ing to address the imbalance classification problem, as well as enhancing the robustness and envi-
ronmental adaptability of HAR models. Specifically, we couple GANs with an autoencoder model
in TFSemantic to restore the balance of the dataset by generating RF signals in minority classes.
The TFSemantic framework includes a data pre-processing module, a semantic extraction module,
a semantic distribution module, and a data augmenter module. In the data pre-processing mod-
ule, we process four different RF datasets, including WiFi, RFID, UWB, and mmWave. In addition,
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Fig. 1. Label distribution from four public RF-Based HAR datasets [25, 29, 47, 53] with totally 55 gesture

classes.

the Fourier semantic feature convolution (SFC) and attention semantic feature embedding

(SFE) approaches are developed in the semantic extraction module. We also propose a discrete

wavelet transform (DWT) scheme to handle the reconstructed RF samples in the semantic dis-
tribution module. Last, we design an associated loss function in the dataset augmenter module to
achieve effective training of the GAN model.

To evaluate TFSemantic, we select four public datasets collected by different RF devices un-
der different sensing tasks. We also compare our approach with different baselines, including the
state-of-the-art GAN-based augmentation, imbalance-learning, and learning-based sensing. Exper-
imental results show that our enhanced dataset can greatly improve the classification accuracy on
imbalanced datasets by about 13% on average. More important, the recognition accuracy of some
classes with less sample data (i.e., the minority classes) can be improved by about 24%.

The key contributions of this article are as follows:

• We propose a time–frequency semantic GAN framework, TFSemantic, which, to the best
of our knowledge, is the first work that addresses the imbalanced classification problem in
RF-based HAR tasks.
• In the TFSemantic framework, we develop three new learning modules, including the seman-

tic extraction module, semantic distribution module, and data augmenter module to augment
high-quality RF dataset, which effectively restore the balance of the dataset.
• We evaluate TFSemantic with extensive experiments with several RF datasets in real-world

scenarios, including different RF sensor types and experimental settings. The results validate
that the proposed method can greatly improve the quality, diversity, and robustness of the
RF dataset and lead to superior HAR performance.

The rest of the article is organized as follows. Section 2 discusses related work, and Section 3
introduces the background. Section 4 describes the TFSemantic design. Section 5 presents our
experimental study. Discussion is in Section 6, and Section 7 concludes this article.

2 RELATED WORK

This article is focused on RF-based sensing. We review deep learning-based RF sensing with Radar,
WiFi CSI, and RFID-based methods, as well as few-shot learning for RF-based HAR in the following.
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2.1 Deep Learning–based RF Sensing

RF-based sensing is a technique that utilizes radio frequency signals for detecting the presence
of objects, measuring the distance to objects, identifying materials, and detecting changes in tem-
perature, humidity, or other environmental conditions. Besides, deep learning methods have been
widely used in RF sensing–based applications.

2.1.1 Radar. Radar is widely leveraged in wireless sensing because of the ability to detect
a target’s position, distance, speed, direction, and other relevant information. Specifically, deep
learning-based radar technologies are widely used for HAR to improve activity classification accu-
racy [52]. For example, Pantomime is a novel mid-air gesture recognition system that utilizes the
spatio-temporal properties of mmWave signals with a learning model [33]. RadHAR leverages a
neural network with a sliding time window to estimate point clouds in an mmWave radar for accu-
rately detecting different human activities [35]. In addition, commodity Radar systems have been
used for vital sign monitoring to mitigate environment interference [49]. To avoid the drawbacks
of traditional discrete Fourier transform preprocessing, Reference [51] proposes a learnable pre-
processing module, CubeLearn, to extract features directly from the raw radar signal and construct
end-to-end deep neural networks for radar-based HAR.

2.1.2 WiFi. WiFi signals have been exploited to recognize various human activities or ges-
tures from commodity WiFi devices. For example, GaitFi [7] proposes a novel multimodal gait
recognition method that leverages WiFi signals and videos for human identification, where WiFi
CSI is collected to capture human gaits. More important, the amplitude and phase difference
of WiFi CSI are utilized in IoT applications. For example, dense-LSTM and data augmentation
methods are used to exploit WiFi CSI amplitude for HAR [48]. In addition to deep learning,
model-based approaches have been proposed for robust sensing performance, e.g., to address the
position-dependent problem [11].

2.1.3 RFID. Currently, off-the-shelf RFID devices (e.g., the Impinj R420 reader) have been used
for RF sensing. For example, TACT [40] recognizes human activities using commodity RFID but
without needing to attach any RFID tags to the subject. A recent work RFID-Pose estimates 3D
human poses from RFID phases data using a Deep Kinematic Neural Network trained with vi-
sion data [44]. VED [49] demonstrates a promising capability in recovering fine-grained heartbeat
waveform from RF-sensing signal by exploiting the universal approximation ability of deep neural
networks and the generative potential of variational inference.

2.2 Few-shot Learning for RF-based HAR

The evolution of RF-based HAR includes two distinct phases. In the first phase, the primary objec-
tive is to collect RF data and then extract important information for target activity recognition by
using a learning model. Subsequently, the second phase focuses on effectively adapting the model
to a new environment for enhancing the overall performance of the sensing task.

By exploiting deep learning [5, 52], RF-based sensing has made great progress. Specifically, few-
shot learning is to learn a model with a small number of labeled data by transferring knowledge
from relevant tasks, which has been widely used in the second phase of RF-based HAR devel-
opment. For example, RF-Net [8] and Meta-Pose [43] leverage meta-learning to adapt to differ-
ent environments with minimum effort. OneFi [42] recognizes unseen gestures with only one (or
few) labeled samples using transformer networks. Moreover, TOSS [54] uses a domain adaptation
method for WiFi-based HAR with labeled and unlabeled target samples. FreeAuth [17], WiHF [21],
and TARF [45] leverage adversarial learning to improve the robustness of HAR applications in
different environments and with different RF technologies.
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Summary. Unlike the related work, we propose new data enhancement techniques to address
the data imbalanced classification problem by generating high-quality RF datasets. The robustness
and environmental adaptability of RF sensing models can also be greatly enhanced by using the
augmented data.

3 BACKGROUND AND MOTIVATION

In this section, we first introduce the class imbalance problem and then present the motivation
study for the GAN-based data augmentation methods in this article.

3.1 Class Imbalance Problem

In a multi-class classification problem, class imbalance occurs when one or more classes (i.e., the
minority class) contain(s) fewer samples than other classes. The class with the most samples is
termed the majority class. When an imbalanced dataset is used, the training process naturally fa-
vors the majority class, resulting in poor accuracy for the minority classes. To address this problem
in computer vision (CV), a common strategy is to resample the image dataset (e.g., by oversam-
pling in the minority group) [22]. The other approach is to use cost-sensitive learning (i.e., by
adjusting the classifier to decouple the learning of the recognition model from that of the classifi-
cation module) [55].

Generally, class imbalance in RF signal-based datasets is more complex than that in CV data.
First, despite the fact that rare classes in RF sensing tasks are executed less often, each execution
tends to be misclassified. Second, while additional collection is a way to obtain more rare class data,
it will lead to a significant labor overhead. Third, some rare categories in public RF datasets may
be critical in practical applications, such as rare cases in medical diagnosis. Therefore, to mitigate
the impact of the category imbalance problem on the model, the importance of all categories need
to be fully considered when training the model.

For example, the datasets collected in one propagation environment will be hard to transfer to
other environments. Due to different deployment environments (e.g., sensors and layouts) or user
characteristics (e.g., genders and preferred hands) in real RF sensing applications, the generated
user-side training data will usually be imbalanced. To study the limitations of directly applying the
above methods for RF datasets, we choose a public RF dataset (i.e., Widar 3.0 [53]) and compare it
with a CV dataset [28]. In addition, a public toolbox (i.e., imbalanced-learning [20]) is used to gener-
ate both imbalanced datasets based on the class imbalance ratio (see its definition in Section IVA).

Table 1 shows the learning results on a class-imbalanced CV dataset and an RF dataset. Both of
them follow the long-tailed distribution, which are divided into minority and majority classes. We
choose training accuracy and Index of Balanced Accuracy (IBA) [12] to evaluate the learning
process on the imbalanced datasets. IBA can be defined by IBA = (TPR + TNR)/2, where True

Positive Rate (TPR) refers to the ratio of the number of samples correctly identified by the classi-
fier as positive cases to the total number of positive cases, and True Negative Rate (TNR) refers
to the ratio of the number of samples correctly identified by the classifier as negative cases to the
total number of negative cases. To intuitively describe the influence of minority class to the classi-
fier, we only consider the balance accuracy of positive and negative two categories, i.e., minority
and majority classes.

For both datasets, as the class imbalance ratio grows, the training accuracy also increases, while
the IBA decreases. Specifically, with a ratio of 20, the training accuracy on the RF dataset is 85.10%,
while the IBA is down to 50.88% (50% is the lowest limit of the IBA), which means the classifier
cannot effectively predict the minority classes.

Remark: Both methods [22, 55] usually ignore the fact that the oversampled minority classes may
have poor generalization or low diversity. We explore a more effective way to overcome the problem
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Table 1. Learning Results from Class-imbalanced Datasets

Dataset CV [28] RF [53]

Ratio 1 10 20 1 10 20

Training Acc (%) 87.11 90.22 95.04 79.30 83.53 85.10
IBA (%) 86.27 79.81 61.14 78.71 64.03 50.88

of imbalanced RF data in different environments by focusing on fully utilizing the features in RF
signals and leveraging GANs to augment the HAR dataset.

3.2 Motivational Study

Unlike simple data augmentation methods (e.g., image rotation, flipping, and introducing Gaussian
noise), GAN can generate more realistic images by adversarial learning [13]. GAN are made up of
two components: a generator and a discriminator. The generator generates samples, while the
discriminator attempts to distinguish these samples from real data. Through this competition, the
two components can improve each other, leading to the generation of high-quality synthetic data.
For example, RF-based gesture recognition systems (e.g., WiGAN [9] and SS-GAN [36]) have used
GAN to enhance gesture features. Unlike the related works that only augment the original data,
we propose new data synthesis techniques to address the problem of imbalanced RF data, which
also help to adapt to different deployment environments and devices. Using GAN for RF-based
HAR, two major problems shall be addressed as follows.

3.2.1 How Does GAN Learn Time–Frequency and Semantic Information in RF Signals? In RF
sensing applications, different wireless devices have been leveraged for HAR in which the mea-
sured wireless data stream in the time-domain is fundamentally abstract and not easy to interpret.
Therefore, using short-time Fourier transform (STFT) [23], the time–frequency RF spectrum
can be obtained to extract the semantic information (e.g., activity features) of HAR, thus boosting
the classification performance. To increase the time–frequency domain resolution, we design new
mapping approaches (i.e., using an autoencoder) in the GAN framework.

3.2.2 How Can GAN Generate Minority Class Data in Imbalanced RF Datasets? Generally, it is
challenging for GAN to generate high-quality samples with a small training set from a minority
class. The BAGAN model [30] is proposed to learn useful features from the majority class and
to synthesize images for minority classes. However, the generated results maybe unstable when
different classes become similar, while the class similarity is usually high in RF sensing applica-
tions (e.g., pushing and pulling in gesture recognition). In this article, we couple GANs with an
autoencoder and develop a data augmenting module with an associated loss function to explicitly
improve the diversity of synthesized data.

4 PROPOSED METHODOLOGY

In this section, we first formulate the imbalance problem and then provide an overview of TFSe-
mantic, as well as its key strategies and hyperparameters in detail.

4.1 Problem Formulation

In this article, the aim of TFSemantic, parameterized by Ω, is to restore the balance of RF data.
First, we develop a Semantic Extraction Module, parameterized bySΘ, to extract semantic features
from input observations (i.e., an RF signal matrix). In addition, a Semantic Distribution Module,
parameterized by SΦ, is designed for achieving reliable data generation. To generate diverse data,
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Fig. 2. An overview of the TFSemantic framework.

we also adopt new metrics (e.g., ensemble margin [10]) in a Dataset Augmenter Module to evaluate
the discriminability and diversity of the synthetic samples in the Semantic Distribution Module.

Suppose the dataset D = {R1,R2, . . . ,RN } contains both majority and minority classes, where
R

i represents the set of samples in class i and N is the total number of classes in the dataset. The
ratio of the number of samples in the majority class to the number of samples in the minority

class (i.e., the class imbalance ratio) is defined as R = Majority(D)
Minority(D) . TFSemantic will synthesize

data for the minority classes until such classes are balanced with the majority class (i.e., when R
equals to 1). The ensemble margin after training instances effectively indicates the performance
of a classification algorithm. Generally, imbalanced datasets will lead to high ensemble margin
values for the majority class and low values for minority class. Therefore, we use ensemble margin
to evaluate the impact of R and the augmented dataset (e.g., when synthesized data are included).
Essentially, an objective function can be formulated as

Ω∗ (D,R ) = arg max
Ω

⎡⎢⎢⎢⎢⎣
Vy −maxc�y (Vc )
∑ N

c=1 (Vc )

⎤⎥⎥⎥⎥⎦margin

, (1)

where Vy is the number of votes (i.e., classified results) for the true class y, Vc is the amount of
votes in the other class c , and [.]margin is the ensemble margin for each class in D, which is in the
range [−1,+1]. Generally, a positive ensemble margin corresponds to correctly classified examples.
To improve the discriminability of data augmentation for minority classes, our goal is to maximize
the ensemble margin.

4.2 Overview of TFSemantic

We design an effective GAN-based dataset augmentation framework for RF sensing datasets.
Specifically, we couple GANs with an autoencoder in TFSemantic to recover the balance of the
dataset by synthesizing signals in minority classes. As shown in Figure 2, our proposed TFSeman-
tic framework consists of four modules, which is trained in two stages. First, TFSemantic takes the
imbalanced base dataset and then performs data pre-processing over four different RF devices. And
the pre-processed base dataset is then fed into the class filter module to discriminate the minority
classes and majority class. In the first stage, the GAN learns and connects the semantic features
(e.g., activity features) of the RF signals by training the autoencoder, where two modules (i.e., se-
mantic extraction and semantic distribution) are designed and incorporated. In the second stage,
the GAN uses the trained autoencoder to generate samples for the minority class. We design the
associated loss function in the dataset augmenter module to achieve effective training of the GAN.

4.3 Key Design Strategies

In this section, we discuss the key strategies used in each module of our TFSemantic framework.
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Fig. 3. Illustration of the RF signals from different sampling devices.

4.3.1 Data Pre-processing Module. Due to different frequency bands, RF communication pro-
tocols, and hardware designs, different RF platforms (i.e., WiFi, UWB, RFID, and mmWave) have
their unique features in specific deployment environments. To tackle the different timestamps in
different sampling batches, we synchronize sampled data with a fix-sized sliding window over the
entire time-domain sequence. As shown in Figure 3, the RF data collected by four different RF
devices for the same activity will be converted into different matrices. We then perform different
data pre-processing operations on the different RF datasets.

WiFi CSI data are collected for HAR. However, the WiFi CSI data contains considerable phase
noises caused by asynchronous transceivers and hardware defects. To filter out uncorrelated noises,
only the dominant measurement data will be extracted. We use the conjugate multiplication of
CSI values between two antennas to remove phase noise [53]. For UWB devices, we obtain the
fast-slow RF images and then normalize the UWB image data [34]. For the RFID dataset, we use
received signal strength, which are denoised by a Gaussian-weighted averaging method [47]. For
the mmWave dataset [25], we remove the correlated noise and environmental interference from
the original signals using 3D Fast Fourier transform (FFT). RF spectrum features of the four
datasets become more clear after static removal, conjugate multiplication, and noise removal.

4.3.2 Semantic Extraction Module SΘ [Stage I]. This module is the encoder part of the autoen-
coder. To supplement the data of minority classes, the base dataset D after preprocessing is input
to the class filter module to determine the minority and majority classes for data augmentation.

Motivated by the STFT module in the classification of time-series data [23], we use multi-sensory
channels to design the Semantic Extraction Module through integrating the channel attention
mechanism [37] with STFNet-convolution [46] to strengthen the generalization of our deep model.
It exploits multiple branching channels to sense changes in RF spectrum in the time–frequency
domain and thus enables the effective extraction of semantic features. As shown in Figure 4, we
design a new time–frequency semantic feature learning layer with two key strategies, i.e., Fourier
SFC and attention SFE, to obtain a fine-grained semantic feature representation in the time chunks
from the output of each channel.

Fourier SFC: In STFT, the time–frequency resolution is controlled by a sliding window of a
fixed length. The fine-grained frequency representation is limited by the window length, with a
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Fig. 4. Learning process of the semantic extraction module.

tradeoff between high frequency resolution and high time resolution. Specifically, we initialize the
size of the sliding window based on the sampling rate of the RF data, and then the sliding window
divides the timing data equally into p small blocks of time. To ensure flexibility and generalization
for different RF sensing tasks, we integrate the frequency domain transform into the deep learning
pipeline, which can be optimized by standard methods as in Section 4.4.

Denote the input to the pipeline as X ∈ Rd×m×n, where R contains n signal matrices, and the
size of X is d ×m. The width of the windowW (τ ) is denoted by τ . The STFT operation in a single
pipeline can be formulated as

STFT (X ,W ) =
d∑

i=1

X[i,τ ] · W (i − s ·m) · K[i,τ ], (2)

where s is the step of sliding and K is the convolution kernel of the channel. In this article, Fourier
SFC is a multi-channel parallel weighting module and we will perform (2) with different resolutions
of X . First, we segment each input signal matrix X into p frames with the same size along the time
dimension and then feed it into the corresponding channel of Fourier SFC.

Because of the limit time–frequency resolution of windowW (τ ), multiple transform channels
with different window widths will be applied in the Fourier SFC. The output for the jth segmented
frame X j with windowW [j] (τ ) is given by

X j
S FC = STFT {X j ,W [j] (τ )} + Bias (X ), j = 1, 2, . . . ,p, (3)

where Bias (X ) is the bias for specific input data. The multi-channel output from Fourier SFC is

denoted byXS FC = [X 1
S FC ,X

2
S FC , . . . ,X

p

S FC
]. To adapt to different RF sensing tasks, the parameters

of Fourier SFC should also be adjusted appropriately.

Attention SFE: In the attention SFE model, the main goal is to reinforce the multi-channel
output XS FC obtained from Fourier SFC. To detect the correlation of channels, the attention mech-
anism is applied. Specifically, we capture the local cross-channel interaction by considering adja-

cent channels. We define the underlying mapping as д(c ) = μ (д′∗c+b ) , where (д′ ∗ c + b) is a linear
function, c is the target sample, and b and д′ are the linear parameters of the mapping space.

Due to the limited relationship represented by the linear function, we set the channel dimension
μ as a power function to construct the nonlinear mapping relationship. Accordingly, the correlation
weights between channels in XS FC can be computed by

ω = ϑ (д(XS FC ) · f (XS FC )), (4)
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Table 2. Performance of the Reconstructed Signal Spectrum

Training batch Accuracy Cosine similarity Pairwise distance

Epoch-100 84.71% 35.54% 15.6073
Epoch-200 88.29% 45.34% 13.5136

where f (XS FC ) is the channelwise global average pooling and ϑ is the Leaky ReLU function. An
adjustedXS FC can be obtained by multiplying the output channel weightsω by the channel output
values XS FC , where the dimension of ω should be expanded to be the same as XS FC . Therefore,
dimensional reduction can be avoided and cross-channel interactions can be effectively captured.
This can further enhance the time–frequency resolution of XS FC .

In summary, the sensed signal matrices serve as input to the Semantic Extraction Module. We
obtain a set of enhanced multi-channel outputs through using the key strategies (i.e., Fourier SFC
and attention SFE), which will be filtered and stitched by a convolutional filter West . We denote
F ∗ as the final output (i.e., the semantic features of the input signals), which can be written as

F ∗ =West · {SΘ(X )}T , (5)

where SΘ(X ) represents the Fourier SFC and attention SFE operations on the input data X with
parameter Θ.

4.3.3 Semantic Distribution Module SΦ [Stage I]. This is the decoder part of the autoencoder.
To use the semantic features produced by the previous module, we design a generative neural net-
work, which reconstructs input samples by predicting the conditional semantic distributions and
reassembling the extracted semantic features. However, the distribution of the collected RF signals
from different RF platforms may vary considerably in different environments. Therefore, we use a
DWT method to complement the details of different frequency bands in the reconstructed samples,
which allows our generated data to approximately represent real samples that are collected from
different perceptual environments.

The high-resolution semantic features F ∗ can be directly used to improve the accuracy of clas-
sification, because they carry the key part of information in the signal. However, it is challenging
to recover the input data with the obtained semantic features, because the detailed frequency
distribution in RF spectrum is smoothed. To validate this observation, we train a semantic
extractor for a specified batch and then test the classification and reconstruction performance
using CNNs. In addition, we use the cosine similarity and pairwise distance [6] to measure the
similarity of two signals.

As shown in Table 2, the classification accuracy is between 84.71% and 88.29% by using semantic
features F ∗. In addition, we use a fully connected layer to reconstruct signals. We find that the qual-
ity of reconstructed signal is poor, since the cosine similarity is only about 40% and the pairwise
distance is around 14%. Thus, to restore the complete spectrum information of the original signal,
we utilize semantic skeleton prediction (SP) as a key strategy as follows.

Semantic SP: The semantic SP in SΦ aims to predict the original signal skeleton, which
measures the location distribution of F ∗ in the original signal spectrogram. Generally, the main
features of RF signal are preserved in low-frequency components while the high-frequency
components reflect the subtle detail information. One way to perform signal enhancement using
DWT is to decompose the signal into its frequency components and then perform different
types of processing or filtering on different frequency bands. Specifically, in this article, we want
to generate a signal that is as rich in high-latitude features, i.e., high-frequency features and
low-frequency features, as the real signal. This can improve the overall quality of the generated
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signal and make it easier to be analyzed or understand. To preserve most frequency information,
we exploit DWT to decompose signal into different frequency bands and select different frequency
bands for signal supplementation according to practical needs.

The low-frequency region intensity Ξ1 (x ,y) and high-frequency region intensity Ξ2 (x ,y) in
semantic SP can be written as

Ξ1 (x ,y) =
∑

i, j ∈M

w (i, j ) ��A(x + i,y + j )�� , (6)

Ξ2 (x ,y) =
∑

i, j ∈M

w (i, j )(H (x + i,y + j ))2, (7)

where A(x ,y) is the low-band wavelet coefficient at location (x ,y), H (x ,y) is the high-frequency-
band wavelet coefficient, and w is the mask operator with a window size of M × M . Different
from the noise reduction using DWT, we aim to restore the original distribution of the signal (e.g.,
complementary noise). Therefore, we will use the coefficients of both frequency bands to guide
the fully connected layer (i.e., semantic mapping of the signal).

In summary, both X and F ∗ serve as the input to the Semantic Distribution Module. Also, se-
mantic SP is used to predict the signal skeleton Cdis from X . Then, by combining the semantic
features F ∗ and the predicted signal skeleton Cdis , the output signal Xdis can be reconstructed by
Xdis = Cdis · F ∗, which is similar to the original signal. Specifically, the process of acquiring Cdis

can be represented as

Cdis =Wdis · {SΦ(Ξ1,Ξ2)}T , (8)

where Wdis is a convolutional filter similar to West , which can model the spectral distribution of
the semantic features. Note that to distinguish the high-frequency bands in various directions cor-
responding to Ξ2 (x ,y) in the signal (i.e., the time–frequency matrix), we only retain the horizontal
direction to obtain frequency domain multi-channel data.

Remark: In Stage I, our main goal is for the autoencoder to learn how to extract the semantic
features from the real signal and how to use the semantic features to restore the real signal. During
the training of the autoencoder, we use Kullback–Leibler divergence [15] to constrain the entire
extraction and distribution operations to optimize the difference between the distribution of the
output Xdis and that of the true signal X in each epoch of the training process, which is defined as

Le ·d = Lkl {N (X )‖N (Xdis )}, (9)

where Lkl is the calculated function of Kullback–Leibler divergence andN (·) is the softmax func-
tion to obtain the probability distribution.

4.3.4 Dataset Augmenter Module [Stage II]. In the second stage of GAN training, we need to in-
tegrate the Semantic Extraction and Semantic Distribution into the Dataset Augmenter. To achieve
the reliability and efficiency of the augmentation process for the entire base datasetD, we design
a light-weight two-stage fine-tuning scheme, i.e., separately training for the extraction layers and
distribution layers. This way, we use randomly sampled data as input and then generate a large
amount of synthesized data, which is similar but yet different from the real samples used in training.
The dataset augmenter will output an augmented base dataset consisting of the minority classes
that are augmented with synthesized data and the fine-tuned majority class.

By training the Semantic Extraction Module and Semantic Distribution Module in Stage I, the
autoencoder has already leaned how to extract semantic features and their distribution pattern
from the signal matrices, which can be used to provide a potential semantic mapping space for the
GAN in our Dataset Augmenter Module.
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Fig. 5. The training process of the GAN model.

As shown in Figure 5, using the generator, we obtain the initial signals by using randomly sam-
pled data, which do not contain meaningful physical characteristics. To extract the same properties
from real-world perception signals (Xr eal ∈ R), the well-trained Semantic Distribution Module can
generate fake signals Xf ake , which are similar but different from the input training signals. Then
we utilize the Semantic Extraction Module to extract the semantic feature of Xr eal and Xf ake and
feed the results into the discriminator. The process of the adversarial network is that the generator
aims to minimize the difference between the input Xr eal and Xf ake and the discriminator aims to
maximize the difference between Xr eal and Xf ake . In particular, we design several efficient loss
functions to perform specific tasks at each step as follows.

Reconstruction LossLr ec : In the Semantic Extraction Module and Semantic Distribution Mod-
ule, the loss function Le ·d is used to restore the original signal. Different from the loss, we need to
generate signals that are similar but not having identical characteristics as the real signal. There-
fore, the new loss function Lr ec is defined by

Lr ec =
∑

∝
Lkl

{
N (X∝r eal )‖N (X∝f ake )

}
, (10)

where X∝
f ake

and X∝
r eal

are the adjusted time–frequency resolutions of Xf ake and Xr eal , respec-

tively, and
∑
∝ indicates the sum of all returned values for each pair of X∝. In addition, the batch

gradient descent is used to minimize the loss function.

Adversarial Loss Ladv : A generative adversarial loss Ladv is used to simulate the distribution
of the real signal. The discriminator is trained to distinguish Xf ake and Xr eal , which is formulated
as

Ladv (Xr eal ,Xf ake ) =
∫

Xr eal
pr (Xr eal ) log(D (Xr eal ))dXr eal

+
∫

Xf ake
pf (Xf ake ) log(1 − D (Xf ake ))dXf ake

,

(11)

where pr and pf are the equalization parameters of the generator and the discriminator,
respectively, and D (∗) is the maximum likelihood function for the discriminator.

To make the augmented datasets generalizable across different tasks, we use the boundary dis-
tribution of the discriminator, and control the variation of the generated conditional distribution
to ensure their duality. Let Lcos denote the cosine distance between Fr eal and Ff ake to control
the similarity or difference, where Fr eal and Ff ake are the semantic features of Xr eal and Xf ake ,
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respectively. The objective is defined as

Lcos (Fr eal , Ff ake ) =
Fr eal · Ff ake

max(‖Fr eal ‖2 ·
���Ff ake

���2
,υ)
, (12)

where υ is the weight. The combination of Equations (11) and (12) constitutes a coupled process of
adversarial generation training, which is used to guide the generation of data. The data are batched
through the generator and the discriminator, and the model weights are fine-tuned to optimize the
loss function during adversarial training.

Augmenter Loss Lauд : As elaborated in the problem formulation section, the purpose of TFSe-
mantic is to restore the balance of the dataset. After augmenting the minority signal classes with
synthesized data by the GAN, we need to evaluate the quality of the synthesized data (i.e., the
effectiveness of our solution on tackling the imbalance problem). Therefore, the augmenter loss
function Lauд is defined as

Lauд (D,D∗) = Ω∗ (D,R ) − Ω∗ (D∗,R ), (13)

whereD∗ denotes the re-balanced dataset, and it will be used in the weight function Ω∗ to calculate
the ensemble margin. Finally, we design the joint GAN module optimization objective as follows:

Lsum (D,D∗) = αLr ec + βLcos + λLauд + Ladv , (14)

where α , β , and λ are the hyper-parameters. When the real signal and synthesized signal are too
similar, we have β > 0; otherwise, we have β < 0.

Remark: In the second stage, we use Lsum (D,D∗) to evaluate both the majority and minority
classes inD andD∗. In addition, the gradient descent loss values are used to initialize the generator,
which allows TFSemantic to start adversarial training from a more stable point, which can alleviate
the convergence problem of traditional GAN training.

4.4 Hyper-parameters

To achieve better generalization for all RF-based datasets, a necessary step before applying TFSe-
mantic to a new dataset is to determine the proper values for the set of hyperparameters. We use
an abstraction-based cost function based on coarse-grained space abstractions [2] to find suitable
values for the hyper-parameters, which can effectively adapt to different RF sensing devices and
scenarios for data augmentation, and support applications with timeliness requirements.

5 EVALUATION

In this section, we evaluate TFSemantic over different RF datasets and compare with several state-
of-the-art methods.

5.1 Experimental Setup

5.1.1 Dataset. To cover a broad range of RF sensing tasks in our evaluation, we choose four
public RF datasets. Their relevant information is summarized in Table 3.

WiFi: The WiFi datasets are usually collected by the Linux 802.11n CSI Tool, which contains
the amplitude and phase of CSI data with the three antennas. In the dataset in Reference [53], 25
subjects were involved for the data collection in five different environments. Six receivers were
used in each activity, where each antenna transmits 30 subcarriers, with a sampling frequency of
1, 000 Hz. There are 22 activities (e.g., Push, Pull, Sweep, Clap, Side, and Draw).

UWB: The UWB dataset was acquired with XeThru X4M03. The UWB radar system was
mounted on a wall. In the dataset in Reference [34], participants were lying in the middle of the
bed at a supine position, where line of sight of the radar is required. The dataset contains six subtle
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Table 3. Statistics of the Datasets Used in Evaluation

Sensor Activity (types) Sample Sampling Rate

WiFi [53] Gesture (22) 5,400 1000 Hz
UWB [34] Activity (6) 960 10 Hz
RFID [47] Gesture (6) 900 13.56 MHz

mmWave [25] Gesture (13) 24,050 4 MHz

activities: from supine to left lateral position, from left lateral to supine position, from supine to
right lateral position, from right lateral to supine position, from supine to prone position, and from
prone to supine position. Each data sample is a 16-s UWB radar signal output in a two-dimensional
array, where the x-axis represents slow time and the y-axis is the distance box (i.e., fast time).

RFID: In the RFID dataset [47], the signal was sent and received using H47 RFID tags and di-
rectional antennas powered by an Impinj R420 RFID reader. Six tags were used in the acquisition
process and three polarized antennas were used to interrogate these tags to ensure that each RFID
tag was covered by at least one antenna. Different from other datasets, the RFID dataset was col-
lected by using a robotic arm to simulate the activity.

mmWave: The mmWave dataset [25] was obtained based on a TI AWR1843 mmWave radar and
a DCA1000 real-time data acquisition board. Six predefined gestures (push, pull, slide left, slide
right, rotate clockwise, and rotate counterclockwise) and seven negative samples (lift right arm,
lift left arm, sit, stand up, wave, turn, walk). The difference between the predefined activities and
negative samples will be discussed in the experiment. The original captured signals were processed
into dynamic range angle image sequences after 3D-FFT and denoising.

5.1.2 Metrics. Generally, the overall accuracy of the imbalanced dataset is not adequate to show
whether the imbalance problem has been effectively solved. Therefore, we quantify the TFSeman-
tic performance using the recognition accuracy of minority classes and G-mean [14]. The formula
for G-mean is expressed by sqrt (TPR · TNR). The G-mean is a metric that measures the overall
performance of a classifier on an imbalanced dataset, which is calculated as the geometric mean of
the recall values for each class and is often used as an alternative to the overall accuracy in imbal-
anced datasets. We repeat each experiment with a different random seed and report the average
value of these metrics.

5.1.3 Baselines. We focus on three different tasks to evaluate the performance of TFSeman-
tic, i.e., GAN-based data augmentation, imbalanced learning, and learning-based sensing. For
GAN-based data augmentation, we compare the proposed TFSemantic system with GAN [13],
ACGAN [32], and BAGAN [30] to evaluate the quality of synthesized data. For solving the imbal-
anced learning problem, we compare TFSemantic with SMOTE [22] in their sampling methods and
CSSVM [16] with respect to their cost-sensitivity. Last, the augmented data by TFSemantic will
be used for training different deep neural networks (DNN), including AlexNet [18], DSN [3],
OneFi [42], and RFNet [8], to evaluate the impact on learning-based RF sensing.

We implement TFSemantic with PyTorch and the above baseline schemes are validated with
their open source codes. Training of TFSemantic is performed on a server with two GPUs (RTX
3080Ti). The training time over 100 epochs for a single task is about 1.5 hours and the average test
time is 10 s.

5.2 Augmented Datasets

Compared with traditional data augmentation approaches (e.g., rotation as in OneFi [42]), our pro-
posed method uses the time–frequency semantic GAN model to generate diverse RF data. Figure 6
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Fig. 6. Comparison of the original signal and synthesized signal by TFSemantic.

Table 4. Average SSIM Values for Four Different Wireless Devices

Methods WiFi RFID UWB mmWave

GANs [13] 86.30% 84.40% 83.89% 87.07%
ACGAN [32] 60.92% 67.82% 59.91% 70.45%
BAGAN [30] 49.51% 50.26% 50.83% 54.72%
TFSemantic 36.15% 37.90% 35.21% 40.39%

shows the raw signal and our synthesized signal, respectively, where the key regions are marked
by red boxes. We find that the critical regions can be well generated and the noisy data in the
irrelevant regions are effectively suppressed.

To verify the diversity of augmented data, we use the Structural Similarity Index (SSIM)

metric [41] to measure the similarity between the generated signal and the real signal. The SSIM
is a method for measuring the similarity between two images. It is commonly used to evaluate the
quality of generated images in computer vision, because it is based on the idea that the human
visual system is highly adapted to perceive structural information in images. SSIM is calculated
by comparing the local patterns in the two images, taking into account the luminance, contrast,
and structure of the images. The resulting value is a number between −1 and 1, where a value of
1 indicates that the two images are the same, and a value of −1 indicates that they are completely
different. We calculate the average SSIM by repeating the data augmentation process randomly for
each type of RF data. The SSIM metric is defined by

SSIM(X ,Y ) = [A (X ,Y ) · B (X ,Y ) · C (X ,Y )] =
(2μx μy + c1) (2σxy + c2)

(μ2
x + μ

2
y + c1) (σ 2

x + σ
2
y + c2)

, (15)

which is measured based on three elements between two samples (i.e., X and Y ), namely lumi-
nance, contrast and structure, denoted as A (.), B (.), C (.). μx and μy are the means of X and Y ,
respectively, and σx and σx are the variances of X and Y , respectively. σxy is the covariance of X
and Y , and c1 and c2 are two constants calculated based on the range of pixel values, respectively.
For Equation (15), a fixed size window is taken from the image, and then the window is contin-
uously slid to perform the calculation, and, finally, the average value is considered as the SSIM.
Table 4 shows that the average SSIM values of TFSemantic are all considerably smaller than the
baseline GAN methods for all the four devices, which means that TFSemantic can achieve the best
diversity in data augmentation.
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Table 5. Performance of Augmented Datasets on the Three Tasks

Task GAN-based Augmentation Imbalanced Learning

Methods GAN ACGAN BAGAN TFSemantic SMOTE CSSVM TFSemantic

Metrics Acc G-mean Acc G-mean Acc G-mean Acc G-mean Acc G-mean Acc G-mean Acc G-mean

D40% 81.40 75.29 81.76 76.32 84.29 78.94 89.03 84.62 78.83 75.85 84.16 82.06 83.35 82.41
D60% 78.47 70.31 76.24 69.88 84.53 80.95 90.62 85.58 80.69 71.39 79.20 75.96 85.12 82.34
D80% 68.35 60.76 63.38 60.05 81.89 73.29 84.10 81.07 72.90 62.79 69.42 63.44 84.91 81.22
D90% 69.14 61.78 62.50 60.39 81.25 73.02 82.09 75.48 56.20 50.77 63.60 62.08 80.73 73.72
D95% 67.04 58.75 49.21 46.23 80.20 74.01 78.93 75.34 49.14 47.93 60.27 58.22 69.20 66.07

Task Learning-based Sensing

Methods AlexNet DSN OneFi RFNet

Metrics Acc G-mean Acc G-mean Acc G-mean Acc G-mean

D40% 7.90(+) 8.43(+) 6.14(+) 8.24(+) 6.85(+) 7.45(+) 5.18(+) 6.83(+)
D60% 17.20(+) 16.46(+) 10.83(+) 14.45(+) 5.86(+) 10.98(+) 8.84(+) 12.89(+)
D80% 16.54(+) 18.48(+) 14.32(+) 17.53(+) 7.84(+) 12.07(+) 9.08(+) 10.43(+)
D90% 18.60(+) 20.21(+) 17.88(+) 21.34(+) 13.41(+) 17.47(+) 13.17(+) 16.91(+)
D95% 24.61(+) 27.90(+) 21.40(+) 25.47(+) 15.55(+) 17.19(+) 17.11(+) 18.05(+)

Note: (+) Represents the improvement in accuracy and G-mean; Dx% is the percentage of data removed from the

original dataset to make the minority classes.

5.3 Results on the Three Tasks

For each dataset, we randomly select two classes of activities and remove the data by a specified
ratio (denoted as Dx%), which are regarded as minority classes. Considering the different sample
sizes of the four datasets, we do not additionally set the ratio of the training set to the test set
but use the removed data from the minority classes as test set. Table 5 shows the performance of
TFSementic on the three tasks. Note that we use bold numbers and the symbol (+) to mark the best
results and the improved accuracy, respectively.

5.3.1 GAN-based Data Augmentation. TFSemantic and three GAN-based methods are used to
restore the balance of the WiFi dataset. For fairness, we use the same CNN model to calculate the
recognition accuracy of the minority classes. It can be seen that TFSemantic achieves the best per-
formance, and the highest recognition accuracy is 90.62% when the samples of minority classes are
reduced by 60%. Meanwhile, the TFSemantic can reach the interval of 75% to 85% in the experimen-
tal results of the G-mean assessment index. Besides, we can see that TFSemantic has the largest
G-mean value when Dx% is from 40% to 90% and also obtains the second G-mean value with Dx%
with 95% when the number of samples is insufficient. Therefore, TFSeamtic demonstrates the high
distinguishability of our synthesized signals.

5.3.2 Imbalanced Learning. For imbalanced learning, we use all four datasets to evaluate the
learning performance. For fairness, we set their activity classifiers as fully connected layers. TFSe-
mantic can greatly improve the average accuracy compared to the baselines. The highest accuracy
of TFSemantic is 85.12%. When Dx% = 95%, the average accuracy of TFSemantic becomes 69.20%,
which is still higher than that of SMOTE and CSSVM. In addition, we find the accuracy of SMOTE
decreases to 49.14% when Dx% becomes 95%. This is due to the blind generalization in generating
minority examples of SMOTE in the highly skewed case. Based on the G-mean metric, TFSemantic
demonstrates the feasibility of solving the imbalance problem compared with other baseline mod-
els, which can improve the recognition accuracy of minority classes, while avoiding a decrease in
the accuracy of majority classes.
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Fig. 7. Impact of different system parameters.

5.3.3 Learning-based Sensing. For learning-based sensing, we also use all four datasets. Differ-
ent from the above dataset construction, we evaluate the full RF dataset. The constructed imbal-
anced dataset will be first used for the baseline model to perform the recognition calculations for
minority classes. We then input the dataset to TFSemantic for dataset augmentation. Finally, the
recognition calculation is performed once to obtain the enhancement of TFSemantic. Note that the
sample size varies from dataset to dataset, so the amount of data in each category in a dataset is
randomly cropped to a specified amount for ensuring that the sample size of the dataset used for
training is consistent. The performance of TFSemantic is evaluated by comparing the recognition
accuracy of the minority classes of the four DNN modes using both imbalanced and augmented
datasets created by TFSemantic. The augmented dataset improves the recognition accuracy by 5%
to 24% and the G-mean by 6% to 27%. The improvements of OneFi and RFNet are relatively smaller,
both of which are few-shot learning models. These models can achieve a higher recognition accu-
racy with only a few training samples during a fine-tuning phase.

5.4 Robustness Study

We choose the enhanced accuracy as the y-axis in Figure 7, which is the magnitude of the accu-
racy improvement when TFSemantic is tested on the enhanced dataset, comparing with the origi-
nal dataset. Figure 7(a) shows the accuracy on the datasets collected by different sensors. For RFID
data using DSN, the enhanced accuracy is close to 15%. Figure 7(b) shows the accuracy on different
subjects. We find that the average accuracy is similar over different subjects, which demonstrates
the better adaptation of TFSemantic for different subjects. Figure 7(c) shows the accuracy in dif-
ferent environments. It is noted that the average improvement is 6% in the lobby case, which is
higher than that of the classroom and office cases, because the lobby is more cluttered. Figure 7(d)
shows that TFSemantic can well adapt to different numbers of minority classes.

For domain adaptation of RF sensing applications using the above four datasets, we consider that
the dataset from the source domain is balanced, while the dataset in the target domain is imbal-
anced. Here a domain means a deployment environment. Specifically, the data of minority classes
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Fig. 8. Performance of adaptation to different environments: E1, E2, and E3 represent three different

environments.

Table 6. Ablation Study of TFSemantic

Strategy I Strategy II Strategy III Strategy IV Accuracy (%)

57.62
✓ 73.88
✓ ✓ 82.79
✓ ✓ ✓ 86.84
✓ ✓ ✓ ✓ 89.72

from the target domain will be combined with the data in the source domain (in a ratio of 1:20),
which is used for dataset augmentation by TFSemantic. As shown in Figure 8, the average accuracy
has been increased by about 4% to 12% over different learning methods by leveraging TFSemantic.
Moreover, OneFi and RFNet have a smaller accuracy improvement, because their original accuracy
is already high.

5.5 Ablation Study

To measure the impact of semantic extraction and semantic distribution on the TFSemantic perfor-
mance, we conduct an ablation study on the WiFi dataset. Specifically, we study the influence of the
four key strategies in TFSemantic, namely Data Preprocessing (Strategy I), Fourier SFC (Strategy
II), Attention SFE (Strategy III), and Semantic SP (Strategy IV). Each strategy will be replaced by
the simplest fully connected or convolutional layer to ensure the subsequent steps. Table 6 shows
the impact of each key strategy on the overall system performance. As can be seen from the table,
Data Preprocessing, Fourier SFC, and Attention SFE make larger contributions to TFSemantic.

5.6 Behavior Analysis

Using the WiFi dataset, we examine the relationship between the recognition accuracy of the
minority classes and the parameters set in Section 4.1. As shown in Figure 9, different R values
(i.e., 1, 2, 4, and 8) are set. We can see that as the increase of the ensemble margin, the accuracy
for different R values also increases steadily. In addition, it is noted that the accuracy can reach
up to 92.8% when R = 1, because the classes in the dataset have already been balanced. The
results indicate the superiority of the behavior of TFSemantic, which validates our optimization
objective.
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Fig. 9. Behavior analysis in TFSemantic for different R values.

6 DISCUSSIONS

In this section, we discuss the limitations of the proposed method and future research directions.

6.1 Computational Overhead

The utilization of generated data through dataset augmentation within the TFSemantic framework
serves to mitigate the issue of imbalanced datasets, while also reducing the need for extensive data
collection. The implementation of TFSemantic involves two phases, including dataset augmenta-
tion and training on the augmented dataset. While this approach leads to additional computational
workloads, they are acceptable in light of the reduction in data collection efforts. In the future, we
will focus on optimizing the system through the techniques such as dynamic planning and parallel
computing to improve the computational efficiency of TFsemantic. Besides, a few-shot or zero-shot
learning will be exploited as a potential solution to optimize the computational overhead of TFSe-
mantic. Also, it can be used to improve the generalization and learning ability of the model during
the model training phase.

6.2 Semantic Control

TFSemantic in our work is a GAN model redesigned based on the time–frequency semantic infor-
mation of RF signals, where a generator network is trained to generate new RF data similar to the
given dataset and a discriminator network is trained to distinguish the real data from the gener-
ated data. We generate minority classes of data for restoring the balance of the dataset. Therefore,
when an extreme imbalance occurs, the minority class data for learning is very limited, which will
lead to an unsatisfactory performance of TFSemantic. In a follow-up work, we consider extend-
ing semantic learning in TFSemantic to semantic control, where conditional GAN (cGAN) [31]
will be exploited. The generator is tuned by additional inputs based on class labels, titles, or other
forms. TFSemantic combined with cGAN can generate new examples of a particular class, e.g.,
signals that match a particular content description, or convert input signals from one style to an-
other. This enables the above data-limited problem to be solved and will also enable TFSemantic to
serve more relevant tasks (e.g., elderly fall detection, sports rehabilitation training, and gait recog-
nition). Additionally, radio signals are characterized by parameters such as signal-to-noise ratio,
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bandwidth, and frequency, which are directly related to spectrum image quality. To generate data
more close to signal in real world, we will also consider exploring the way to inverting synthetic
spectrum data achieved by TFSemantic back to radio signals.

7 CONCLUSIONS

In this article, we proposed a time–frequency semantic GAN framework, TFSemantic, to address
the imbalanced classification problem in RF-based sensing tasks. First, we discussed the related
work and the class imbalance problem. Then we formulated the problem and provided the sys-
tem framework including the data pre-processing module, the semantic extraction module, the
semantic distribution module, and the dataset augmenter module. In addition, hyper-parameters
were also examined. Finally, we validated the proposed TFSemantic framework using different RF
datasets and comparison with several state-of-the-art methods. The results validated that our pro-
posed method can effectively address the data imbalance problem and is effective in improving the
performance of RF-based classification tasks.
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