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Abstract The network design problem is a well known
optimization problem with applications in telecommunica-
tion, infrastructure designs and military operations. This
paper devises the first formulation and solution methodol-
ogy for the multi-commodity k-splittable two-edge disjoint
survivable network design problem with capacitated edges
and relays. This problem realistically portrays telecommu-
nications network design but has not been solved previously
due to its computational difficulty. Edge capacity is consid-
ered as either a discrete or a continuous variable. An exact
method and a practical heuristic method are presented, and
computational results are discussed.

Keywords OR in telecommunications · Reliability ·
Survivability · Networks · Heuristics · Capacitated edges

1 Introduction

The network design problem is a well known optimization
problem which has many applications in telecommunication
networks, military applications and infrastructure designs.
In this paper, the main focus is telecommunication networks.
A telecommunication network can be defined as a graph G,
whose elements are nodes, edges and commodities. Cabral et
al. [7] presented the mathematical notation of a telecommu-
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nication network as a node set defined as V = {1, 2, . . . , n}
and an edge set defined as E = {(i, j) : i, j ∈ V, i < j}.
The set of commodities is defined as K = {s(k), t (k)}where
s(k), t (k) ∈ V are the origin (source) and destination (sink)
nodes, respectively. Additionally, each edge (i, j) ∈ E has a
cost ci j and a distance di j .

Cabral et al. [7] specified a class of network design prob-
lems where a subset of possible edges is included and relays
are located at some of the nodes. A relay (or regenerator)
is used to regenerate the signal of the commodity (flow)
along the telecommunication network. In digital telecom-
munication networks, relays are required to regenerate the
signal because it loses fidelity according to distance along
its transmission path [23]. Relays are commonly used in
long distance transculent optical telecommunications net-
works [19]. Accordingly, a relay point is a node where a
signal regenerator is located and incurs a fixed cost [24]. If
the cumulative travel distance of a flow exceeds a predeter-
mined length value, a relay is required [8]. Relays can only
be located at nodes and there can be more than one relay
along a path.

The network design problem with relays (NDPR) is
also known as the regenerator placement problem in the
optical networks field. An optical signal needs to be regener-
ated (usually by optical-electrical-optical conversion) when
its quality of transmission (QoT) degrades due to physi-
cal impairments [29]. The regeneration process reamplifies,
reshapes and retimes (i.e., 3R regeneration) an optical sig-
nal to send it over long distances. Optical networks have
been evolving from opaque to transparent (all-optical) archi-
tectures [5]. In transparent networks no opto-electronic
(optical–electrical–optical) regeneration is needed, how-
ever, some connections may fail in a large geographical
area due to physical layer impairments of the optical sig-
nal [29]. Using regenerators enables optical networks to
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span over large geographical areas without disrupting QoT
[36]. In opaque networks, all nodes are capable of opto-
electronic regeneration to increase flexibility in network
control and facilitate network design but this incurs a higher
cost [15]. Translucent networks lie between opaque and
transparent networks in which some nodes are capable of
opto-electronic regeneration. Regenerator nodes in translu-
cent optical networks need to be strategically placed in order
to minimize the network cost (i.e., capital expenditure or
CAPEX). The problem solved in this paper is applied to
regenerator placement problem in translucent optical net-
works.

In this paper, we extend the survivableNDPR in twoways.
First, we use k-splittable flow which permits split of the
total flow of a commodity among up to k different paths.
Relays are considered independently for each split path and
each survivable path. Second, we include capacitated edges
in the formulation as either continuous or discrete deci-
sion variables to better represent real life applications. These
extensions, k-splittable flow and capacitated edges, have not
been considered before in the survivable NDPR.

The paper is organized as follows. Section 2 summarizes
prior relevant work. Section 3 explains the motivation of this
paper and states the problem. The mathematical model and
the heuristic method are presented in Sect. 4. Section 5 sum-
marizes the computational results. Discussion is provided in
Sect. 6.

2 Literature review

The relay concept was first introduced for the network design
problem by [7]. They applied a column generation method to
theNDPR. Their objective functionwas tominimize the total
cost of the multi-commodity network design problem with
unsplittable flow. They developed four simple constructive
heuristics (where the solution is generated for one commodity
at a time). Konak et al. [23] extended the formulation of [7].
Theirmajor contributionwas survivability of the network and
they termed the problem the “two-edge connected network
design problem with relays”. Survivability is an important
issue in telecommunications networks because high capacity
fiber-optic links make communication networks less dense
[23]. Therefore, survivability helps to maintain connectivity
in the event of failure of an edge and can be achieved by
incorporating redundant paths in the network [33]. For sur-
vivability, Konak et al. [23] assumed that commodity flow is
rerouted over a redundant path in case of edge failure. There-
fore, survivability increases the reliability of the network by
introducing a certain level of redundancy. (A similar surviv-
ability requirementwas proposed byDahl and Stoer [11]who
used a cutting plane algorithm to solve the multicommodity
survivable network design problemwithout relays.) Konak et

al. [23] proposed amixed integer programming (MIP)model,
as well as an efficient genetic algorithm procedure. Addition-
ally, they developed three constructive heuristics and showed
that their genetic algorithmmodel outperforms both the con-
structive heuristics and the MIP formulation in terms of best
objective value and CPU time. In another paper [16], failure
modes of edges are considered along with survivability con-
straints of a multicommodity unsplittable network without
relays. They defined failure modes for simultaneous failures
of multiple edges.

Many researchers have studied the splittable flow problem
which is known as the “k-splittable flow problem”. Obvi-
ously, it is a generalization of the unsplittable flow problem
where k equals 1. Split flows are commonly used in Inter-
net Protocol (IP) networks using Open Shortest Path First
(OSPF) or Intermediate System–Intermediate System (IS–
IS) routing protocols. OSPF allows routers to check their
adjacent links in IP networks, share this information with
other routers to get a complete view of the network topol-
ogy and use the shortest paths from source to destination
permitting flows to split equally if there are more than one
shortest path [37]. OSPF was designed to split traffic equally
among multiple shortest paths according to the equal-cost
multipath (ECMP) principle considering link capacities [28].
Xu et al. [37] suggested a different technique, Distributed
Exponentially-weighted Flow SpliTting (DEFT), to direct
split traffic on non-shortest paths aswell. Similarly, themulti-
path label switching (MPLS) protocol also allows splitting
traffic among non-shortest paths [1]. In one influential paper
on the hub location problem [25], several MIP formulations
for the node constrained splittable flow problem were sum-
marized and a new formulation was proposed. Truffot and
Duhamel [35] proposed a branch-and-price algorithm for the
single commodity k-splittablemaximumflow problem. They
used the columngenerationmethod to obtain the lower bound
for the branching process.

Another aspect of network design problems, capacitated
edges, have been included in several studies. Xu at al.
[38] worked on the dynamic routing of a telecommunica-
tion network with capacitated links. In this problem, the
alternate paths are changed dynamically from hour to hour
as the traffic between pairs of nodes varies with time of
day. To solve this problem efficiently, they proposed a tabu
search algorithm. Ramirez-Marquez et al. [31] proposed an
evolutionary approach to solve stochastic network interdic-
tion problems where an interdictor tries to minimize the
flow of a network by stopping flow on some edges. The
objective of their model is to minimize total cost without
violating reliability requirements. Atamturk and Rajan [2]
worked on the splittable/unsplittable multi-commodity edge
constrained network design problem. They developed valid
inequalities and a branch-and-cut algorithm to solve this
problem. Costa et al. [10] also used valid inequalities to
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ensure that there is enough capacity on each edge to satisfy
demand. They compared the efficiency of Benders, metric
and cutset inequalities as solution approaches. Rajan and
Atamturk [30] studied survivability on capacitated network
design problems and presented a column-and-cut generation
method to solve the problem. In a later paper, Atamturk
and Rajan [3] worked on the capacitated survivable net-
work design problem based on p-cycles (that is, a cycle
having at least three edges). In their approach, the flow is
rerouted along an undirected p-cycle in case of an edge fail-
ure. Frangioni and Gendron [13] solved the multicommodity
capacitated network design problem using a MIP model in
which capacity is defined as the number of facilities on each
edge.

There are many studies on network design with relays
in optical networks, which is also known as the regenera-
tor placement problem. Regenerators are deployed to satisfy
some QoT requirements of optical lightpaths [e.g., opti-
cal signal to noise ratio or bit error rates (BER)] that are
determined by the optical reach (i.e., the maximum distance
of an optical signal to travel without regeneration) which
is usually between 2000 and 4000 km in optical networks
[26,29].

With the regenerator placement problem, routing of the
traffic flows must also be optimized. Without having wave-
length conversion capability, a single wavelength is assigned
to each lightpath so that the wavelength does not change on
fiber links that the lightpath traverses [5]. The routing and
wavelength assignment (RWA) problem has to satisfy this
wavelength continuity constraint. The wavelength continuity
constraint is eliminated when all switching nodes have wave-
length conversion capability, however, the total number of
available wavelengths must not be exceeded when assigning
wavelengths on a link. Technically, opto-electronic regener-
ation enables wavelength conversion without any additional
cost [4,29]. Therefore, similar to [17], we assume the traf-
fic can be switched between different wavelengths with full
wavelength conversion at every node. Also, it is assumed
that there are sufficiently many wavelengths available so
that wavelength assignment problem is not considered in our
mathematical model.

Physical impairment issues are important in optical net-
works. Azoldolmolky et al. [5] summarized the types of
physical impairments (linear or nonlinear) and different
approaches (analytical and hybrid/simulation methods) to
model them in RWA problems in optical networks. Linear
impairments affect individual wavelengths, however, non-
linear impairments may also disturb and interfere with other
wavelengths [29]. There are two ways to include physical
impairments in the model. The first one [6,15] is to calculate
linear and/or nonlinear physical impairments using simula-
tion or analytical methods and consider this in the routing
problem. The second way [29] is to include the impairment

issue indirectly by specifying an optical reach and solve the
routing problem accordingly. In our paper, the optical reach
is specified and the routing problem is solved with that con-
straint.

In regenerator placement problems traffic demands can be
static (offline) or dynamic (online). Static network demands
are known a-priori, whereas dynamic demands have stochas-
tic arrival times and lifetimes [5]. In the static demand case,
the routing problem is solved for network planning [14].
According to Varvarigos and Christodoulopoulos [36], static
routing problems in optical networks are harder to solve than
dynamic ones. In somedynamic traffic studies, the location of
regenerators are given and only the routing problem is solved
according to a given traffic matrix and network topology. For
example, Dey and Adhya [12] solved the routing problem in
wavelength-division multiplexing (WDM) networks with a
limited number of regenerator facilities without considering
CAPEX. In our paper, demands are assumed to be static.

Garcia-Manrubia et al. [15] worked on the regenerator
placement and wavelength assignment problem with offline
routing in translucent optical networks considering linear
and nonlinear physical impairments. Theymodeled the prob-
lem as Mixed Integer Linear Programming (MILP) model
and tested it on NSFNET and Internet2 networks. They
minimized the number of regenerators and the number of
blocked lightpath requests. They also developed a heuris-
tic to decompose the problem into smaller problems and
then solved them sequentially. Their heuristic first solves
the routing problem, then assigns wavelengths, and finally
places regenerators. Klinkowski [21] developed a heuris-
tic algorithm to solve spectrum allocation and regenerator
placement in translucent elastic optical networks. Martinelli
et al. [26] worked on the all-optical regenerator place-
ment problem in Wavelength Switched Optical Networks
(WSON). They proposed an MILP model and applied their
method on Deutsche Telekom and Pacific Bell networks.
Martinelli et al. [27] solved the same problem proposed by
[26] using Genetic Algorithms (GA).

According to Azodolmolky et al. [5], there are very few
studies addressing resilience and protection in routing with
physical layer impairment problems. Beshir et al. [6] worked
on the regenerator placement problem on two-edge disjoint
survivable optical networks. They investigated two versions
of this problem: (1) dedicated regenerators where sharing
of regenerators are not allowed between edge disjoint paths,
and (2) shared regenerators where sharing of regenerators are
allowedbetween edgedisjoint paths. Theyproposed anMILP
model and a heuristic method to solve each variant. In their
model, the objective function is to minimize the total num-
ber of regenerators. They also assigned awavelength for each
link,whichwasnot considered inourmodel. They considered
the impairment level of lightpaths, but they did not consider
splits. Cherubini et al. [9] proposed a linear programming
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Fig. 1 Two-edge disjoint survivability of a network with two splits
(nodes s and t are the source and sink nodes, respectively)

model to minimize the maximum link utilization in telecom-
munication networks considering survivability for link fail-
ures. They explained the splitmechanism in InteriorGateway
Protocols, such as IS–IS and OSPF. In these protocols, the
traffic can be split into equal flows between the origin and the
destination nodes. In ourmodel, splits do not have to be equal.
They also defined link restoration constraints as their sur-
vivability requirements. They tested their proposed method
on random and real networks. Considering only routing and
splits with survivability, they did not consider regenerator
placement or impairment issues. In our problem, regenera-
tor locations are determined as well as the survivable offline
splittable routing problem. Huang et al. [17] proposed a rout-
ing scheme, differential-delay-constrained disjoint paths, in
mesh networks employing WDM considering survivability.
They use a backup path with a reserved bandwith (equal
to the primary path) as the survivability constraint allowing
sharing of the backup capacity. They worked on the dynamic
traffic case without considering regenerators or split flows.
They took into account a differential-delay constraint, which
is based on the distance of the path and the number of links
it traverses, when considering survivable paths.

3 Motivation and problem definition

The base problem herein is similar to that of [23], a multi-
commodity survivable NDPR. The problem is also known as
the regenerator placement problem in the optical networks
literature and only a few studies considered survivabil-
ity in regenerator placement problem for optical networks
[5,6,9,17]. Also, the survivable network with k-splittable
flow has not been considered in the literature, and this is
one of the major differences of this paper with that of [23]. In
this paper, an edge disjoint survivable path is assigned to each
split path. In otherwords, there are two-edgedisjoint paths for
each split. Figure 1 shows the survivability requirements of a
network with one commodity. In this example, there are two
splits (k = 2) and two-edge disjoint paths are assigned for
each split. As the other major distinction, capacitated edges

Fig. 2 NSFNET backbone network topology (from [18])

are used herein. Considering edge capacity is an important
decision in real life applications [20]. In telecommunication
networks, edge capacity is usually defined in terms of Gbps
(gigabit per second) [32]. As technologymatures, higher rate
connections become available. In WDM networks, connec-
tions moved from 10 to 40 and 100 Gbps became available
recently, and therefore mixed-line-rate WDM systems (hav-
ing mixed capacities) with lower costs than single-line-rate
WDM systems are in use [36]. Note that, optical reach
gets significantly lower as bit rate increases [4]. Although
capacitated edges [2,10,13,30,31,38] and k-splittable flows
[1,25,28,35,37] are not new in network design problem
as reviewed in the previous section, survivable network
design with the properties of capacitated edges, relays and
k-splittable flow has not previously been formulated nor
solved. The original problem is NP-hard [5–7], and both
the capacitated edges and k-splittable flow introduce new
decision variables and constraints to the mathematical pro-
gramming formulation, therefore the problem in this paper
is expected to be harder to solve than the original prob-
lem. Tomaszewski et al. [34] showed that the two-edge
disjoint capacitated survivable network design problem is
NP-hard.

Relays (or regenerators) are used in real life applica-
tions. For example, National Science Foundation Network
(NSFNET) in North America uses regenerators (Fig. 2).
Katrinis and Tzanakaki [18] and Garcia-Manrubia et al. [15]
studied the regenerator location problem on NSFNET to sat-
isfy optical reach requirements. For example, consider an
optical signal fromHouston to Seattlewhere the optical reach
of the network is 3000 km. The optical signal from Hous-
ton cannot reach Seattle without a regenerator because the
shortest distance exceeds 3000 km. If the primary path is
Houston–San Diego–Seattle, the signal must be regenerated
at San Diego. Similarly, Salt Lake City (or Boulder) must
also be a regenerator node if the edge disjoint survivable
path is selected as Houston–Boulder–Salt Lake City–Palo
Alto–Seattle.

To address this problem class, an MIP formulation and a
heuristic method are presented in the next section.
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4 Methodology

4.1 Mathematical model

The mathematical model of the Multi-Commodity k-splitta-
ble Two-Edge Disjoint Survivable Network Design Problem
with Relays (where edge capacities are known) is given
below:

Notation

k = Commodity
s = Split
p = Survivable path
N = Set of nodes
E = Set of edges

Decision variables

xi j =
{
1 if edge (i, j) or ( j, i) is included in the solution,
0 otherwise

yi =
{
1 if node i is a relay node,
0 otherwise

cki js =
⎧⎨
⎩
1 if edge (i, j) is used by commmodity k in its

split s,
0 otherwise.

zks =
{
1 if commodity k uses split s,
0 otherwise.

ukisp =distance that commodity k goes before the relay node
i in survivable path p of split s

vkisp = distance that commodity k goes after the relay node
i in survivable path p of split s

fks = flow of commodity k allocated to split s
fki js = flow of commodity k allocated to edge (i, j) in split

s

Parameters

λ = maximum distance that a flow of a commodity can
go on a given path without a relay

ci j = cost of including edge (i, j) in the solution
di j = distance of edge (i, j)
li j = maximum flow allowed on edge (i, j)
Fk = total flow of commodity k
ri = cost of locating a relay at node i
nspl = number of splittable paths
nsur = number of survivable paths
sk = source node of commodity k
tk = sink node of commodity k
M = a sufficiently big number

Objective function

Min z =
∑
i∈N

ri ∗ yi +
∑

(i, j)∈E :i< j

ci j ∗ xi j (1)

Constraints

∑
(i, j)∈E

cki js −
∑

( j,i)∈E
ck jis =

⎧⎪⎨
⎪⎩
nsur ∗ zks ∀ k, s, i = sk,

−nsur ∗ zks ∀ k, s, i = tk
0 otherwise

(2)

ukisp ≥ vk jsp + d ji − [
1 − ck jis

] ∗ M ∗ λ

∀ k, p, i, s, and (i, j) ∈ E (3a)

ukisp ≤ λ ∀ k, p, i, s (3b)

vkisp ≥ ukisp − yi ∗ λ ∀ k, p, i, s (3c)

∑
s

cki js +
∑
s

ck jis ≤ xi j ∀ k, (i, j) ∈ E : i < j (4)

cki js ≤ zks ∀ k, s, (i, j) ∈ E (5)

1 ≤
∑
s

zks ≤ nspl ∀k (6)

∑
s

fks = Fk ∀k (7)

fks ≤ Fk ∗ zks ∀ k, s (8)

fks − Fk ∗ [
1 − cki js

] ≤ fki js ≤ fks ∀ k, s, (i, j) ∈ E
(9a)

fki js ≤ Fk ∗ cki js ∀ k, s, (i, j) ∈ E (9b)

∑
k

∑
s

[
fki js + fk jis

] ≤ li j ∀ (i, j) ∈ E : i < j (10)

zk(s+1) ≤ zks ∀ k, and s ∈ {1, . . . , (nspl − 1)} (11)

ukisp, vkisp, fks, fki js ≥ 0

xi j , yi , zks, cki js ∈ {0, 1} (12)

The objective function minimizes the total cost, which con-
sists of twoparts: (1) relay costs and (2) edge costs.Constraint
2 is the standard node flow balance constraint. It ensures
that a total of nsur paths are established for each split flow
of commodity k. Constraints 3a, 3b and 3c work together
to determine the u and v variables, and the relay variable
y is determined according to the u and v variables as also
explained by [23] and [22]. Constraint 3a calculates the total
distance traveled by commodity k to node i without visiting
a relay on survivable path p of split s. Constraint 3a becomes
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ui ≥ v j + d ji if edge ( j, i) is used by commodity k in split
s. If node j is not a relay, Constraint 3c becomes v j ≥ u j

and therefore we obtain ui ≥ u j + d ji by substituting u j for
v j in 3a. Thus, ui is the cumulative distance from a relay, or
the source node, to i without passing any relay. On the other
hand, Constraint 3c becomes v j ≥ u j − λ in the case that j
is a relay and therefore v j can be zero since Constraint 3b is
u j ≤ λ. And, if v j = 0 then Constraint 3a becomes ui ≥ d ji

and the distance is restarted after the relay at node j . In short,
in the case that node j is a relay, the total distance after node j
(v j ) becomes zero byConstraint 3c. Similarly, if node j is not
a relay then v j is forced to be equal to u j since the objective
functionminimizes the relay costs (as well as the edge costs).

Constraints 2 and 4 ensure that there exist nsur edge dis-
joint paths of each split of every commodity and all paths
are edge disjoint. Constraint 5 forces z to be 1 if the c vari-
able is 1 for a given split s. Constraint 6 limits the number
of splits of each commodity to the specified upper limit of
number of splittable paths. Constraint 7 states that for any
commodity k, the sum of its split flows is equal to the total
flow requirement of that commodity. Constraint 8 prohibits
fks to be positive when z is not 1. For a given commodity,
Constraints 9a and 9b set the upper and lower bounds of
fki js , respectively. Constraint 9b also forces cki js to be 1 if
fki js is positive. Constraint 10 is the edge capacity constraint.
Constraint 11 prevents selection of a split s if split (s − 1)
is not included in the solution. Constraint 12 is simply the
bounding constraint for the decision variables.

Two possibilities are presented to incorporate the edge
capacity variable, li j , into above formulation: (1) continuous
and (2) discrete. The model with continuous values of edge
capacities uses the same formulation as above, Eqs. 1–12.
However, the objective function is changed to include edge
capacity costs. The new objective function is given in Eq. 13.
Here, the capacity of edge (i, j) increases the total cost of
the network by li j ∗ ci j where ci j is assumed to be the unit
cost of capacity of edge (i, j).

Min z =
∑
i∈N

ri ∗ yi +
∑

(i, j)∈E :i< j

ci j ∗ [
xi j + li j

]
(13)

Note that, li j is a new decision variable and defined as:

li j = capacity of edge (i, j), li j ≥ 0

This formulation optimizes the cost of relays, edge selections
and edge capacities. The second model allows only discrete
values for edge capacities. It has the same objective function
as (13), however, the variable li j is defined as:

li j = capacity of edge (i, j), li j = a ∗ y(li j )

where y(li j ) ∈ 0, 1, 2, and

a = parameter value of edge capacity value

The integer variable y(li j ) ensures that any edge capacity vari-
able can take only discrete values: 0, “a”, or “2a”. In real
applications, limited choices of capacity on each edge is a
more reasonable assumption than a continuous capacity vari-
able due to physical constraints on hardware. To illustrate,
edge (i, j) is not included in the solution (and its capacity
is zero) when y(li j ) = 0, the capacity of edge (i, j) is “a”
when y(li j ) = 1, and capacity of edge (i, j) is “2a” when
y(li j ) = 2. As with the continuous edge capacity case, total
cost of the network increases as the capacity of edge (i, j)
increases (Eq. 13).

As will be shown in Sect. 5, due to the complexity of
the problem, the MIP formulation does not yield satisfac-
tory results for problem instances with more than 20 nodes.
Therefore, a relaxation based heuristic method is presented
in the next subsection.

4.2 The proposed heuristic

The proposed heuristic consists of three steps as shown in
Fig. 3. Each step solves a modification of the original formu-
lation given in Sect. 4.1. In the first step of the heuristic, relay
placements are optimized without considering edge costs or
capacities. The objective function only includes relay costs.
In the second step, the uncapacitated problem is solved to
assign edges using the relays located from the first step. Only
edge costs are considered in this second step. In the third
step, edge capacities are optimized with the specified relays
obtained from the first step and edges from the second step.
Thus, all cost elements (edge costs, edge capacity costs and
relay costs) are included in the resulting cost function.

The main advantage of this heuristic is the reduced
problem size. Although this method does not guarantee opti-
mality, the gap is relatively low (see Sect. 5) and the solution
time is less than the original formulation.

5 Computational experience

In this section, computational experience is presented.
Approaches are considered for both specified edge capacities
and variable edge capacities (continuous or discrete values).
Exact results and those from the heuristic are shown.

The size of the problem is determined by the number
of splits, the number of survivable paths, the number of
commodities and the number of nodes (also determines the
number of possible edges). Five problem instances of sce-
narios with different number of nodes were used to test the
computational performance of the proposed methods. In one
instance, the edges sets (available edges and their costs and
distances) are the same as that of [23]. The remaining four
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Step 1. Solve the uncapacitated problem
for optimal relay placement.

min z =
∑

i∈N

ri ∗ yi

yi

Step 2. Solve the uncapacitated prob-
lem for optimal edge selection using the
relays from Step 1.

min z =
∑

(i,j)∈E:i<j

cij ∗ xij

xij

Step 3. Solve the capacitated problem
for optimal edge capacities using the
relays from Step 1 and the edges from
Step 2.

min z =
∑

i∈N

ri∗yi+
∑

(i,j)∈E:
i<j

cij∗(xij+lij)

stop

Fig. 3 The proposed heuristic

instances were randomly generated based on [23]. Specifi-
cally, edge costs and distances are assumed to be identical
and vary uniformly between 0 and 30. For all scenarios, the
number of commodities is five, and flow of a commodity
varies uniformly between 10 and 20. The source and the des-
tination nodes of a commodity are randomly selected to be
far apart from each other. The edge capacities are fixed at 30
for the problem instances with specified edge capacities. The
maximum distance that a flow of any commodity can travel
without a relay (λ) is 30, which is the same as that of [23].
The maximum number of splits is set to two in this paper,
which is common in network design problems. The number
of survivable paths is set to two for all problem instances.
The problems were solved in CPLEX 11.2.1 (with a time
limit of 24 h) on a Linux computer with 2.27 Ghz Intel Quad
Core Xeon CPU and 4 GB memory.

To demonstrate the difficulty of the problem and validate
the need for a heuristic, the largest test instances that can
be solved to optimality within 24 h are reported in Table 1.
As expected, the fixed edge capacity scenario with splittable
flows can be solved for larger problem instances than the
discrete and the continuous edge capacity scenarios with
splittable flows. The continuous case is slightly easier to
solve than the discrete one because the discrete case hasmore
integer variables. Not surprisingly, unsplittable flow cases
(nspl = 1) are much easier to solve than splittable cases.

To demonstrate the effect of different parameter levels
on the number of relays, Table 2 summarizes the results for
one instance of the 35 node fixed edge problem with differ-
ent λ, nspl and nsur values. Not surprisingly, as the value of
λ increases the number of relays decreases since a greater

Table 1 Largest test problems that can be solved to optimality within
24 h with CPLEX

Edge capacity nspl∗ Largest node size

Fixed 2 40

Discrete 2 8

Continuous 2 9

Fixed 1 55

Discrete 1 21

Continuous 1 22

∗ nspl = Maximum number of splits

Table 2 The number of relays for an instance of the 35 node fixed edge
problem with different values of λ, nspl and nsur

λ nspl = 1 2 3

nsur = 1 2 3 1 2 3 1 2 3

20 6 9 10 6 7 10 6 7 10

25 5 5 8 5 5 7 5 5 6

30 4 4 6 4 4 6 4 4 6

40 3 3 4 3 3 4 3 3 4

optical reach allows signals to travel further without regen-
eration. The results show that allowing splits can reduce the
number of relays because the capacity of edges can be better
utilized. For example, for the λ = 25 and nsur = 3 instance,
the number of relays are 8, 7 and 6 when nspl is 1, 2 and
3, respectively. Also, the number of relays increases as the
number of survivable paths increases because these paths
also require relays.

Results of the test sets for 6–35 nodes with five com-
modities are given in Tables 3, 4 and 5. Five different data
sets are tested for each scenario. One data set was taken
from [23] and four data sets were generated randomly by
assigning edge costs, edge distances and relay costs. ForMIP
models, denoted as “exact”, % gap values are directly taken
from CPLEX. The gap of the heuristic is calculated accord-
ing to its corresponding exact solution, i.e., 100*(Heuristic
solution−Exact solution)/Exact solution. Therefore, a nega-
tive % gap is found when the heuristic finds a better solution
than its corresponding CPLEX run.

Table 3 summarizes the results of the test instances with
specified edge capacities. The optimal solution could not be
found in 24 h for most problem instances with 50 nodes
and larger. Discrete and continuous edge capacity problems
are much harder to solve to optimality than fixed capacities
(Tables 4 and 5).

It is seen fromTables 4 and 5 that the heuristic method can
find better results than the MIP model for larger sized prob-
lems in 24 h. For example, the heuristic found better results
(negative % gap) for discrete problems than the MIP model
for some problem instances with 25 nodes and larger. For
some continuous case problem instances, the heuristic could
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Table 3 Results of five runs of
the fixed edge problems

)paG(tolpxoB)%(paG)s(emiTUPC
Size Average Min Max Average Best SD
10N 3,312.53 0.40 16,560.00 0 05 0
15N 17,288.52 3.20 L 0.76 04 1.7
20N 223.03 4.68 1,070.96 0 05 0
25N 7,187.52 1.85 30,396.00 0 05 0
30N 249.13 3.12 946.25 0 05 0
35N 991.71 16.86 4,455.82 0 05 0
50N 52,052.46 409.65 L 12.05 02 12.85
100N 69,240.95 604.77 L 19.04 01 23.41

a L = 86,400 s
1,2,4,5 Numbers indicate the number that of times the optimal solution is found within 24 h

Table 4 Results over five data sets of 10, 15, 20 and 25N problems

)paG(tolpxoB)%(paG)s(emiTUPC
DStseBegarevAxaMniMegarevAegdEeziS

10N

Continuous-exact 69,214.69 473.43 La 59.61 0.01 36.73
Discrete-exact 70,617.19 7,485.93 L 23.47 0.00 19.86
Continuous-heuristic1 2.22 0.15 8.76 84.60 64.30 28.79
Discrete-heuristic1 2.22 0.16 8.78 36.90 3.04 31.60

15N

Continuous-exact L L L 80.08 67.36 10.33
Discrete-exact L L L 67.79 56.18 10.39
Continuous-heuristic1 175.74 0.61 859.68 138.09 74.06 57.09
Discrete-heuristic1 175.72 0.60 859.57 39.89 4.28 30.92

20N

Continuous-exact L L L 85.19 72.91 11.50
Discrete-exact L L L 82.50 75.51 5.59
Continuous-heuristic1 8,278.60 1.43 41,167.29 99.12 43.18 43.60
Discrete-heuristic1 8,276.98 1.95 41,169.47 10.72 -16.97 19.59

25N

Continuous-exact L L L 91.88 88.28 3.72
Discrete-exact L L L 89.06 86.36 1.64
Continuous-heuristic2 9,968.02 2.83 49,828.20 95.11 36.92 61.44
Discrete-heuristic2 9,967.98 3.43 49,825.24 -25.56 -50.26 22.46

a L = 86,400 s
1,2 Numbers indicate the number of instances with no feasible solution

not find good solutions within 24 h. For instance, it found
solutions with over 100 % gap for some test instances with
50 nodes and smaller. Note that a feasible solution could not
be found for some problem instanceswithin 24 h andTables 4
and 5 were built to incorporate these missing values. Specif-
ically, the heuristic method could not find a feasible solution
for one instance each of 10, 15, 20, 30, 35 and 50N. Also,
it could not find a feasible solution for two instances of 25,
35N (only the continuous case), 50 (only the discrete case)
and 100N. According to statistical comparisons using paired
t tests some definitive results were identified. Solution times
of the heuristic (for both continuous and discrete cases) are
significantly shorter than the corresponding MIP models (p
values are 0.000). However, the continuous MIP formulation
finds better solutions (p value = 0.000) than the heuristic for
10 through 35N problems, for the remaining scenarios (50
and 100N) the difference is not significant (p value = 0.145).
For discrete case, the heuristic finds lower objective func-
tion values than the MIP formulation for 25 through 100N
problems (p value = 0.026). However, the discrete MIP for-
mulation finds better solutions for the smaller (10, 15 and
20N) problems (p value = 0.007).

In summary, for the most realistic case, that of discrete
alternatives for edge capacities, the constructive heuristic is
superior for networks of greater than 10 nodes and takes
significantly less computational effort. For large networks
(greater than 35 nodes) the heuristic also outperforms MIP
solved by CPLEX and at a considerable computational sav-
ings.

6 Discussion

In this paper, a realistic problem for telecommunications net-
work design is considered mathematically for the first time.
This problem formulation extends the work of [7] and [23]
by adding capacitated edges (both fixed and variable) and
k-splittable flow, both considerably complicating an already
difficult problem. The edge capacity variable is considered
as either discrete and continuous, however, discrete prede-
termined levels of capacity is a more realistic assumption
due to hardware constraints. The formulation includes two-
edge connectivity to ensure survivability and places relays as
required for transmission integrity.

123



Multi-commodity k-splittable survivable network design problems with relays 131

Table 5 Results over five data sets of 30, 35, 50 and 100N problems

)paG(tolpxoB)%(paG)s(emiTUPC
DStseBegarevAxaMniMegarevAegdEeziS

30N

Continuous-exact La L L 97.44 96.11 1.54
Discrete-exact L L L 90.17 86.86 3.45
Continuous-heuristic1 18,378.26 4.30 L 113.01 98.75 17.86
Discrete-heuristic1 17,849.97 4.26 L -15.71 -36.94 14.79

35N

Continuous-exact L L L 98.83 97.42 0.89
Discrete-exact L L L 94.44 90.33 2.62
Continuous-heuristic2 8,045.44 8.43 40,144.10 144.39 71.77 95.41
Discrete-heuristic1 8,057.64 8.36 40,144.78 -34.32 -56.55 23.98

50N

Continuous-exact L L L 99.93 99.81 0.07
Discrete-exact L L L 96.74 92.51 2.67
Continuous-heuristic1 8,531.83 33.81 40,075.59 90.91 50.55 28.20
Discrete-heuristic2 8,551.97 33.90 40,169.09 -49.70 -95.88 52.11

100N

Continuous-exact L L L 99.99 99.96 0.02
Discrete-exact L L L 99.38 98.17 0.69
Continuous-heuristic2 34,882.34 682.02 L 5.23 -39.27 39.53
Discrete-heuristic2 34,956.40 682.32 L -96.73 -97.62 1.17

a Maximum CPU time (86,000 s) was reached for all problem instances
1,2 Numbers indicate the number of instances with no feasible solution

As expected, the difficulty of the problem increases dra-
matically as the number of nodes increases and the edge
capacity variable dramatically increases the difficulty of the
problem.The problemwith discrete edge capacity is the hard-
est to solve in CPLEXdue to the large number of integer vari-
ables in the formulation. Another complicating issue, split
flows, increases the difficulty of the problem significantly.

The heuristic decomposes the problem into three steps and
then sequentially solves each step optimally. The decom-
posed problems are: (1) Placing relays, (2) Finding edges
and (3) Assigning edge capacities. The first two subprob-
lems of the heuristic are solved for uncapacitated edges. The
advantage of this heuristic is the reduced solution time in
comparison to the original MIP formulation and improved
network designs for medium to large sized problems. How-
ever, for a few problem instances, the heuristic could not find
any feasible integer solution due to the imposed constraint
that the three problems (placing relays, finding edges and
assigning capacities) must be solved within 24 h total.

In addition to the exact method (MIP formulation) and
heuristics of this paper, more effective heuristics might be
developed using metaheuristic optimization methods, such
as GA. Other integer programming methods, such as column
generation or branch-and-price methods, might be also used
to good effect.
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