
DATASEM: A Simulation Suite for
SoSE Management Research

Richard Turner
Stevens Institute of Technology

Hoboken, NJ, USA
rturner@stevens.edu

Levent Yilmaz, Jeffrey
Smith, Donghuang Li,
Saicharan Chada, Alice

Smith
Auburn University
Auburn, AL, USA

smithae@auburn.edu

Alexey Tregubov
University of Southern

California
Los Angeles, CA, USA

tregubov@usc.edu

Abstract – The Systems Engineering Research Center (A
US DoD University-Affiliated Research Center) has been
researching systems engineering and management problems in
the evolution of Systems of Systems (SoSs) since 2011. In 2015,
an initial Demonstration and Analysis Tool for Adaptive
Systems Engineering Management (DATASEM) was
developed to investigate how various combinations of
organizational structure, work flow, and governance
mechanisms affect the visibility, flow, and overall value
produced in developing and evolving SoSs. This paper
provides an overview of the “as developed” initial system,
plans for improving and validating the system, lessons learned
and early results.

Keywords: System of systems, agile, adaptive, management
simulation, scheduling, kanban, lean, value-based, software
engineering, systems engineering.

1 INTRODUCTION
Complicated, large systems of systems in rapid or

continuous deployment environments, where requirements
are not precise and can change or emerge quickly, find
traditional approaches inadequate. Our initial research as
documented in [1-7] has provided a set of agile and lean
governance concepts that represent possible solutions to
some of the problems associated with managing and
evolving Systems of Systems. Key to this research was work
by Reinertsen [8] and Anderson [9]. Initial goals for these
mechanisms include:

• Coordinate multiple levels of development activity
across multiple system components with diverse and
possibly disjoint or isolated development groups

• Support analysis and decision making at every level

• Flexibly schedule work considering value across the
system of systems

• Balance work in progress (WIP) across resources
with SoS organizational capacity to improve flow

• Make visible to all levels progress toward capability
development and deployment

• Establish a basis for continuous improvement in a
rapidly changing environment

Given the number of combinations and complex
interaction among workflow, organizations, environments,
governance mechanisms and strategies, validating and
experimenting with these concepts in vivo is difficult at best.
The solution was to develop a broad simulation environment
to allow in vitro experimentation with such mechanisms,
singly and in concert, operating across a range of
organizational structures and handling different kinds,
durations, complexity and volumes of work flow. We
believe establishing statistically significant evidence across
various combinations of mechanisms, organizations and
work flow, as well as providing a suitable simulation
“sandbox” for adopters to perform their own experiments,
will provide a higher level of confidence than piloting, is
low risk, and provides more value for money to adopters.

I. DEMONSTRATION AND ANALYSIS TOOL FOR ADAPTIVE
SYSTEMS ENGINEERING MANAGEMENT (DATASEM)

A. Concept Development
The initial DATASEM concept was to create a means of

modeling organizations, workflows and governance
mechanisms and then simulating how they interacted with
each other. The decision to use an agent-based simulation
was made based on the desire for flexibility describing
people responsible for doing managerial, technical and
analysis work, making decisions about value, services,
accepting or assigning work, negotiating, and other human
activities. Although it required additional overhead, and had
more power and functionality than we initially needed in the
simulation, Repast Simphony was the open source product
chosen because of its popularity and usage in academia, and
previous successful experience by members of the team
using it. Somewhat later, it was discovered that Repast
lacked a web-based interface, which led to unexpected work
and limited the capabilities of the initial web-based version
delivered. Figure 1 provides an overview of the general flow
of the DATASEM suite.

Fig. 1. Overall DATASEM Flow

B. Architecture
Two versions of the DATSEM Software have been

developed. One is a web-based implementation and the
second is a standalone version. Both are represented in the
overall architecture of the initial DATASEM Suite, is shown
in Figure 2. The standalone version of the DATASEM can
also be installed in developers’ mode in Eclipse IDE. This
installation includes two projects (Repast simulation engine
and Extext/Extend Modeler) in Eclipse IDE. From Eclipse
IDE users can Edit and compile DSL as well as change its
grammar and change Java implementation of the agents and
governance mechanisms.

The Web application of the DATASEM consists of three
major components (groups of modules).

DES Framework web application – Provides UI and
connects all other external components and includes the
following:

1. Web front end (UI) and corresponding back end
modules for UI

2. Database of DSL models

3. Database of experiments

4. Database of simulation results

5. Experiment builders–these include adaptors for DSL
code compiler (such as Extext Modeler)

6. Repast adapters: modules that execute Repast
simulation engine and collect/convert simulation
results (orange modules on the diagram).

Repast simulation engine–a simulation engine that
implements governance mechanisms in Repast Simphony
simulation framework. This module is an independent
application, and can be used as a standalone application.

Extext Modeller – a compiler for DSL code. DSL code
is compiled into xml file of the experiment scenario
(Standardized Simulation Input file on Diagram 1). XML
files then stored in database and be then executed in Repast
without need to recompile them again.

Fig. 2. DATASEM Architecture

The standalone version of the DATASEM application
consists of Repast simulation engine and Extext Modeler
packed together in package. The standalone version of the
DATASEM does not have an embedded DSL editor, so
user’s can either set up Eclipse IDE with Extext/Extend
plugins or use any text editor.

Currently the user interface is limited. Several potential
designs were developed, but the continuing evolution of the
models and the implementation of the DSL tool left the user
interface essentially a DSL-based editor. Outputs are also
minimal, although full .xls and .csv files of the simulation
results provide for external tools to be added. The user
interface and output formats are near the top of the list for
next steps.

II. THE DSL
Early in the design process, the use of a DSL was

proposed to provide both a semi-formal and therefore
verifiable description of an experiment and as a means of
extending the simulation and ensuring common definitions
and functionality. As developed, the DSL has come to be an
important means of both defining the mechanisms more
fully and in identifying the significant interactions between
the three models and the dependencies among them.

Originally planned as three separate DSLs, one for each
aspect – work flow, organization and governance – the DSL
actually evolved into a single language that also captured the
intentions and mechanisms for the experiment. This makes it
a complete representation of the experiment in a single
artifact. The DSL took much more time to develop than
initially thought, and is still significantly evolving in syntax,
semantics, and implementation within the simulation. As
expected, it has had a significant impact in how the team
approached the software development, but the
implementation has also fed back information on the
structure of the DSL. Table 1 shows the basic format of a
complete DSL experiment

Results	Storage
(.ser,	.xls,	.txt

files)

Result	
Visualiza6on	

UI

New	experiment
parameters

External	DSL	
editor

(Notepad	or	
Eclipse	IDE)

DSL	
files

Experiment	DB	UI:
-	list	of	experiments

-view/edit	
experiment

Experiment	
Builders	(EB)

View/Run View

Data	flow	
between	modules

DSL	DB	UI:
-list	of	models

-create/edit	model

Simulator	results	
converter

Sim.	Results	
(ResultSet	object)

Simulator	
adaptor

Integra4on	
modules

Internal	Web	
app	modules

Required	for	
private	or	
standalone

DSL	Models	DB
(collec6on	of	
.dmodel	files	

with	descrip6on)

View/EditExtend	Modeler
(DSL	compiler)

Back-end	Processing	

Browser-based	User	Interface

DSL	files

Repast	Simphony
Simula6on	Engine

Experiment	DB
(collec6on	of	.xml	
files	of	runnable	
experiment	
models)

Governance	
Model

Algorithms
(java	code)

Key:	

Experiment
(.xml	file)

TABLE I. DSL MODEL FORMAT

Section
(Subsection)

Description

Model Name of the model (reserved for later use).
User Libraries Defines basic model components that are

referenced later in creating the experiment.
Service
Provider
Types

This describes the general Service Providers that
can be defined in the model. These are generally
used to identify the type of organization (for
example a prime developer team, a development
contractor, or a specialty service organization).
These can be organized in some form of hierarchy,
but all providers of the same type should be
assigned the same hierarchical level. Service
Providers are essentially the organizational
building blocks. They can be complex or simple.
In some cases, such as an expert that you want to
model as a service, an a service provider could be a
single individual.

Work
Item
 Types

This describes the kinds of work addressed by the
various services. For example, a development
task, an analysis task or a problem resolution task
could all be types of work items. These definitions
also describe hierarchical relationships such as
decomposition and associated value inheritance.
For example, a ‘Capability’ work item defined as
the highest level, could be decomposed into
‘Requirements’ work items (each requirement
might inherit some percentage of the Capability’s
value), which might be decomposed into
Component or Feature work items (again perhaps
inheriting some value), and so forth down to the
smallest task modeled. The level, distribution and
weight of such relationships are described in
attributes associated with each Work Item Type.

Services Each service, for example a development activity,
required for completing the work items or
governance mechanisms are named and described.
Used to characterize skills for organizational
resources.

Governance
Strategies

Each strategy is identified by type (currently pull
or push), the specific mechanisms implemented,
and the attributes associated with each of the
mechanisms.

Experiment
Model

Defines in detail the specific pieces of the model
and how they interact with each other. It also
provides information for how the experiment is to
be run and what outputs are desired.

Variables These are used as references within the
Organizational and Work Item models to provide
constants or multiple types of stochastic
values/distributions.

Organizational
Model

The Organizational Model defines each of the
specific Service Providers in terms of a name,
Service Provider Type, Governance Strategy (and
any governance attributes for this organizational
component that are different from the default
definition), internal resources (staff or other assets)
and other service providers that may provide
services to them. Staff/asset resources are
characterized by a number of attributes, including
Services they can perform and level of expertise as
defined by their efficiency working on those
services. It is possible to use stochastic
distributions to generate attributes.

Work
Item
Network
Models

This section describes the specific work that needs
to be accomplished. Work Items are described to
the level of detail required. Work items are
defined by work item type, service(s) required and
effort, value (if assigned or inherited) probability
and degree of impact on other tasks, prerequisites
(if appropriate), arrival time (if appropriate). Some

work items are aggregations of lower level
activities, but may require additional work to
“analyze” at the higher level to determine how the
decomposition will happen (such as described
earlier in the work item type and hierarchy) . It
may be that this breakdown is determined by the
model with a specific structure, or it may be
through stochastic guidance provided to generate
sublevels of work.

Experiment
Parameters

These are primarily associated with the simulation
run and the user output expected. For example, the
mode of the experiment (batch vs, single run)
number of times to run the simulation (Monte
Carlo), work uncertainty, rework probability
distribution, change propagation characteristics,
learning factor, graphic specifications (for the
online version), multi-tasking penalty.

The full description of the language is captured in the

evolving software and in the DATASEM Domain Specific
Language Reference. [10]

III. VALIDATING DATASEM
A key issue in the success of DATASEM as a tool is the

ability to validate that the results are indeed aligned with
reality. Significant consideration has been given to this
problem

In parallel with the development, Dr. Forrest Shull of the
Software Engineering Institute of Carnegie Mellon
University was designing an approach to this problem. In
[11] he states

Evidence does exist concerning the utility of Kanban
and KSS principles in relevant environments, but
more work needs to be done to quantify the expected
effects and the contexts in which they can be
expected to hold. The vast majority of the empirical
evidence found relies on anecdotal reports or on
qualitative data drawn from interviews and surveys
with developers. While important, such qualitative
evidence may represent the subjective views of the
developers more than the underling reality. The
minority of studies that were identified that do collect
quantitative data from real environments do
corroborate the qualitative evidence, but represent
only a few development contexts with no claim of
wider applicability.

In his framework, he articulates four goals of empirical
study in this domain and proposes a specific study design
capable of satisfying each goal. The goals build upon each
other in a progression to show what could be accomplished
using the constructed simulation tool:

1. Validate that the simulation capabilities and the
Domain Specific Language are capable of capturing a
given system engineering environment with sufficient
accuracy.

2. Once validated for some environment and scenarios,
the simulator can then be used to study any changes
involved in moving from a more traditional system
engineering approach to one based on adaptive
mechanisms. In particular, the metric of product value

delivered over time was identified as a key way to
capture the effect of value-based pull scheduling.

3. Further refinements in the understanding of adaptive
principles can be achieved by altering some of the key
parameters in the scenario while keeping the vast
majority the same, and watching the impact on product
value delivered over time and other key metrics. In
short, this would allow an understanding of the
contexts under which adaptive principles do or do not
provide value.

4. For a given scenario, an analyst could do a deeper dive
into very specific values produced by the simulation
(e.g. resource usage, Work Item delay) to understand
where bottlenecks exist and where the system could be
fine-tuned to deliver more value.

IV. DISCUSSION
This section describes lessons learned, evaluation of

status, and potential for DATASEM-related work in the
future.

A. Significant Lessons learned during the DATASEM
Development
Given the work accomplished in previous research, there

was considerable overconfidence and a general
underestimation of the development difficulty. While some
was due to the normal ramp up of new researchers and
considering new concepts (such as creating a DSL) that
would make the tool more easily extensible, there were
some humbling but enlightening lessons learned.

1) Impact of the interaction of governance strategies,
organizational models and work flow definition in Building
experiments

When initially considering the simulation suite, we
believed that the three activities we were interested in
modeling were essentially independent and that we could
easily mix and match different types. As we actually began
to develop the DSL and the implementation of the various
mechanisms, it became clear this was not the case.

For example, the technical process generally defines how
work is partitioned from higher levels of abstraction to lower
implementation levels. This drives both the batch size in
terms of scheduling, and the number of resources applied to
work items. In the case of a Scrum-like technical
management process, there is a significant effort to fit work
into the sprint length. In kanban systems, some attempt is
usually made to normalize the size of work to some extent.
On the other hand, in a traditional development with
significant sub-contracting or more specialty teams, work
may packaged in larger batches for ease of contracting. The
variation in batch sizes and abstractions makes value
determination much more difficult and comparisons less
convincing.

The technical process also impacts how a work item’s
status towards completion is determined. Many technical
processes are iterative and so may cycle through a number
of intermediate versions of a task. The indeterminate number
of cycles are more difficult to represent in a work item
network. They may also complicate value determination.

The same governance strategy may require very different
mechanisms depending on the organizational definition.
Contractual boundaries require more ceremony, and in the
case of organizations who adopt some form of bidding
process for work, the idea of pull scheduling takes on a
completely different flavor than that associated with a
software development team or of an implementation of
systems engineering as a service.

The experimental design and output specification also
had interactions with the models and the way they needed to
be specified in order to gather comparable data. This was
particularly true if there were significant differences in the
resulting work item network.

We discovered that the order in which decisions on
organization and governance structure are made can affect
the ability to create a reasonable work item network. This
changed our original approach to user interaction with the
system and exacerbated a number of design activities,
including those in the following sections.

2) Difficulty in rigorous definition of governance
strategies and mechanisms

One of the most frustrating realizations was the difficulty
in concretely describing the various governance strategies
and mechanisms. The diversity of researcher backgrounds,
the unexpected vagueness of the concepts, and the
distribution of the team in three areas of the country added
to an already challenging situation. The team believed that
the material developed in the previous research was
sufficiently well-defined to create the simulation.
Unfortunately, as the scope of DATASEM expanded from a
specific governance strategy to a more general sandbox for
experimentation, we realized that our internal definitions
and understanding were not easily captured in more general
ways.

It was not until the task’s last few months that it became
obvious the team was in many ways reenacting the story of
the blind men and the elephant1. Each of us had established
a mental model to work with, but we were all approaching
different parts of the problem and proceeding from different
points of view. These disconnects in understanding each
other’s mental models became much clearer as we attempted
to build DSL examples of the KSSN concept. Flow control
mechanisms such as pull scheduling, classes of service and
limits on work in progress were not implemented in a way
that represented the earlier work. What had been
implemented, however, represented significant mechanisms
that had not been explored earlier. One example is the use of
the Contract Net Protocol as a basis for pull scheduling.
While it does not capture some of the flow control concepts

1 In this ancient parable, a group of blind men encounters an

elephant. To describe it, each touches one part of the animal. The man who
grasped the tail said, “It is much like a rope.” The man who touched the
side said, “No, it is more like a wall!” A third man, having grasped the
trunk replied, “You are both wrong. It is obviously much more like a
snake.” “No, not at all,” said a fourth, who had found the leg. “It is most
surely like a tree.” Unable to resolve their differences, they went off—
none the wiser about the elephant, but each convinced they understood it
better than the others.

of kanban, it does provide a terrific foundation for modeling
negotiation.

Because the discussions around interpretations happened
late in the development process, we were not able to adjust
the DSL or implementations to do a full model of KSSN for
this release. We have, however, gained a great deal of
insight into the issues around these mechanisms, and are
seeking ways to unify our differing visions to create a
broader, more useful DATASEM implementation.

3) Tension between elegance, extendibility, and
practicality of the DSL

The initial DSL was very elegant, but provided little
concrete concepts to work with. This was thought to be
reasonable given that we wanted an extensible model and
elegance generally allows evolution to be relatively painless.
However, as we learned more about the intricacies of the
ideas we were going to investigate, more and more of the
detail was ending up in the implementing java code than in
the DSL. We felt that the need for systems engineers to be
able to understand what they were modeling needed more
explicit expression in the DSL.

We learned fairly quickly, though, that implementing
more detail in the DSL could not be done without looking
back at the whole language. We are aware of a number of
shortcomings in the DSL in terms of consistency across
definitions and in the sense of structure and design of the
language. Reviewing and revising the DSL in light of this
first round of development is a high priority for the next
phase.

4) Complexity of interactions between organizations
One of the uses identified for DATASEM is

investigating the human and managerial aspects of systems
of systems. The use of an agent-based simulation engine was
driven primarily by this desire to model the human
components of the system. Developing the DSL proved hard
even for the mechanical complexity of the governance,
organizational and work flow representations. We readily
identified places where behavior modeling would be
valuable, but we were not able to address it and still deliver
something useful within the period of performance. Areas
where we believe that behavior modeling can be added
include:

• Negotiation of services and contracts

• Interface of pull and push governance mechanisms

• Value determination and agreement

• Conflicts due to differing value systems and
stakeholders between the system of systems level and
the constituent system level

• Stakeholder/constituent behavior

5) Limitations and complications of agent-based
simulation

In retrospect, Repast provided much more sophisticated
simulation capabilities at the cost of not providing more
useful capabilities (like a web interface) for this stage in the
modeling and simulation work. The availability of all the

agent capabilities was important to make sure we could
include the human aspect. However, it forced us to think
more in terms of agents than of mechanisms, which
simplified the concept into service providers and service
requestors, but complicated some of the design work. It also
affected defining the mechanisms.

B. The Impact of the DATASEM Project and Related
Research
Initially motivated by the ineffectiveness of integrated

master schedules in rapidly changing operational
environments and the success of Kanban approaches for the
knowledge work of software development, the project has
expanded to investigating kanban as well as other adaptive
governance mechanisms applicability. The initial Kanban
scheduling system (KSS) networks described in [4] sought a
way to prioritize engineering tasks based on SoS or complex
system capability priorities and task interdependencies by
selecting value-adding features first, reducing wait time for
scarce engineering specialties, and minimizing time wasted
on context switching by overloaded resources. The KSS
network concept provides two valuable side effects. First,
the implementation of the network supports critical
conversations about schedule and value decisions by the
appropriate people at the right time and nearest the actual
implementation. Second, the network significantly improves
executive and systems engineering visibility into the status
of multiple independent development organizations.

V. CONCLUSIONS
The development of DATASEM and the DSL provide a

flexible, available, and inexpensive way to research how
governance, organization, and work characteristics impact
flow through an organization. New concepts can be mixed
and matched with traditional concepts. Various types,
sources, and cadences of workflow can be combined or
assessed independently. Research can be conducted on the
predictive nature of more subtle measurements for
identifying trends, on improving the accuracy of status, and
on understanding the impact of assigning, monitoring and
using value, work load and other characteristics.

The work provided insight into the definition of suitable
adaptive mechanisms and the simulation of their
implementation. While still in process, it is clear that what
we thought were separable pieces of a management system –
the work, the organization, and the governance model –
when viewed through the lens of adaptive management
processes become highly interdependent. This has
significant implications and requires us to rethink in a more
holistic way how the mechanism definitions, DSL and
simulations will need to be refactored to better address this
interaction as well as capture the relationships in further
experimentation.

REFERENCES
[1] Turner, R.; “A Lean Approach to Scheduling Systems Engineering

Resources,” CrossTalk, May/June, 2013.
[2] Turner, R.; Madachy, R.; Lane, J.A.; Ingold, D.; Levine, L.; “Agile-

Lean Software Engineering (ALSE): Evaluating Kanban in Systems
Engineering,” A013 - Final Technical Report SERC-2013-TR-022-2,
March 6, 2013.

[3] Lane, J. A. and Turner, R. “Improving Development Visibility and
Flow in Large Operational Organizations,” 4th International
Conference on Lean Enterprise Software and Systems, Galway,
Ireland, December 1-4, 2013, Proceedings, Lecture Notes in Business
Information Processing, Vol. 167, pp 65-80, Springer-Verlag,
Heidelberg, 2013.

[4] Turner, R., "Value-based scheduling in system of systems evolution,"
System of Systems Engineering (SOSE), 2014 9th International
Conference on, pp.301,306, 9-13 June 2014.

[5] Turner, R.; Yilmaz, L.; Smith, J.; Donghuang Li; Chada, S.; Smith,
A.; Tregubov, A., "Modeling an organizational view of the SoS
towards managing its evolution,"10th System of Systems Engineering
Conference (SoSE), 2015, pp.480,485, 17-20 May 2015.

[6] Tregubov, Alexey and Jo Ann Lane, “Simulation of Kanban-based
Scheduling for Systems of Systems: Initial Results,” Procedia
Computer Science, Volume 44, 2015, Pages 224-233.

[7] Boehm, B; Koolmanojwong, S.; Lane, J; Turner, R.; “Principles for
Successful Systems Engineering,” Conference on Systems
Engineering Research, Mar 19-22, 2012, Procedia Computer
Science, Elsevier, Vol. 8, 2012

[8] Reinertsen, Donald G. (2010). The Principles of Product
Development Flow. Redondo Beach, CA: Celeritas Publishing.

[9] Anderson, David, et al. “Studying Lean-Kanban Approach Using
Software Process Simulation.” In Agile Processes in Software
Engineering and Extreme Programming, Volume 77 of the series
Lecture Notes in Business Information Processing, Sillitti, Alberto;
Hazzan, Orit; Bache, Emily; Albaladejo, Xavier (eds.) pp 12-26.
Springer, 2011.

[10] DATASEM Domain Specific Language Reference, SERC 2015-TR-
111B, Dec 2015.

[11] Shull, Forrest, “A Framework of Empirical Studies of Kanban-Based
Scheduling for Software-Intensive Systems, “ CMU/SEI-2015-TH-
010, December 2015.

[12] Ramsey, Marc and R. Levitt, “A Computational Framework for
Experimentation with Edge Organizations,” 10th International
Command and Control Research and Technology Symposium, 2005.

[13] Levitt, R.E., “Computational Modeling of Organizations Comes of
Age,” Journal of Computational and Mathematical Organizational
Theory, 10(2) (2004), pp.127-145.

