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Mextram 504 is the new version of the Philips compact model for
bipolar transistors. This document contains the derivation of all
the equations that are part of the model. This includes the de-
scription of the equivalent circuit of Mextram, the equations for
the currents and the charges, the temperature-scaling model, the
way self-heating is handled, and the noise model. We then dis-
cuss some small-signal approximations and the basis of geometric
scaling.

The formal model definition needed for implementation is given
in another report NL-UR 2000/811];, parameter extraction is
discussed in the report NL-UR 2001/8(].[ These reports and
the source code can be found on our web-$Sie [

©Koninklijke Philips Electronics N.V. 2005 iii



NL-UR 2002/806— March 2005 Model derivation of Mextram 504 Unclassified report

Preface

October 2004 The Mextram bipolar transistor model has been put in the public domain
in Januari 1994. At that time level 503, version 1 of Mextram was used within Koninklijke
Philips Electronics N.V. In June 1995 version 503.2 was released which contained some
improvements.

Mextram level 504 contains a complete review of the Mextram model. This document
gives its physical background. This document was first released in March 2002. The
current document corresponds to the October 2004 model definition.

October 2004, J.P.

March 2005 In the fall of 2004, Mextram was elected as a world standard transistor
model by theCompact Model Council (CMC), a consortium of representatives from over
20 major semiconductor manufacturers.

The current document corresponds to the model definition of March 2005.
RvdT.

History of model and documentation

June 2000 . Release of Mextram level 504 (preliminary version)
Complete review of the model compared to Mextram level 503

April 2001 . Release of Mextram 504, version 0 (504.0)
Small fixes:
— ParameterB, andCy, added tdVIULT-scaling
— Expression fotx in operating point information fixed
Changes w.r.t. June 2000 version:
— Addition of overlap capacitanc&ieo andCgco
— Change in temperature scaling of diffusion voltages
— Change in neutral base recombination current
— Addition of numerical examples with self-heating

September 2001 : Release of Mextram 504, version 1 (504.1)
Lower bound orRy, is now 0CC/W
Small changes iffrex and Q g, s, to enhance robustness

March 2002 : Release of Mextram 504, version 2 (504.2)
Numerical stability improvement of; /Wepj at smallVc,c,
Numerical stability improvement g

October 2003  : Release of Mextram 504, version 3 (504.3)
MULT has been moved in list of parameters
Lower clipping value ofT s changed to-273C
Addedlc, Ig andpqyc to operating point information
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Unclassified report March 2005— NL-UR 2002/806

April 2004 : Release of Mextram 504, version 4 (504.4)
Noise of collector epilayer has been removed.

October 2004  : Release of Mextram 504, version 5 (504.5)
Addition of temperature dependence of thermal resistance
Addition of noise due to avalanche current

March 2005 : Release of Mextram 504, version 6 (504.6)
Added parametettA| for fine tuning of temp. dep. dfr; eqn. .24
“Gegm = 07, in reverse and fully saturated operation
Upper clipping value D of K, introduced
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1 Introduction

Mextram [3] is a compact model for vertical bipolar transistors. A compact transistor
model tries to describe theV characteristics of a transistor in a compact way, such that
the model equations can be implemented in a circuit simulator. In principle Mextram is
the same kind of model as the well known Ebers-Md]ldnd (Spice)-Gummel-Pool]
models, described for instance in the texts about general semiconductor physic%,Refs. |
7], or in the texts dedicated to compact device modelli@g9 10] or high-frequency
bipolar transistors]l]. These two models are, however, not capable of describing many
of the features of modern down-scaled transistors. Therefore one has extended these
models to include more effects. One of these more extended models is Mextram, which
in its earlier versions has already been discussed in for instance Refg]. [

The complete model definition of Mextram, level 504, can be found on the welBkite [

for instance in the report]. In that report, however, only a small introduction is given
into the physical basics of all the equations. This report tries to give a more complete
description of the physics behind the Mextram model. In our description we will try to
keep as close as possible to the notation and description of RefMe will, however,

try to explain all the equations in a logical order. Since the bipolar transistor model of
Gummel and Poorb] (or its Spice-implementation) is so well-known, we will start with
those equations of the Mextram model that are closest to the Gummel-Poon model and
work our way from there.

This report discusses the equations of Mextram, level 504. Now and then we will refer to
the previous version, level 503, for which documentation can be found in Beis3, [14,

15]. A large part of the physical background of Mextram, and of some other models, has
also been published in the books by Berkrij] [(in German) and Reisci]l].

1.1 Explanation of the equivalent circuit
1.1.1 General nature of the equivalent model

The description of a compact bipolar transistor model is based on the physics of a bipolar
transistor. An important part of this is realizing that a bipolar transistor contains various
regions, all with different doping levels. Schematically this is shown in Eig(In this

report we will base our description on a NPN transistor. It might be clear that the same
model can be used for PNP transistors, using equivalent formulations.) One can discern
the emitter, the base, collector and substrate regions, as well as an intrinsic part and an
extrinsic part of the transistor.

One of the steps in developing a compact model of a bipolar transistor is the creation of
an equivalent circuit. In such a circuit the different regions of the transistor are modelled
with their own elements. In Fidl we have shown a simplified version of the Mextram
equivalent circuit, in which we only show the intrinsic part of the transistor, as well as
the resistances to the contacts. This simplified circuit is comparable to the Gummel-Poon
equivalent circuit.

©Koninklijke Philips Electronics N.V. 2005 1
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Figure 1: A schematic cross-section of a bipolar transistor is shown, consisting of the
emitter, base, collector and substrate. Over this cross-section we have given a simplified
equivalent circuit representation of the Mextram model, which doesn’t have the parasitics
like the parasitic PNP, the base-emitter sidewall components, and the overlap capaci-
tances. We did show the resistances from the intrinsic transistor to the external contacts.
The current I, g, describes the variable base resistance and is therefore sometimes called
Rey. The current Ic,c, describes the variable collector resistance (or epilayer resistance)
and is therefore sometimes called R¢,. This equivalent circuit is similar to that of the
Gummel-Poon model, although we have split the base and collector resistance into two

parts.
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The circuit has a number of internal nodes and some external nodes. The external nodes
are the points where the transistor is connected to the rest of the world. In our case these
are the collector nod€, the base nod8 and the emitter nodé. The substrate nodg

is not shown yet since it is only connected to the intrinsic transistor via parasitics which
we will discuss later. Also five internal nodes are shown. These internal nodes are used
to define the internal state of the transistor, via the local biases. The various elements that
connect the internal and external nodes can then describe the currents and charges in the
corresponding regions. These elements are shown as resistances, capacitances, diodes and
current sources. It is, however, important to note that most of these elementary elements
are not the normal linear elements one is used to. In a compact model they describe in
general non-linear resistances, non-linear charges and non-linear current sources (diodes
are of course non-linear also). Furthermore, elements can depend on voltages on other
nodes than those to which they are connected.

For the description of all the elements we use equations. Together all these equations give
a set of non-linear equations which will be solved by the simulator. In the equations a
number of parameters are used. The value of these parameters will depend on the specific
transistor being modelled. The equations are the same for all transistors. We will give an
overview of these parameters in the next section. For a compact model it is important that
these parameters can be extracted from measurements on real transistors. For Mextram
504 this is described in a separate rep@ft [This means that the number of parameters

can not be too large. On the other hand, many parameters are needed to describe the many
different transistors in all regimes of operation.

1.1.2 Intrinsic transistor and resistances

Let us now discuss the various elements in the simplified circuit. The precise expressions
will be given in the following chapters. Here we will only give a basic idea of the various
elements in the Mextram model. Let us start with the resistances. Epderresponds

to the emitter of the intrinsic transistor. It is connected to the external emitter node via
the emitter resistoRg. Both the collector nod€ and the base nod# are connected to

their respective internal nodd® andC, via two resistances. For the base these are the
constant resistoRg. and the variable resistétg,. This latter resistor, or rather this non-
linear current source, describes DC current crowding under the emitter. Between these
two base resistors an extra internal node is predentThe collector also has a constant
resistorRcc connected to the external collector nd@e Furthermore, since the epilayer

is lightly doped it has its own ‘resistance’. For low currents this resistanBejs For

higher currents many extra effects take place in the epilayer. In Mextram the epilayer is
modelled by a controlled current sourkgc,.

Next we discuss the currents present in the model. First of all the main cuixrgmes

the basic transistor current. In Mextram the description of this current is based on the
Gummel’s charge control relation (see Sectf.3. This means that the deviations
from an ideal transistor current are given in terms of the charges in the intrinsic transistor.
The main current depends (even in the ideal case) on the voltages of the internal nodes
E1, B andCo.

©Koninklijke Philips Electronics N.V. 2005 3
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Apart from the main current we also have base currents. In the forward mode these are
the ideal base currerig, and the non-ideal base currely,. Since these base currents
are basically diode currents they are represented by a diode in the equivalent circuit.

In reverse mode Mextram also has an ideal and a non-ideal base current. However, these
are mainly determined by the extrinsic base-collector pn-junction. Hence they are not
included in the intrinsic transistor. The last current source in the intrinsic transistor is the
avalanche current. This current describes the generation of electrons and holes in the col-
lector epi-layer due to impact ionisation, and is therefore proportional to the cligrent

We only take weak avalanche into account.

At last the intrinsic transistor shows some charges. These are represented in the circuit
by capacitances. The charg®s. and Q. are almost ideal depletion charges resulting
from the base-emitter and base-collector pn-junctions. The extrinsic regions will have
similar depletion capacitances. The two diffusion charQgs and Qgc are related to

the built-up of charge in the base due to the main current: the main current consists of
mainly electrons traversing the base and hence adding to the total ckgeés related

to forward operation an@gc to reverse operation. In hard saturation both are present.
The chargeQg is related to the built-up of holes in the emitter. Its bias dependence is
similar to that ofQge. The chargeQep; describes the built-up of charge in the collector
epilayer.

1.1.3 Extrinsic transistor and parasitics

After the description of the intrinsic transistor we now turn to the extrinsic PNP-region
and the parasitics. In Fi@.we have added some extra elements: a base-emitter side-wall
parasitic, the extrinsic base-collector regions, the substrate and the overlap capacitances.
Note that Mextram has a few flags that turn a part of the modelling on or off. Ii3Rig.

on pagel42 where it is easily found for reference, the full Mextram equivalent circuit

is shown which also includes elements only present when all the extended modelling is
used.

Let us start with the base-emitter sidewall parasitic. Since the pn-junction between base
and emitter is not only present in the intrinsic region below the emitter, a part of the ideal
base current will flow through the sidewall. This part is givenl@y. Similarly, the

sidewall has a depletion capacitance given by the ch@@e

The extrinsic base-collector region has the same elements as the intrinsic transistor. We
already mentioned the base currents. For the base-collector region these are the ideal base
currentley and the non-ideal base currdmt. Directly connected to these currents is the
diffusion chargeQex. The depletion capacitance between the base and the collector is
split up in three parts. We have already seen the chQegef the intrinsic transistor. The
chargeQiex Is the junction charge between the base and the epilayer. Mextram models
also the charg&Qtex between the outer part of the base and the collector plug.

Then we have the substrate. The collector-substrate junction has, as any pn-junction,
a depletion capacitance given by the cha@g. Furthermore, the base, collector and

4 ©Koninklijke Philips Electronics N.V. 2005
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Figure 2:Shown is the Mextram equivalent circuit for the vertical NPN transistor, without
extra modelling (i.e. EXMOD = 0 and EXPHI = 0). As in Fig. 1 we have schematically

shown the different regions of the physical transistor.
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substrate together form a parasitic PNP transistor. This transistor has a main current of
itself, given bylsyp. This current runs from the base to the substrate. The reverse mode
of this parasitic transistor is not really modelled, since it is assumed that the potential of
the substrate is the lowest in the whole circuit. However, to give a signal when this is no
longer true a substrate failure currdggt is included that has no other function than to
warn a designer that the substrate is at a wrong potential.

Finally the overlap capacitanc€seo andCpgco are shown that model the constant ca-
pacitances between base and emitter or base and collector, due to for instance overlapping
metal layers (this shoulabt include the interconnect capacitances).

1.1.4 Extended modelling

In Mextram two flags can introduce extra elements in the equivalent circuit (se®dfig.
pageld?). WhenEXPHI = 1 the charge due to AC-current crowding in the pinched base
(i.e. under the emitter) is modelled wif@g,,. (Also another non-quasi-static effect,
base-charge partitioning, is then modelled.) WEMOD = 1 the external region is
modelled in some more detail (at the cost of some loss in the convergence properties
in a circuit simulator). The currentky and lgyp and the charg&ey are split in two

parts, similar to the splitting oQtex. The newly introduced elements are parallel to the

chargeQiex.

1.2 Overview of parameters

In this section we will give an overview of the parameters used in Mextram. These param-
eters can be divided into different categories. In the formal description these parameters
are given by a letter combination, e.g. IS. In equations however we will use a different
notation for clarity, e.gls. Note that we used a sans-serif font for this. Using this notation

itis always clear in an equation which quantities are parameters, and which are not. Many
of the parameters are dependent on temperature. For this dependence the model contains
som extra parameters. When the parameter is corrected for temperature it is denoted by an
index T, e.glst. In the formal documentatior3] 1] the difference between the parameter

at reference temperatutgand the parameter after temperature scalings made in a

very stringent way. In this report however we don’t add the temperature subscript, unless
itis needed.

First of all we have some general parameters. Flags are either 0 when the extra modelling
is not used, or 1 when itis.

LEVEL| LEVEL | Model level, here always 504

EXMODEXMOD | Flag for EXtended MODelling of the external regions
EXPHI| EXPHI | Flag for extended modelling of distributed HF effects in transients
EXAVL| EXAVL | Flag for EXtended modelling of AvaLanche currents
MULT | MULT Number of parallel transistors modelled together

6 ©Koninklijke Philips Electronics N.V. 2005
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As mentioned in the description of the equivalent circuit some currents and charges are
split, e.g. in an intrinsic part and an extrinsic part. Such a splitting needs a parameter.
There are 2 for the side-wall of the base-emitter junction. Then the collector-base region
is splitinto 3 parts, using 2 parameters.

Xlg, | XIBI Fraction of the ideal base current that goes through the sidewall

XCj. | XCJE Fraction of the emitter-base depletion capacitance that belongs to
the sidewall

XCj. | XCJC | Fraction of the collector-base depletion capacitance that is ynder
the emitter

Xext XEXT Fraction of external charges/currents betw&andC; instead
of By andC;

A transistor model must in the first place describe the currents, and we use some parame-
ters for this. The main currents of both the intrinsic and parasitic transistors are described
by a saturation current and a high-injection knee current. We also have two Early volt-
ages for the Early effect in the intrinsic transistor. The two ideal base currents are related
to the main currents by a current gain factor. The non-ideal base currents are described
by a saturation current and non-ideality factor or a cross-over voltage (due to a kind of
high-injection effect). The avalanche current is described by three parameters.

Is IS Saturation current for intrinsic transistor

I IK High-injection knee current for intrinsic transistor

lss ISS Saturation current for parasitic PNP transistor

lks IKS High-injection knee current for parasitic PNP transistor
Vet VEF Forward Early voltage of the intrinsic transistor

Ver VER Reverse Early voltage of the intrinsic transistor

B BF Current gain of ideal forward base current

Bi BRI Current gain of ideal reverse base current

I IBF Saturation current of the non-ideal forward base current
my ¢ MLF Non-ideality factor of the non-ideal forward base current
Igr IBR Saturation current of the non-ideal reverse base current
Vi, VLR Cross-over voltage of the non-ideal reverse base current
Wau | WAVL Effective width of the epilayer for the avalanche current
Vaul VAVL Voltage describing the curvature of the avalanche current
Sth SFH Spreading factor for the avalanche current

Mextram contains both constant and variable resistances. For variable resistances the
resistance for low currents is used as a parameter. The epilayer resistance has two extra
parameters related to velocity saturation and one smoothing parameter.

Re RE Constant resistance at the external emitter
Rgc RBC Constant resistance at the external base
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NL-UR 2002/806— March 2005

Model derivation of Mextram 504

RBv
RCC
RCV
SCRgy
lhe

Ayi

RBV
RCC
RCV
SCRCV
IHC
AXI

Low current resistance of the pinched base (i.e. under the em
Constant resistance at the external collector

Low current resistance of the epilayer

Space charge resistance of the epilayer

Critical current for hot carriers in the epilayer

Smoothing parameter for the epilayer model

Unclassified report

itter)

All depletion capacitances are given in terms of the capacitance at zero bias, a built-in or
diffusion voltage and a grading coefficient (typically between the theoretical vajizes 1
for an abrupt junction and/B for a graded junction). The collector depletion capaci-
tance is limited by the width of the epilayer region. Its intrinsic part also has a current
modulation parameter.

CJE
PE
VDE
CJC
PC
VDC
XP

MC
CJS
PS

VDS

Depletion capacitance at zero bias for emitter-base junction
Grading coefficient of the emitter-base depletion capacitance
Built-in diffusion voltage emitter-base

Depletion capacitance at zero bias for collector-base junctiorj
Grading coefficient of the collector-base depletion capacitang
Built-in diffusion voltage collector-base
Fraction of the collector-base depletion capacitance tha
constant

Current modulation factor for the collector depletion charge
Depletion capacitance at zero bias for collector-substrate jun
Grading coefficient of
capacitance

Le

it is

ction

the collector-substrate depletion

Built-in diffusion voltage collector-substrate

New in Mextram 504 are two constant overlap capacitances.

Cgeo

Cgsco

CBEO
CBCO

Base-emitter overlap capacitance

Base-collector overlap capacitance

Most of the diffusion charges can be given in terms of the DC parameters. For accu-
rate AC-modelling, however, it is better that DC effects and AC effects have their own
parameters, which in this case are transit time parameters.

TE TAUE (Minimum) transit time of the emitter charge
m; MTAU Non-ideality factor of the emitter charge
B TAUB Transit time of the base
Tepi TEPI Transit time of the collector epilayer
R TAUR Reverse transit time
8 ©Koninklijke Philips Electronics N.V. 2005
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Noise in the transistor is modelled by using only three extra parameters for flickernoise
and one extra for the noise due to avalanche.

Kt KF Flicker-noise coefficient of the ideal base current

Kin KFN Flicker-noise coefficient of the non-ideal base current
A¢ AF Flicker-noise exponent

Kavi KAVL Switch for white noise contribution due to avalanche

Then we have the temperature parameters. First of all two parameters describe the temper-
ature itself. Next we have some temperature coefficients, that are related to the mobility
exponents in the various regions. We also need some band-gap voltages to describe the
temperature dependence of some parameters.

Tref TREF Reference temperature

dT, | DTA Difference between device and ambient temperatures

Aqg, | AQBO | Temperature coefficient of zero bias base charge

Ag AE Temperature coefficient &g

Ag AB Temperature coefficient &g,

Acpi | AEPI Temperature coefficient &¢,

Aex AEX Temperature coefficient &g

Ac AC Temperature coefficient &,

As AS Temperature coefficient of the mobility related to the substrate
currents

dVgpt | DVGBF | Difference in band-gap voltage for forward current gain
dVgsr | DVGBR | Difference in band-gap voltage for reverse current gain
Vs VGB Band-gap voltage of the base

VGC Band-gap voltage of the collector

VGS Band-gap voltage of the substrate

& VGJ Band-gap voltage of base-emitter junction recombination
dVy,. | DVGTE | Difference in band-gap voltage for emitter charge

New in Mextram 504 are two formulations that are dedicated to SiGe modelling. For a
graded Ge content we have a bandgap difference. For recombination in the base we have
another parameter.

dEg DEG Bandgap difference over the base
Xree | XREC Pre-factor for the amount of base recombination

Also new in Mextram 504 is the description of self-heating, for which we have the two
standard parameters and a temperature coefficient.

Rin RTH Thermal resistance
Cih CTH Thermal capacitance
Ath ATH Temperature coefficient of the thermal resistance
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1.3 Physical basis

Mextram is a compact model that is based on a physical description of the different tran-
sistor regions. These descriptions are discussed in various text%,&/g8[9, 10, 12].

It is therefore not our goal to repeat all of the derivations here. However, to understand
some parts of Mextram it is necessary to review some general results from semiconductor
physics.

1.3.1 Basic semiconductor physics equations

For the description of the main current and the base charges as well as the description
of the epilayer in principle a 1-dimensional transistor model is used. In this model we
describe the hole and electron densitipsa(idn), together with the currents. In general

we can describe the densities in terms of quasi-Fermi levedsdyp.

n = njexpy —en)/Vrl, (1.1a)
p = njexpligp —¥)/Vrl. (1.1b)

The thermal voltag&/t = kT /q is given in terms of the unit-chargg the Boltzmann
constank and the absolute temperature Both densities depend on the intrinsic carrier
densityn; and the electrostatic potential

The total charge density is given by

p=0q(p—n+ Np— Na), (1.2)

whereNp is the density of (ionised) donor-impurities (in the emitter and collector) and
N a the density of (ionised) acceptor impurities (in the base). We will also use the notation
Nepi for the donor density in the epilayer of the collector. Poisson’s equation relates the
electric field to the charge density

de »p

dx ¢

wheree is the dielectric constant of the medium. The electrostatic potential is directly

related to the electric field
dy
dx

Apart from the carrier densities we will also need the electron and hole current densities.

These consist of a drift current due to an applied electric field and a diffusion current due
to a gradient in the density :

: (1.3)

(1.4)

d(pn dn
= _q'unnd_x =qunnE + and_X’ (1.53)
_ dpp dp
Jp = —Qupp- - =duppE —qDp - (1.5b)
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The diffusion coefficienD and the mobilityu are related by Einstein’s relation (for both
electrons and holes)

D =Vt u. (1.6)
For a complete description one also needs the continuity equations

an 1 9J,

— = — — 4+ RG-term 1.7a
ot g ox * 3 ( )
0 19J
P _ 220 Reterms (1.7b)
ot g ox

With ‘RG-terms’ we mean recombination-generation terms. These equations will how-
ever not be directly used in the derivation of Mextram model equations.

At this point it is important to note that the quasi-Fermi levels are important in analytical
models of a transistor. However, they are not always well defined without calculating a
full solution based on the continuity equations. In practice we can say that at the points
where the base, emitter and collector-voltages are applied the majority quasi-Fermi level
equals the applied voltage.

1.3.2 PN-junctions

In a pn-junction we can distinguish three regions: a p-region, a depletion region and a
n-region. Consider now the hole quasi-Fermi level. At the start of the p-region it has the

value of the applied bias at that point (more or less by definition, since holes are majority
over there). When the current density is not too large (i.e. when we can neglect resistive
effects) the derivative of the hole quasi-Fermi level must be small, as long as the hole
density is appreciable. This is in the whole p-region, but also in the depletion region. In

the latter region the number of holes is much smaller than the background doping, but it
is still much larger than in the n-region. For the same reason is the electron quasi-Fermi
level nearly constant in the depletion region and in the n-region.

If we now look at the expressions for the electron and hole density, and when we multiply
them, we get

np = n?expl(¢p — ¢n)/ V1. (1.8)

We have seen that especially in the depletion region both quasi-Fermi levels are constant.
Their difference equals the bias applied over the junction. Hence in, and on both sides of
the depletion region, we have the very important relation

np =nZeV/VT, (1.9)
It is important to realise that in many places within compact models the pot&hisl

used. In almost all cases the difference between quasi-Fermilevels is Meant, —¢n,
and not the electrostatic potentigal
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1.3.3 Gummel’s charge control relation

Maybe the most important equation for the description of bipolar transistors is Gummel’s
charge control relatiorlf] for the main currerit

Iy = annizerm
Jxe2 p(x)dx

XEl

(eVBzEl/VT _ eVBzcz/VT> . (1.10)

For low biases this is the same as the Moll-Ross relatlgh [Equation (.10 is often
called the Integral-Charge-Control Relation (ICCR§][ It is used in all modern bipolar
compact models. Due to its importance we will repeat a derivation here.

For our derivation we will follow Ref.12]. We can rewrite the equation for the electron
current (.5 as

elontxa)—en00l/Vr gy — ) gt -wool/Vr gy (1.11)
040 OO} (X)

where we multiplied by expl,(xg)/V1]. The first assumption now is that the hole quasi-
Fermi level is constant in the region of interest, where the hole charge is non-negligible
(i.e. the base and possibly the epilayer). This assumption is based on the fact that the
hole current is small. Looking at the hole current density in Bcp)(we see that for a

small hole current and a large hole density (i.e. in the base and possibly in a part of the
epilayer) the derivative of the hole quasi-Fermi level must be negligibly small. A constant
hole quasi-Fermi level is confirmed by device simulatiofd].[ The hole quasi-Fermi

level equals the base potentid,. Using Eq. (.1) we can then express the exponent of

the electrostatic potential in terms of the hole dengity). We integrate from position

X = X1 t0 X = X and find

elVBy—on 2]/ V1 _ olVBy—en (X0)]/ VT /X2 Jan(zX) dx, (1.12)
x1 Dn(X)NE(X)

where we used the Einstein relation. The boundatjemndx, used in Eq. 1.12) are sitill
arbitrary. For use in a compact model we must make a choice.

First we consider the case of low injection. The main contribution to the integral in
Eq. (1.12 will come from the region where the hole density is appreciable. This means
the neutral base. When we choogeand x, outside this neutral base, it is no longer
important where they are exactly. We will choogse= xg,, the position of the internal
emitter node, andy = Xc,, the position of the internal collector node. Both of these can
be considered to be at the actual junctions, which, under normal forward operation, will
lie in the depletion region. The electron quasi-Fermi level at the p&ntandC, are
equal to the corresponding node voltage.

IHere we already use the fact that in Mextram the intrinsic transistor is connected to theBapéigs
andCo,. In this way we will not get confused as to which exact node potential has to be used.
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Under high-injection conditions holes will also be present in the emitter or in the epilayer.
We will not change the position af, andx, depending on the injection level. The epilayer
model (both current and charge description) will take care of the high-injection effects for
X > X2 (see below), and Eql(12 will be used to calculate the charge. In a sense, the
epilayer model will take care that the node potentig) gets the correct value, once the
external collector potentidlc (or Vc, for that matter) is given.

The charge in the emitter is also part of Mextram. This charge, however, does not influ-
ence the current model, but is kept independent. The node voltéggastetermined by
the ohmic voltage drop in the emitter.

The next assumption in the derivation is that there is no recombination in the regions
wherep(x) is appreciable, so the electron current density is constant. Since we take the
positivex-direction from emitter to collector the current density is negative for the normal
forward mode of operation. Hence we define the main current as

In = —Aemdn, (1.13)

whereAgn is the surface of the emitter. Taking all terms together we find

Xc 2
eVBoEs VT gVincy/Vr :'7'\'2/ 2 p(x)nzlo dx= N - Gp. (1.14)
qAemniy Jxg; Dn(X)NF(X) qdAemniy

The last part defines the base Gummel nuntbgr

In Mextram we now assume that the diffusion constant and the intrinsic carrier density
are constant. (For SiGe transistors this is no longer true, see Cligpt€he Gummel
number is then proportional to the total base charge

Xc

Qs = qum/ i p(x) dx. (1.15)

XEl

The expression for the main current then becomes

q2 Dnr‘iZOAgm

Q <eVBZEl/VT _ eVBzcz/VT) . (116)
B

In =

The reason why the main current is inversely proportional to the base charge can be ex-
plained as follows. First of all, as is generally known, the current through a diffusive
region is inversely proportional to the width of this region. In the base this width is the
distance between the two depletion regions. For low injection this width is directly pro-
portional to the charg® g, which is a sum of the base charge at zero Iag and the

extra charge due to the change in depletion region width (see also S2&jiohhese two

extra charges at the emitter side and at the collector side are given by the two depletion
chargesQt. and Q.. The variation of the current due to this variation in base width is
called the Early effect.
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For higher injection not only the width is important, but also the number of carriers, in
this case electrons. The more carriers, the lower the resistance. The electron density is
proportional toniz/p, see Eq.1.9). The resistance is then proportionalpt;z)ni2 and also

to D; L. For a varying density of holes, we need to take the integral over the whole base
width to determine the total resistance. The current is then proportional to the inverse of
the resistance, or the inverse of the Gummel number (or base charge). Since the number of
electrons is also inversely proportional to the exponent of the electron quasi-Fermi level,
we get the equation for the main current as above.

When high-injection effects play a role, the hole density in the epilayer will no longer be
negligible. We can follow the same line of reasoning as above, but now ¥siagxc,
andxp = Xc,. We then get the relation between the cha@g; and the currentc,c, in

the epilayer

quﬂniZOAgm

eri

Implicitly we have made the assumption that the diffusion constant in the epilayer equals
that in the base. When the doping levels are very different this is no longer true. Therefore,
when we use Eq1(17) to calculate the charg@epi, we will introduce a parameter as pre-
factor that can take the difference of diffusion constant into account. At the same time a
difference in intrinsic carrier concentration between base and epilayer (e.g. due to Ge in
the base) can be taken into account.

leyc, = (eVBZCZ/VT _ eV32c1/VT> ) (1.17)

We mentioned before thag, is at the physical base-collector junction and tatequals

the electron quasi-Fermi level at = xc,. It is important to realise that under high-
injection conditions the electron and hole concentrations do not vary as abruptly as in
our model. This means that it is not possible to define in the same way as in the model
where the base ends and where the epilayer starts: the positidrecomes somewhat
undefined. The valugc, will, therefore, not necessarily be equal to the quasi-Fermi level
at the exact physical junction.

In Mextram we will use Eq.%.16 to determine the main current in terms of charges,
whereas Eq.1(17) is used to determinQep; in terms of the current through the epilayer.

From Egs. .16 and (.17 it seems logical to make a description where the main cur-
rent is given in terms of the bias#g, g, andVg,c, and the total hole charg@g + Qepi.

There are three reasons why we prefer not to do this. First, we now have a current model
independent of the epilayer charge model. This means that the paramgetan be used

freely to get a better description of the cut-off frequency, without influencing the DC be-
haviour. Second, Eqsl1(16 and (.17 hold for a one-dimensional transistor. They do

not include current spreading effects, which can be very important in the epilayer. By
having a parameter available for the epilayer charge that has no influence on the currents
we can keep these effects separated. Third, by describing the base and the collector epi-
layer separately, we have a more natural description of SiGe-base/Si-collector transistors.
We do not need to include extra charge enhancement fa@6ysd be able to use an
equation like Eq.X.16) simultaneously in the base and in the epilayer. Instead, we use it
twice, once for each region, with separated parameters.
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Emitter | Base Collector
'= epilayer

- Qge+Qsc

I

QBO
\

N,

Figure 3:A schematic cross-section of the intrinsic transistor, under high-injection con-
ditions, showing the doping levels (thin), the hole density (thick) and the electron den-
sity (dashed). The various contributions to the hole charge Qg are shown. Note that
Qge + Qpc is equal to the electron charge in the base layer, and that the hole charge in
the epilayer is almost equal to the electron charge in the epilayer.

1.3.4 Charges, capacitances and transit times

We have seen above that the charges play an important role in the description of the main
DC current. The charges also have to be modelled to be able to describe the currents as
function of time or frequency. We will now discuss the charges in a bit more detail.

The total base charg®g has different contributions. Schematically this is shown in
Fig. 3, for high injection conditions, neglecting the depletion charges. All of the charges
we will describe are given in terms of the holes present. We now briefly describe where all
the charge contributions are located. For zero bias the amount of holes in the base is given
by the quantityQgo. This charge equals the integral over the ddipgx) in the base from

the base-emitter depletion region to the base-collector depletion region. When the bias
over one of these junctions increases, the depletion layer thickness becomes smaller. This
means that in the region which has become un-depleted an amount of holes is gathered.
This charge is the depletion charge. Note that on the other side of the junction an equal
amount of electron charge will be added. (We will see in Sec3i&that the depletion
charge of the base-epilayer junction can best be calculated by considering the change in
electron charge in the epilayer).

When the bias of a normal pn-junction is changed three (hole) charges will change. We
have already seen that the depletion charge is one of them. From the p-region (say the
base) holes will be injected into the n-region (say the emitter). In the emitter these holes
will either recombine somewhere with electrons (creating the ideal base current) or remain
fixed in a stationary distribution. We assume neutrality in the emitter so the number of
electrons must also increase. These, however, we do not model directly. The hole-charge
in the neutral emitter is denoted I6y=. The equivalent charge in the epilayer is denoted

by Qepi. This last charge is mainly a high-injection charge. The third charge present is
due to the current. In the p-region (the base) an electron current will flow. These electrons
have a total charge basically given by the transit time times the current. Due to neutrality
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also an extra number of holes must be present. These are again stationary. This total
diffusion charge is split up between a part depending on the base-emitter vQagad
a part depending on the base-collector volt@ge .

In our compact model the charges are shown as capacitances between two nodes in the
equivalent circuit. Most of the charges are expressed as function of the applied voltages.
Sometimes, however, the charge depends also on the current running through that specific
part of the transistor. In the first case we associate the charge with a capaCitéace

Q = CV). Inthe second case we associate it with a transit tifeeg.Q = t1). We can

then write for an infinitesimal increment of a charQe= Q(V, I):

dQ = CdV + zdlI, (1.18)

where the capacitance and the transit time are given by

C= (E) ; T = (E) ) (1.19)
v/, al )y

The distinction between a capacitive part and a transit time part of a charge is rather
arbitrary. In a compact model the currents are again a function of bias. Hence in all cases
the charges are ultimately a function of bias. In Mextram we therefore prefer to express
most charges directly as function of the biases.
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2 The intrinsic transistor

In this chapter we will give the model equations of Mextram for those elements that can
be readily understood, without many extra derivations. Those elements that need some
extra explanation are handled in the next chapters. In all chapters we use the convention
that when a certain quantity is mentioned in the margin (like next to the equation below),
then this quantity can be found in the equivalent circuit, and its corresponding equation
is also given in the model definition of Mextrar][ In other words, the quantities in the
margin give the places where the actually implemented equations are given, and not just
preliminary results.

2.1 Main current

The description of the main current is based on the ICCRE. In Mextram it is given
2

by In
I+ = ls exp(Ve,E,/VT), (2.1a)
Ir = ls exp(Vs,c,/ V1), (2.1b)
|f - |r
In = . 2.1c
N i (2.1c)

The parameter we introducedlis the saturation current of the main transistor. The base
chargeQg, normalised to the base charge at zero I}ag is denoted byjg3. From the

ICCR (1.16) we see that the product of the saturation current and the zero bias base charge
is

ls Qo = q°DnAZ.n?. (2.2)

(In AppendixF we show a list of parameters and model quantities@Qkg, and give their
relation to basic physical quantities.) As discussed in Sedti8rthe total base charge
has a number of contributions. In principle these contributions for a one-dimensional
transistor are:

Qg = Qo+ Qtc + Qtc + Qpe + Qsrc. (2.3)

Note that, as discussed in Sectib8.3 we do not include the emitter charge and epilayer
charge in the description of the main current. We will now discuss the various charge
contributions.

ZNote that in the official documentatio c, Is used, instead dfs,c,. The difference between the two
is not important here, but will be discussedzin Chagter

3When heterojunction effects play a role, one might need to distinguish betweeneeded in current
formulations and)g as needed in charge formulations. This will be discussed in Chépter
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2.2 Depletion charges
2.2.1 General expression for depletion charges

The depletion charges are directly related to the well-known junction capacitances. The
basic model for these capacitancésy, 8] is

Co

C=—-2__ (2.4)
(1—-V/Vg)P

with V the applied biasyy the diffusion voltagep the grading coefficient. The grading
coefficient has a theoretical value of2Lfor an abrupt junction and/B for a graded
junction. In practice the parameter may have other values after parameter extraction. The
pre-factor in the capacitance formula is the capacitance for zero®@pas:C (V =0).

The charge, corresponding to the ideal depletion capacitance is

~ CoVy

Q 1-p

[1— (1—V/vd>1—P], (2.5)

where we added a constant term such @a¥ =0) = 0. The latter is needed to make
sure that at zero bias we have indégg = Qpgoin Eq. @2.3).

Clearly, the ideal capacitance has a singularity\for= Vy. This makes the formula
inappropriate to use in a compact model. We need a continuous and smooth equation.
(Smooth means that the first and higher order derivatives are continuous.) How this is
done is discussed in Appendix The result is that we write the depletion charge as

Q = Co - Vdepletiod V [Vd, pla). (2.6)

HereVgepletionis a function with the following properties

VdepletiodV [Vd, pla) =~ Vv, for small |V, (2.7a)
_dQ G for V. < Vg, (2.7b)
dvV — (1—V/VgP
C—d—Q~ aC forV 2V, (2.7¢)
= = 0, < V4. -

The quantitya is a Mextram constant, different for each of the depletion capacitances:
aj. = 3,aj, = 2, andaj; = 2. In Fig.4 we show an example of a depletion capacitance.

2.2.2 Substrate depletion charge

The total depletion charg®:; between collector and substrate is given using the param-
etersCj,, ps andVyg and the potentialsc, :

Qts = Cjg Vdepletiod Vsc, [Vds» Pslajs)- (2.8)
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A~ T T T T T T T a1

Cac [fF]

Figure 4: An example of the capacitance formula. The markers are measurements. The
lines is the model. When the junction is in forward, the diffusion capacitance dominates
the depletion capacitance and we can safely make the depletion capacitance constant.

2.2.3 Emitter depletion charge

The depletion charge between base and emitter is split into two parts, an intrinsic one and
one belonging to the side-wall. Both are given using the param€grge, Vg4, and

XCj. and the potential¥,g,, resp.Vg,g;: Qte
S
QtE - (l - XCJE) CjE Vdepletior{VBzEﬂVdE’ pElajE)’ (Zga) QtE

Q. = XCic Cjc Vdepletiod VB1E1|Vde» PElaje). (2.9b)

2.2.4 Collector depletion charges

The basic formula for the total collector depletion charge is that of a junction given above.
However, we will split the total charge into three parts. First we have the intrinsic charge
Qt., Which is beneath the emitter and hence between the ndgasadC,. This charge

is important in for instance the Early effect. The external charges are split in &ait (
fraction 1— Xext) between the node8; andCy, and a part XQqex, fractionXext) between

the nodesB andC;. The fraction of the total capacitance below the emitter is given
by XCj..

For all three of these capacitances we must take the finite thickness of the epilayer into
account. For zero junction voltage the capacitance equals in prirCjple- esj/Xqo0 (per

unit surface). Heregg is the width of the depletion region in the epilayer at zero bias
(assuming a negligible width in the base). When the junction becomes strongly reverse
biased the depletion layer will be wider than the epilayer. Since the buried layer has
a much larger doping, the width of the depletion layer will not increase much beyond
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the width of the epilayeWey, (reach-through). From there on, the capacitance will be
approximately constant, with a value of in principlg/ Wepi. We will approximate this
behaviour by taking the sum of a constant part and a junction part. The parameter we use
is given byX, = Xqo/ Wepi-

Qtex The extrinsic collector depletion charges are now given by
XQtex
Qtex = (1 — Xext) (1— XCjC) Cjc [(1 - Xp)VdepIetior(VBlcl|VdC» pC|bjc)
+ XpVeic, ], (2.10a)
XQtex = Xext (1— XCjC) Cjc [(1 - Xp)VdepIetior(VB Cl|Vdc» pC|bjc)
+ XpVe 1 ]- (2.10b)
Instead ofaj. we usedj., defined by
ajc — Xp
o= = 2.11

This makes sure that for junction voltages above the diffusion voltage the capacitance of
both the variable part and the constant part add g tdimes the zero-bias capacitance.

If we take the complement of the extrinsic collector depletion charges, we would arrive at
the following expression for the charge of the intrinsic collector:

Qtc = XCj. Cjc[(1—Xp)Vdepletior{VBZC1|Vdc» pC|bjc)+XpVBzcl] (incomplete!)(2.12)

However, the epilayer makes the model more complex, because the charge becomes de-
pendent on the current. Equati@rl2is only the low-current limit of the base-collector
depletion charge, and therefore the expression above is incomplete. We will digguss

in Section3.5.

2.3 Early effect

The Early effect is the effect that the main current gets modulated due to a variation in
effective base width. This effective base width changes due to the fact that the depletion
regions vary in thickness as function of the bias over the junction (both on the base-emitter
side and on the base-collector side).

In Mextram (and in other modern bipolar compact transistor models) the Early effect is
modelled using Eqs2(1) and @.3). We neglect for the moment the diffusion charges.
The normalised base charge (now caligilis then given by

Go= & —14 ey o (2.13)
QBo Qso Qgo
Referring to Eq.2.9) we see that we can write for the second term in RdL3
(1—XC;) C;
Qe _ -7 Vepletiod Va,&: Ve » PEIaje)- (2.14)

Qeo Qgo
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Now we introduce a new parameter, the reverse Early vokage- Qgo/(1—XCj.) Cj,
which is the inverse of the pre-factor in the last equation. In the same way we can define
the forward Early voltag¥es = Qpo/XCj. Cj.. Using the definitions

QtE

Vie = , (:v oV, Ve a-), 2.15a
th

Vie = & e (2.15b)

© XCic Cic

we arrive at the Early-effect term

V V

Qo=1+ & 4 -C (2.16)

Ver = Vet

2.3.1 Punch-through

When both the base-emitter and the base-collector junctions are very much reverse biased,
the depletion layers could touch each other. This is the effect of punch-through. Mextram
is not meant to describe this effect correctly. In the case of punch-through theggderm
becomes zero. Since we will divide by it to get the main current, we must make sure that
it cannot become zero. We use, therefore,

g1=73 <QO +/ad+ 0.01> , (2.17)

instead ofgg directly.

2.3.2 Base width

It is interesting to note that using the depletion capacitances we actually can calculate the
effective base width, i.e. the distance between the two depletion regions. This width is
approximately given by

Qgo + Qte + Q¢
Qso

(This is only completely true for a flat doping profile.)

Weff ~ WB

— Wg Q1. (2-18)

2.4 Base diffusion charges

As we have seen in Eg2(1) the main current is defined in terms of both the depletion
and the diffusion charges. Here we will describe the diffusion charges. To describe them
we need to consider the neutral part of the base, i.e. the part where

P(Xx) =n(x) + Na(X). (2.19)
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This region is bounded by the positioxis andxc that mark the boundaries of the deple-
tion regions. The width is given bWg = xc — xg. For the moment we will consider a
constant base width.

Most of our derivations will be based on a constant doping profile. The results can also
be used for other doping profiles, as will be discussed in Se2ti2 But first we will

give a short derivation that gives the physical basics of our expressions. Note that most of
our results can be found, in some way or another, in other basic texts as well.

2.4.1 Short derivation

To calculate the diffusion charges we need to know the electron density profile. (Recall
that the hole density profile is given by EQ.19.) Both in high-injection and for a
constant base doping profile the electron density will be linear:

n(x) =n(0) (L —x/Wg) +n(Wg) x/Wg. (2.20)
The total electron charge is therefore
QB.elec= %q AemWg n(0) + %q AemWg N(Wp). (2.21)

As one can see the charge has a contribution from the electron de(®itst the base-
emitter edge, and a contribution from the electron density/g) at the base-collector
edge. The first is related to forward operation, and depends on the base-emitter bias
VB,E,.- We will call this partQge. The latter is related to reverse operation, and depends
on the bias-collector biass,c,.We will call this partQgc. We therefore get

Qee = 3QsonNo. (2.22a)
Qec = 2Qgone. (2.22b)

where Qgo = qAemWgNa, g = n(0)/Na andng = n(Wg)/Na. As we see, the
diffusion charges are expressed in terms of the (normalised) electron densities at the edges
of the neutral base region, and in terms of the zero bias base charge. So now we need
expressions for these.

We have found (as discussed in the end of Se@idt?) that in normal forward operation
the effective base transit time is almost constant. This means that the base-emitter diffu-
sion charge can be expressed@s = g |. Combining this with the ICCR1(16) we

get ]

I e VB, / VT

=— . (2.23)
1+ 1/QBo
This equation can be solved fby and we get
2| eVB2E1/ VT
| — st 7 . (2.24)

1+ \/1 + # eVB2E/VT
k
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Figure 5:The current | from Eq. (2.24) as function of bias, together with its asymptotes
liow (dashed) and Inign (dotted) from Eq. (2.25).

Here we used)go = 8 Ik, With I the knee current, as will become clear below. Let us
look at the two asymptotes of the equation for the current, also shown is.Higpr low
currents, (i.e. smalg,g,) we have

liow = ls e"B2EL/VT | (2.25a)
as can be expected. For high currents we get

lhigh = v/1s Iy €828/ 2T, (2.25b)
We can calculate the point where both asymptotes cross:

low = lhigh = | = I (2.26)

Hence the ‘knee’ of the current, as shown in FEgs indeed at the knee currdpt Hence
its name.

Now we only need an expression for the electron density. FromZ2@2)(we findng =
2Qge/Qpo = 2131 /Qpo = 21 /Ix. Hence

f1 = %eVBzEl/VT, (2.27a)
k
f
Np = —1 (2.27b)
1+V1+ 1
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We do the same for reverse, and find

f, = %eVBzCz/VT, (2.28a)
k
fa
ng = ————. 2.28b
8 1+ VIt (2.280)

We now have an expression for the (normalised) electron densgti@sdng as function

of the respective junction biases. The diffusion charges are then given in terms of these
electron biases and the zero bias base ch@rge= g lk. It is also important to realise

that the normalised base charge (caligdvhen we neglect the Early effect), given by

G2 =1+ 3no+ 3ng, (2.29)

is independent of the base time transit parametgr This means that this parameter does
not influence the current description of our model. The knee current, of course, does
influence the current description.

2.4.2 Not so short derivation

Next we give a more thorough derivation. This will also give us a chance to express the
model parameters in terms of physical quantities.

To find the diffusion charges we have to solve the current density equations together with
the continuity equations. (We assume all equations from Setti®known and will not

refer to them.) We assume that recombination in the base can be neglected. The hole
current then vanished;, = 0. This is of course only true wheh>> 1 such that the base
current can be neglected. Using the expressiod fowe can find the electric field in the
base:E = V1 p~1dp/dx. Since the electric field is known, the expression for the electron

current densityd, = — 1 /Aem gives a differential equation for the electron density:
2n 4+ Na dn n dNa
| = —-qD,A _— — — 2.30
a ne'm(n+NA dx+n+NA dx (2:30)

This equation is the basic equation that can be used in any neutral region without re-
combination. For the moment, we will assume a constant base doping. The second term
between parenthesis can then be neglected. Although an exact formulation solution is
possible, we will start with the low and high injection limits.

As before we will give the solution in terms of the electron densities at the edges of the
neutral base region. These can be given using the boundary conditions, se€Eq. (

2

N«

no(No+1) = —eBa/VT (2.31a)
NA
2
Nn?

ng (Ng +1) = N—'2 eVB2Co/ VT (2.31b)
A
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Since Eq. 2.30 is a first order differential equation, one would normally only need one
boundary condition. Here, however, the second boundary condition is needed to deter-
minel.

Constant base doping profile under low injection conditions. In the low injection
regime we assume that« Na. Equation 2.30 then reduces to the simple differential
equation

dn

This implies thanh(x) is linear. The electron density is given as

n(x) = Na[(1—x/Wg)no + (x/Wg)ng]. (2.33)
The electron charge is given as

QB elec= 3 dAemWsNa (No+Ng) = 3Qgo(No + Ng). (2.34)

From this we see that for low injection we can wri@se = 3Qgono and Qgc =
$Qgong, just as before.

Of course we can also calculate the current:

_q DnAemNa
= Wa

| (Np — Ng). (2.35)

We want to write this in the same way as Ef.1©). To this end we can write for low in-
jection, see Eq.A.31), no == (n?/N2)e"®E/VT and equivalently fong. Re-expressing
gives

2
| = W (eVBzEl/VT — eVBzcz/VT> . (2.36)
AVVB

This is the expression fdrat small injection and without the Early effect. The pre-factor
is the saturation current paramelgr

We can now also calculate the effective forward transit time (calculated assngiad))

_ dQee W}
~dl 2D,

Tf (2.37)

The reverse transit time (of the intrinsic transistor) is the same.
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Constant base doping profile under high injection conditions. Next we consider the
high injection limit,n > Na. In this limit the electron and hole densities are almost
equal:n >~ p. The differential equation for the electron density now reads

dn

| = —-29DnAem —
q nAem oo

(2.38)

and is the same as before, apart from a factor 2. This implies that the expressions for
the charges above do not change. For the expression for the current we need, again from
Eq. 2.31), np = (nj/Na)e"B261/2T This leads to

_ 20 Dn AemNa
Wg

I (Ng—ng) = Is ZL\I—A (eVBzEl/ZVT — eVBzCz/ZVT> . (2.39)
i

As we can see, we need a new parameter, that describes the ratio bétweel n;.
This parameter is again the knee current. It is defined using the high injection asymptote,
which we can write as

| = /ls I (eVBZEl/ZVT _ eV3202/2VT> ) (2.40)

For a constant base doping profile we therefore find

4q Dn AemNA

lk = 1s(2Na/ni)? = 2.41
k s( A/ i) W ( )
The (forward) transit time is now
dQee W3
= = ) 2.42
T Ta T ab, (2.42)

As we can see, this transit time has been reduced by a factor of 2 from its low-injection
value (for a constant base doping).

Constant base doping profile under general injection conditions. Next we need to
consider the interpolation between the low and high-current regimes. We have seen that
the electron density is linear, both for low and for high injection conditions. When we
assume that it is linear for all injection conditions we can find a simple expression for the
current. For a linear density, we can express the diffusion charge in terms of the electron
densities at the boundaries as in Ej2@). The electron densities at the boundaries follow
from the boundary condition2(31). Using Eq. 2.1) with gg = g2 given in Eq. 2.29),

we can write

| =g (eVBzEl/VT — eVBzCz/VT) /0. (2.43)
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For future reference we give this solution for the current expressed solely in temgs of
andng:

nomo+1) —ngng+1) No —Np

I = 11 Iy
4 4
14 3n0+ 3N 14 3n0+ 3ne

(no+ng+1). (244)

We can clearly see the transition from low to high injection. For low injection we find
| = zlx (no — ng) and for high injectionl = I, (ng — ng). The transit changes from
W3 /2Dy to W3 /4Dy, as function of bias.

Equation 2.43 is not what is implemented in Mextram, as we discuss in the paragraph
about non-constant base doping below.

Exact solution in the case of a constant base doping profile.We mentioned before
that also the exact solution of EQ.80 can be given for a constant base doping profile.
We will give it here for completeness sake. Using the definitioly @fe can write

Na
n—+ Na

| dx/Wg = —Zlx (2— ) dn/Na. (2.45)

Integration fromx = 0 tox = Wpg gives the exact result

1+ng
| =11, (2ng—2ng —lo . 2.46
4k( 0 B 91+nB) (2.46)

We will see expressions like these again when we consider the epilayer. They form the
basis of the Kull-modell9]. After some algebra we can re-express E46), such that
we can compare it with Eq2(44):

Nop—Np
k 1 1
1+ 3n0+ 3N8

2+no+n No—nN
i {no +ng+2— (m artan#)] (2.47)

No—NB 24-no+ng

The approximation we made in the previous paragraph (assuming a linear electron density
for all injection levels) is equivalent to replacing, in the equation above, the expression
between parenthesis by 1. For low injection this is the correct limit. But also for high
injection this term will remain of the order 1. Since for high injectigy>> 1 orng > 1

the term between parenthesis is not important. It can be shown that the approximate
solution of Eq. 2.44) differs nowhere more than 5% from the exact solution.

Non-constant base doping profile. In practice the doping profile is not constant. For
that reason, in earlier versions of Mextrail] a formulation was used based on an
exponential doping profile profile:

Na(X) = Npg e ™/ Ws (2.48)
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The reason for using this profile is that it is reasonable realistic but still leads to analytic
results. The parameteris sometimes called the built-in field parameter, since at low
injection the electric field is given &8 = V7 N;ldNA/dx = —nV1/Wpg. Typical values

of n are 3 or 4.

Using such a doping profile one can find the low and high current limits, and one can find
interpolation formulas3l, 14]. We will not repeat all of the results here, but only note
that the high-current limit is always independent of the actual base doping profile.

One of the results is that the low-injection forwards transit time depends on the doping
profile. In practice, for values around= 3 or 4, the transit time is nearly constant, and
equal to the high-injection limit o\N§/4Dn. For this reason we chose to take a injection-
independent base transit time. This also simplifies the formulations considerably. Hence
we now use the expressions, already given in Se@idrll Note that this also implies

that we take the (intrinsic) reverse transit time to be constant. This is not so much of
a problem, since there are a lot of other parameters (especially the transit time of the
epilayerrep;) that can be used to model the charges in (quasi) saturation.

Another advantage is that we don’t negés a parameter anymore. Many years of ex-
perience with Mextram showed that the parameatbad a very limited influence on the
characteristics. This can be explained as follows. As has been shown b &igome

point the current starts to deviate from the ideal exponential behaviour. There used to be
two parameters to model this: the built-in field parametand the knee curret{. The

latter should also be used for the asymptote at higher currents. This asymptote, however,
is never reached due to other high-current effects (resistances, quasi-saturation). Hence
the knee current is by itself enough to model the initial deviation from the ideal expo-
nential behaviour. Since the asymptote is never reached, the pardgnistér practice

not very well defined. After parameter extraction it does not always have a value close to
the estimate based on the doping profile. One needs to take this into account when doing
parameter extraction.

2.4.3 The Early effect on the diffusion charges

Up to now we have assumed a constant base Wiih= xc — xg. In reality this width
changes as function of bias since the depletion regions change with bias. This has its
effect on the main current and is called the Early effect (see Se2i®nlt also has its
influence on the diffusion charges. We have seen that these charges are proportional to the
base charg®) go when we do not take the Early effect into account. The Early effect is
then simply modelled by usinQgo + Qt: + Q¢ instead ofQgo, viaq:. The expressions

for the base diffusion charges therefore become

Qee = 391QsoNo, (2.49a)
Qec = 30d1Qso N, (2.49b)

whereQgo = 15 lx. The normalised base charge used in Rdl)(then is

e = 01 (1L + 3no + 3ng). (2.50)
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2.4.4 Extended modelling of excess phase shift

It is possible to model distributed high frequency effects in the intrinsic base. These are
modelled, in first order approximation, both in lateral direction (current crowding, to be
discussed in Sectioh.2) and in vertical direction (excess phase-shift). The distributed
effects are an optional part of the Mextram model and can be switched on and off by flag
EXPHI (on: EXPHI = 1 and off: EXPHI = 0)

In vertical direction (excess phase-shift) base-charge-partitiodiR2pP] is used. Base
charge partitioning means that the chaf@g: is assigned not only to the base-emitter
junction, but partly also to the base-collector junction. The reason is that, for instance
in the case of an AC-signal, a part of this charge is not supplied through the emitter
contact, but through the collector contact. This will lead to an extra phase shift in the
transconductance.

The general way to find the partitioning is by writin2g]

Wg

Qe = qumf n(x) (1 —x/Wp)dx, (2.51a)
0
Wg

Qec = qum/ n(x) x/Wg dx. (2.51b)
0

For the simple case of a linear electron density) = n(0)(1 — x/Wg) we find Qge =
2Quot andQac = 2 Qtor, WhereQior = 3QgoNo.

There is another way of looking at it, that might give some insight. Let us solve the
diffusion equation for electron$ = qD,dn/adx, together with the continuity equation
dJ/9x 4+ qan/at = O, for an AC signal with frequenay. The equation to solve is then

32n :

Introducing the complex quanti®y> = jwW3/Dy, (= 2jwt+ at low injections) the solu-
tion is given by

n(x) =n(0) sinh[A(1 — x/Wpg)]/sinha. (2.53)
From the electron density we can find the electron current density and hence the electron
current, which is now not a constant, but depends on position. The current that goes

to the emitter isl (0), whereas the current that goes to the collector(&g). In the
low-frequency limit they are given by

N d(%Qtot)’

1(0) = Ipc + joQut= Ipc I (2.543)
_ d(2 Qtot)
|(Wg) = Ipc — joiQut=lpc — ST” (2.54b)
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Here Ipc is the DC current. Again we see that only two-thirds of the variation of the
charge belongs to the emitter side.

The derivations given above implicitly assume a constant base doping profile. For non-
constant base doping profiles the derivation becomes more diffg)I2fl] (see also the
report R5]). Of course then the pre-factorg2and ¥ 3 also depend on the doping profile,

or rather the actual electron density. We have seen that for high-injection, the situation
where these charges are important, the electron density is indeed linear. For low injection
it might be different, but we have no parameter (liketo make the partitioning bias
dependent. Hence we stick with the partitioning factors as derived above. For simplicity
reasons we only implemented base charge partitioning for the forward base dDggge (

So, wherEXPHI = 1, Qgg andQgc (EQ.2.49 are redefined according to

Qec — 3 Qse + Qsc, (2.55a)
Qee — % Qe (2.55b)

2.5 Emitter diffusion charge

The emitter diffusion charge models the hole charge on the emitter side of the neutral
base edge. This means the hole charge both in the neutral emitter, as well as the hole
charge in the depletion region not related to the depletion charge. The hole density giving
rise to the latter charge is that part of the hole charge in the depletion region that is locally
compensated for by an electron density. Itis therefore sometimes called the neutral charge
of the depletion regionZ6).

Since the charge is in the emitter region, which has normally a much higher doping than
the base, we do not need to take high-injection effects into account: the charge does not
have a ’knee’. We do allow for a non-ideality factor and therefore write

Qe = Qko (eVBZEl/m’VT - 1), (2.56)

with m; normally between 1 and 2.

Next we need to express the pre-fac@go in terms of the transit time parametey.
Let us therefore calculate the effective transit timeQaf. For low injection, where the
current is given by Eq.2.253, we find

1/m, 1/m;—1
Qe ~ Qeo (L) = TQp dQe _ Qeo <L> . (2.57)

ls dil - mgls \g

This transit time decreases with current whap > 1. For high injection, where the
current is given by Eq.2.258, we find

Q NQ ( I )2/mr _ 2QEO ( I )Z/m,—l (258)
R W T T ek \Visk -
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This transit time increases with current. Hence, when> 1, the effective transit time
7Qe has a minimum.

We must now ask ourselves, which of these possible effective transit times do we take to
be the parameteiz? Preferably, we need both parametgrsandm, to be as indepen-

dent as possible. This means that for instasgcehould not change very much, when we
changem,. (Note that the charge depends exponentiallymgn) Sincerg will be deter-
mined around the top ofy, it is best to take the minimum at,. as the independent pa-
rametere. The minimum occurs approximately at the knee in the current. We will not use
the exact minimum, because this depends on the exact expresslatstlf, including all

extra effects. We just take ER.67) at| = I and findte = 79 =~ Qeo (/1) ™ /1.

For the pre-factor we therefore take

1o\ Ve
Qeo = Ik (K) : (2.59)

Note that form,; = 1 we get the simple expression
Qe =1 Is €"825/VT = 1¢ lju. (2.60)

For other values ofn, we have made sure that the minimum of the effective emitter
charge transit time, which is around the topfef is almost independent afi, and of the
order oftg. For lower or higher currents the effective transit time can differ very much
from the parameter value.

2.6 Base currents
2.6.1 Ideal forward base current
The total ideal base current is separated into a bulk and a side-wall current (the latter

has a fractiorXlg,). Both depend on separate voltages. As in the basic Ebers-Moll and
Gummel-Poon models we use the (forward) current gaas a parameter that gives the

ratio between the main saturation current and base saturation current. We get I,
| I3
1
o, = (1= Xis)) g (exp(Vese/Vr) — 1), (2.61a)
I
ls, = Klg, ES (exp(Vslel/VT) - 1). (2.61b)

Note that the expression for the ideal base current changes when one of the heterojunction
features is used (see Chaper

2.6.2 Non-ideal forward base current

The non-ideal forward base current is given by I,
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Is, = lgf (evBZEl/muvT _ 1) , (2.62)

and is simply a diode current with a non-ideality faatay;.

2.6.3 Non-ideal reverse base current
The non-ideal reverse base current is given by

| exp(Ve,c,/Vr) — 1
° exp(Ve,c,/2VT) + exp(Vir/2VT)

g, = (2.63)

This expression is basically an approximation to the Shockley-Read-Hall recombination.
The recombination takes place in the depletion layers. It is well known that for small
junction voltages this current goes exponentially with @¥3c,/Vr). For higher volt-

ages this changes into e¥&,c,/2Vr). The model above introduces a cross-over voltage
to describe the effective behaviour of the recombination current. In practice, however, the
ideal part of this current can often not be measured due to the low cross-over voltage.

2.6.4 Extrinsic base current

The modelling of the extrinsic base current is rather analogous to the ideal forward base
currentlg, and the reverse currett/qg. (The real intrinsic reverse current is more
complicated due to avalanche and epilayer contributions). As we did for the main current
(or rather for the diffusion charges) we use an interpolation between low injection and
high injection. Here we use an interpolate function directly for the current. It is again
expressed in terms of the electron density, in this cagg at the end of the extrinsic
base:

41g
g1 = —— expVe,c,/ V1), (2.64a)

|k
Npex = 01
& 1+VI+01
The expression for the electron densityey is the same as that ofs in Eq. .28, but

now it depends oVg,c, instead ofVs,c,. The expression for the current must now be
something like

(2.64b)

1 ls expV,c,/V7)
Bi 1+ %nBex

(2.65)

lex

which includes the high-injection behaviour and is similar to the main currentZd). (
without Early effect g >~ g2) and wheray2 from Eqg. .29 contains only one charge
contribution. Since here the current depends on only one voltage (there is no ‘reverse’, or
rather ‘forward’, term here) we can simplify it to
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1
lex = E (%'k NBex — |s) . (2.66)

The saturation curreny is added to make sure that there is no current at zero bias.

2.7 Substrate currents
2.7.1 Substrate current

The substrate current includes high-injection and is given by [cf. E84)] I sub

2lss (eXp(Vslcl/ V1) — 1)

(2.67)

lsub=

|
14+ \/ 14+ 4|—S exp(Ve,c,/ V1)
ks

Herelys is the knee-current. This knee-current is given with respelgtittstead of tdgg

since this is easier for extraction. The formulation of this current is basically the same as
that which we found for the main currents (see SecBchl) under the assumption of a

flat doping profile in the epilayer (which is the base of the parasitic PNP).

2.7.2 Substrate failure current

The substrate-collector junction should always be reverse biased. Hence we don't need
to model the reverse behaviour of the parasitic PNP. To give a designer a warning that the
junction is biased wrong, we included a substrate ‘failure’ current, simply given as gt

Ist = Iss (exp0Vsg/ V) — 1). (2.68)

This current has no physical meaning.
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3 The collector epilayer model

3.1 Introduction

The epilayer of a bipolar transistor is the most difficult part to model. The reason for
this is that a number of effects play a role and act together. We will restrict ourselves
to modelling the epilayer in as far as it is part of the intrinsic transistor. The current
lepi through the epilayéris for low current densities mainly determined by the main
currently. Hence the epilayer is a part of the transistor that is current driven. Since the
dope concentration in the epilayer is in general small, high injection effects are important.
In that case the epilayer will be (partly) flooded by holes and electrons. Even though
then the main current and the epilayer current depend on each other and their equations
become coupled, we will still consider the epilayer to be current driven, i.e. our model
will have lepj as a starting quantity. The regions where no injection takes place can either
be ohmic, which implies charge neutral, or depleted. In depletion regions the electric field
is large and the electrons will therefore move with the saturation velocity. These electrons
can be called hot carriers. The electrons will contribute to the charge. In case of large
currents this moving charge becomes comparable to the dope, the net charge decreases, or
even changes sign. The net charge has its influence on the electric field, which in its turn
determines the velocity of the electrons: for low electric fields we have ohmic behaviour,
for large electric fields the velocity of the electrons will be saturated.

All these effects determine the effective resistance of the epilayer. As is well known,
the potential drop over the collector region can cause quasi-saturation. In that case the
external base-collector bias is in reverse, which is normal in forward operation, but the
internal junction is forward biased. Injection of holes into the epilayer then takes place.
The charge in the epilayer and in the base-collector region depends on the carrier concen-
trations in the epilayer, and will increase significantly in the case of quasi-saturation.

The electric field in the epilayer is directly related to the base-collector depletion capac-
itance. As we will see in SectioB.6 the avalanche current is determined by the same
electric field, and in particular by its maximum. Hence our description of the epilayer
must also include a correct description of the electric field.

For modern small transistors we must take current spreading into account. This means
that the electrons that come from the emitter, through the base, go to a region of the
collector with a surface larger than the emitter afea. This spreading effect decreases

the resistance of the epilayer and also the maximum electric field, and hence the avalanche
current.

Extensive literature about the physics of the epilayer is available, &.8, 10, 19, 27,

28, 29, 30, 31, 32, 33, 34, 35, 36]. The basis of the Mextram epilayer model was given

by Kull et al. [19]. Their model has become known as the Kull model. Their paper also
discusses the approximations made. This model has been incorporated and extended in

“In this chapter we will consequently wrilgp for the current through the epilayer because this is more
clear, especially in those intermediate expressions in which the current is not necessarily equi, to, the
that is really implemented, see E§.26). Only when discussing the real implementation we kse,.
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Figure 6: Schematic representation of the doping profile of a one-dimensional bipolar
transistor. One can observe the emitter, the base, the collector epilayer and the (buried)
collector. Constant doping profiles are assumed in many of the derivations. The collector
epilayer is in this chapter located between X = 0 and x = Wepj and has a dope of Nep.
We have also shown where the various nodes E1, B2, C» and C1 of the intrinsic transistor
are located approximately.

Mextram. For Mextram 503 these extensions have been published irBReafleast for
current-voltage relations. In Ref37] a thorough description of all parts of the epilayer
model is given, that was implemented in Mextram 503. The report includes the charge
model, as well as the description of the avalanche current. Another way of describing it
was given in Ref.14].

In this chapter we give the description of the same material, based on B&fS8],
leading to the Mextram 504 implementation, in order to clarify the physics behind the
model, as well as the approximations made.

In Section3.2 we give a qualitative description of the various effects that play a role in
the epilayer. The actual derivation of the collector current and the internal base-collector
bias is given in Sectio®.3. The diffusion charge in the epilay&ep; is discussed in
Section3.4. In Section3.5we describe the depletion char@e.. Finally the avalanche
model is given in SectioB.6.

3.2 Some qualitative remarks on the description of the epilayer

Let us now concentrate on a one-dimensional model of the lightly doped epilayer. In this
chapter we assume the epilayer to be alongxtais fromx = 0 tox = Wepj, as has

been schematically shown in Fig. (Note that in the description of the main curréqt

we used another offset for tixeaxis.) The base is then locatedkak O, while the highly
doped collector region, the buried layer, is situated at Wepi. We assume a flat dope

in the epilayer and an abrupt epi-collector junction for the derivation of our equations. In
the final description of the model we will generalise some factors to account for non-ideal
profiles. (For instance the depletion charge has a parameter for the grading coefficient).
For the same reason most of the parameters will have an effective value. This is even
more so when current spreading is taken into account, see S8c3idn

We assume that the potential of the buried layer, at the interface with the epilayer, is given
by the node potentialc,. The resistance in the buried layer and further away at the
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collector contact are modelled by the resistaReg and will not be discussed here.

We assume that the doping concentration in the base is much higher than that in the
epilayer. In that case the depletion region will be located almost only in the epilayer (i.e.
we have a one-sided pn-junction). The potential of the internal base (i.e. the base potential
while neglecting the base resistance) is given/gy.

The nodes of the equivalent circuit In the Mextram model, as well as in many other
compact models, there is an intrinsic collector node, in our €asé he potential at this

node is the electron quasi-Fermi level at the base-collector interface. This potential plays
an important role in the description of the effects in the collector epilayer, both for low
currents where it determines the depletion capacitance and for high currents where it is
important for the description of quasi-saturation.

For high injection the potential differendé,c, determines the (reverse) main currént

and the directly related diffusion char@c, as we have seen in ChaptrEgs. .1),

(2.22 and @.28. So for high injection, including reverse operation and (quasi) saturation,
the biasVs,c, must be such that it describes correctly the electron and hole concentration
at the base-collector interface. In Mextram we need for instapcehe electron con-
centration at the base-side of this junction, ggdthe hole concentration at the collector
side. In formula, the potential differendé,c, must fulfil Eq. (.8), repeated here for
convenience:

n(0)p(0) = ne"B2C2/ VT, (3.1)

For low currents the precise value of the electron concentration at the base-epilayer junc-
tion is of minor importance. In this regime the value of the potentigl is used to
describe the depletion capacitance correctly, using a formula similar t@ H@).(

Hence the intrinsic collector node voltage has a double function, one for low currents, one
for high injection. When we also demand that the model is not only continuous but also
smooth, this double function can no longer be achieved by a single node potential.

In Mextram 504 we therefore make a distinction between three biases. In Mextram 503
all three of them are given by the big,c, as it comes from the circuit simulator. In
Mextram 504 we have instead

VB,c,: The bias as it is given by the circuit simulator. This bias is used to calculate the
currentlc,c, through the epilayer, using the previously mentioned Kull model. It
is however not used to calculate other quantities. It is therefore only a first step in
the calculation and acts as a help variable. No physical meaning should be attached
to it in forward mode.

Vg,c,: This bias is the bias that is in some sense the most physical one, since the effect
of quasi-saturation is taken into account. It is calculated using the external base-
collector biasVg,c, and the currentc,c,. This makes it possible to make sure that
Vg,c, behaves smoothly over bias and current. It will be used to calculate other
quantities likely, Qgc andQepi.
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Viunc: This is the bias that is used to calculate the intrinsic base-collector depletion ca-
pacitance. It is also calculated using the external base-collectovpigsand the
currentlc,c,, but is doesiot include quasi-saturation. In this way we do not need
the chargeA Qsat that was introduced in Mextram 503 as a bug 89)][(see also
the report 14]). The difference between the three biases will become more clear as
we go along.

Velocity saturation The drift velocity of carriers is given by the product of the mobility
and the electric field. The mobility of the electrons itself, however, also depends on the
electric field. It has a low field valugng, such that the low-field drift velocity equals

v = uno E. At high electric fields, however, this velocity saturates. the maximum value
given by the saturation velocitysa: A simple equation that can be used to describe this
effect is

Mn0 mnoE
=-=— V=upE=———— 3.2
1+ pnoE/vsat " (3:2)

n = .
" 14 pnoE/vsat

As one can see there is a cross-over from unoE for small electric fields ta = vgat
for large electric fields. This cross-over happens at the critical electric field defined by

E, = 258t (3.3)
Mno

Typical vales for Si arevsgt = 1.07 - 10’ cmy/s, uno = 1.0 - 103cn?/Vs andE. =
7-10°V/cm.

The current In normal forward mode electrons move from base to collector, i.e. in
positivex-direction. The current densitgp; is then negative, due to the negative charge
of electrons. The currerty,; itself, however, is generally defined as going from collector
to emitter, via the base, and is positive in forward mode. We therefore write

Iepi = —Aem Jepi (3-4)

just as we did for the main current through the base in Ch&pter

The electric field As mentioned before, the electric field in the epilayer is important.
The basic description of the electric field is the same as that in a simple pn-junction.
In the epilayer (of an NPN) it is negative (which means we must be careful with some
minus-signs). According to general pn-junction theory, the integral of the electric field
from nodeB; to nodeC; equals the applied voltagé: g, plus the built-in voltagé/q_:

C1 Wepi
—/ Ex)dx = —/ E(x)dx = Vc;B, + V.- (3.5)
B 0

2
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Here we assumed that the electric field in the base and in the highly doped collector drops
very fast to zero, such that the contribution to the integral only comes from the region

Equation 8.5) is an important limitation on the electric field. It is in itself not enough to
find the electric field. To this end we need Gauss’ law

de »p

— = 3.6

dx ¢ (3.6)
Herep is the total charge density, given by

P = q(Nepi —n + p). (3.7)

Consider now the electric field in an ohmic region. It is constant and has the value

g ol leni. (3.8)

o o Aem

Hereo is the conductivity. The electric field is negative, as mentioned before. In ohmic
regions the electric field is low enough to prevent velocity saturation. The net charge is
zero and the number of electrons equals the dégge A negligible number of holes are
present. The ohmic resistance of the epilayer can then be calculated and is given by the
parameteRcy = Wepi/q,un AemNepi-

Next we consider the depletion regions. In these regions the electric field will be high.
Hence we can assume that the velocity of electrons is saturated. There will be no holes
in these regions either. The electron density however depends on the current density.
Since the electron velocity is constant we hawve= |Jepil/vsat  The total net charge

is then given by a sum of the dope and the charge density resulting from the current:
p = Nepi — |Jepil/vsat For the charge density it does not matter whether the current
moves forth or back. This gives us

dE  gNepi lepi
P 1-— =F2 3.9

where we defined thieot-carrier currentpe = NepiAemvsar When the epi-layer current
equals the hot-carrier current the total charge in that part of the epilayer will vanish. We
still call these regions depleted, since the electrons still move wyighin contrast to the
ohmic regions.

For currents larger than the hot-carrier current the derivative of the electric field will be
negative. There will still be a voltage drop over the epilayer. This voltage drop, however,
is no longer ohmic, but space-charge limited. The corresponding resistance of the epilayer
is now given by th&SpaceChargeResistanc&CR¢,. We will discuss this in more detail
below.

Let us consider the current dependence of the electric field distribution in some more
detail, for both cases discussed above. At low current density (i.e. before quasi-saturation
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Figure 7:Figure describing the electric field in the epilayer as function of current. In a)
the width of the depletion layer decreases because ohmic voltage drop is the dominant
effect. In b) the width of the depletion layer increases because velocity saturation is
dominant (Kirk effect). At I = Iqs quasi-saturation starts (see text).

defined below) the electric field in the epilayer is similar to that of a diode in reverse
bias. Next to the base we have a depletion region. This region is followed by an ohmic
region. When the current increases the width of the depletion layer changes. There are
two competing effects that make that this width either increases or decreases. The precise
dependence of the thickness of the depletion layer on the current is given i8.68), (

but here we will discuss both effects quantitatively.

We know that the bias over the depletion region itself is given by theWidas, minus the

ohmic potential drop. Hence when the ohmic region is large the intrinsic junction potential
will decrease with current, and so will the depletion region width. This is schematically
shown in Fig.7a). At some point the depletion layer thickness vanishes, and the whole
electric field is used for the ohmic voltage drop. Since at higher currents we still need
to fulfil Eq. (3.5) the electric field becomes smaller close to the base. This is possible
because holes get injected into the epilayer, which reduces the resistance in the region
next to the base. This effect, quasi-saturation, will be discussed in more detail later.

The other effect that has an influence on the width of the electric field is velocity satura-
tion. As can be seen from E@.9), the slope of the electric field decreases with increasing
current. This means that to keep the total integral over the electric field constant, as in
Eq. @.5), the width of the depletion layer must increase. This is schematically shown
in Fig. 7b). With increasing current the depletion width will continue to increase, until

it reaches the highly doped collector. For even higher currents the total epilayer will be
depleted. The slope of the electric field still decreases and can change sign. At some level
of current the value of the electric field at the base-epilayer junction drops beneath the
critical field E for velocity saturation and holes get injected into the epilayer. As before,
at this point high injection effects in the epilayer start to play a role. This is again the
regime of quasi-saturation. When quasi-saturation is due to a voltage drop as a result of
the reversal of the slope of the electric field, the effect is better known as the Kirk effect.

Note that in both cases described above a situation occurs where the electric field is (ap-
proximately) flat over the whole epilayer, as shown in Figln the ohmic case this will
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happen at much smaller electric field (and therefore collector-base bias) than in the case
of space charge dominated resistance (Kirk effect).

Quasi-saturation Consider the normal forward operating regime. The (external) base
collector bias will be negativets,c, < 0. The epilayer, however, has some resistance,
which can either be ohmic, or space charge limited, as discussed above. As a result the
internal base-collector bias, in our model giverMgj , is less negative than the external

bias. For large enough currents, it even becomes forward biased. This also means that the
carrier densities at the base-collector interface increase. At some point, to be more precise
whenVE}"ZC2 ~ Vy.., these carrier densities become comparable to the background doping.
From there on high-injection effects in the epilayer become important. This is the regime
of quasi-saturation. Note that we use the term quasi-saturation when the voltage drop is
due to an ohmic resistance, but also when it is due to a space-charge limited resistance, in
which case the effect is also known as Kirk effect.

For our description the current at which quasi-saturation stés,is very important.

So let us consider it in more detail. As mentioned before, quasi-saturation starts when
Vg,c, = V4. In that case we can express the integral over the electric field in terms of
Vgs, the potential drop over the epilayer, using E3j5]:

Wepi

So, at the onset of quasi-saturation the integral over the electric field is fixed by the ex-
ternal base-collector bias, and does no longer depend on the current. We can then use
the relation between the electric field and the current to determine the clyyei the

ohmic case the electric field is constant over the epilayer. The voltage drop is simply the
ohmic voltage drop and we can write

Iqs == Vqs/RCV. (311)

For higher currents the electric field is no longer constant, due to the net charge present in
the epilayer. Its derivative is given by E@.9 and depends on the current. The current
at onset of quasi-saturation can still be giver'Vgsover some effective resistance:

as will be shown in Sectio.3.3 The effective resistanc8CRc, is the space-charge
resistance introduced above.

When the (internal) base-collector is forward biased, as in quasi-saturation, holes from
the base will be injected in the epilayer. Charge neutrality is maintained in this injection
layer, so also the electron density will increase. As we noted already in the description of
the main current, at high injection the hole and electron densities will have a linear profile.
This linear profile in the base is now continued into the epilayer. The width of the base
has effectively become wider, from the base-emitter junction to the end of the injection
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Figure 8:Schematic view of the doping, electron and hole densities in the base-collector
region (on an arbitrary linear scale), in the case of base push-out/quasi-saturation. It also
shows the thickness of the epilayer Wepj and the injection layer xj. From Refs. [36, 38].

region in the epilayer. This is known as base push-out and is shown iB.Higlecreases
transistor performance considerably. As an example we show the output characteristics in
Fig. 9. Note that in the Spice-Gummel-Poon model quasi-saturation is not modelled. The
reduction of the current as modelled by Mextram shows the effect.

Itis important to note that although the hole density profile and the electron density profile
are similar, only the electrons carry current. The electric field and the density gradient
work together to move the electrons. However for the holes they act opposite and create
an equilibrium. This equilibrium will be used to determine the electric field (which will

be considerably below the critical electric field), as is being done in the Kull model.
Also the electron current in the injection region will in Mextram be described by the Kull
model.

Ic (A)

2 3 4
Vce (V)

Figure 9:The output characteristics for both the Spice-Gummel-Poon model and the Mex-
tram model. From Refs. [36, 38].
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3.3 The epilayer current

We start with the description of the epilayer currésy. We do this for a one-dimensional
transistor. First we describe the Kull model, which in Mextram is used to calculate
Ic,c,(= lepi) from the node voltag¥s,c,. As discussed befor&’g,c, is not the physical
quantity we can use for further calculations. We therefore need to cala(gate which

is more physical, from the current. We start with the ohmic case and after that intro-
duce velocity saturation. Then we consider the reverse behaviour and the situation around
lepi = 0. Finally we consider what happens in a real transistor where current spreading
plays arole.

3.3.1 The Kull model (without velocity saturation)

The Kull model [L9] is an important part of our epilayer model. The model can be used in
those parts of the epilayer that have a neutral charge (we will discuss velocity saturation
of the Kull model later):

This means that it can be used in the injection regions and in the ohmic regions. It is
important to realise that this assumption is only valid as long as the electric field, or rather
its derivative, is small enough. In device simulations (even without velocity saturation)
small deviations from neutrality can be observed. Here we will neglect this.

Following Kull we assume that there is no recombination and therefore no hole current in
the epilayer:

Hence the hole quasi-Fermi lewg) is constant. It equals the base potenkg). That it

is indeed constant has been checked by numerical simulation by 2l The product

of hole and electron density in the epilayer is then given by the local collector potential
Vc,, which we take equal to the local electron quasi-Fermi leyét). We can then write

p(X) n(x) = nf expl-(Vc, — Va,)/Vrl. (3.15)

For our calculations we need a parameter that describes the epilayer dpiray rather
the ratioNepj/nj. For this purpose we will use

N2
Vg = V1 In—>=. (3.16)
n;

This same voltage is also used in the calculations for the depletion charges, where it
acts as the built-in voltage. Normally one would write for this built-in voltage =
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VT In(NepiNA/niz), whereN, is the dope of the base close to the epilayer. This effective
base doping is often not known. Furthermore, for the calculation of the depletion charges
the relative small difference betwe®p andVq. can be neglected. Hence we can suffice
with only one parameteN/q_..

Next we normalise the hole charge densities to the doping level and write

P(X) n(x)
= y nx = .
I\lepi Nepi

(3.17)

X

Since we assumed quasi-neutrality we can write= py + 1.

Using Eqg. 8.16 we can now express the hole charge denspiiesnd pyw at both ends of
the epilayer in terms of the node voltages

Po(Ppo+1) = expl(Vs,c, — Vd.)/Vrl. (3.18a)
pw(pw +1) = exp[(Vs,c, — Vd.)/ V1] (3.18b)

Following Kull, we introduce

Kx = /1+4explVa,c, — Vao)/ Vil = 2p + L (3.19)

This gives us also the valu&s andKyy at the base-epilayer junction and at the interface
with the buried layer.

The derivation of the Kull model19] is now simple. We start with the basic equa-
tions (1.5) for the electron and hole current:

Jhn = Qqun (nE(x) + V7 3—2) , (3.20a)
dp

where we already used the Einstein relation. From E3j84( and 3.200 we see that the
hole density in the epilayer must be such that there is an equilibrium between the diffusion
term and the drift term. This gives a relation for the electric field:

1 dp
Ex)=V D ax (3.21)

Using this electric field in the expression for the electron current and using charge neu-
trality we get an equation for the electron current density in terms of the hole density:

B ndp dn\ Nepi\ dp
Jn_quan(p dx+dx)—q““VT (2+ ) ) D (3.22)
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The current density in our one-dimensional model is constant. As mentioned before it is
given by J, = —lepi/ Aem. We can simply integrate the equation fiyr from x = x; to
X = X and find

qunoVr NepiAem
X2 — X1

<2pXl —2py, +1n %) , (3.23)

X2

Iepi =

where we used that for the low fields we consider here= uno. Next we can use that

K2_-1 _ 4expl(Ve,c, — Vdo)/ V7]

2px =Ky —1=-~2 = 3.24
P X Ky + 1 Ky + 1 (3.24)
The collector current can then be rewritten to
Wepi E V
lopi = —repl Bxox T Vexs, (3.25a)
X2 — X1 Rev
Ky, +1
EX2X1 = VT (le — KX2 - In Kxi + 1) . (3.25b)

where we defined the resistance of the epildygf = Wepi/dtnoNepiAem. This result is
very general in the sense that it holds fonallandx; (in the neutral region). Substituting
X1 = 0, which is at the location of node,, andx, = Wepj at nodeCy, we get Kull's
result (without velocity saturation):

Ec +V
Icic, = lepi = %, (3.26a)
Cv
Ko+ 1
Ec = Vi Kop—Kw—1In ) 3.26b
c T ( 0o— Kw Ku +1> ( )

When no high injection effects occufp andKyy are very close to 1Ec is very small
and the epilayer current is given i = Vc,c,/Rcy. This is just ohmic behaviour with
a resistance given by the parameggy;.

Equation 8.26) for the collector current is used in Mextram for the calculation of the
current as function of the node potenfigl,c, (andVg,c,), both in forward and in reverse.

The rest of the model, at least in forward mode, is expressed in terms of this current (and
againVg,c,). For the forward mode of operation we could have taken any other expression
to calculate the current frois,c,. The Kull model is used because we use it in reverse,
which simplifies the implementation.

Note that later on the Kull model Eq3.5 betweenx; = 0 andxz = ¥, the end of
the injection layer, will be used again to calculate the hole concentrafjat the base-
collector junction.

The thickness of the injection region in the Kull model Before we discuss the Mex-
tram formulation, let us first analyse the Kull model somewhat more. In&ge have
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already shown on a linear scale the electron and hole densities in the collector epilayer, in
the case of quasi-saturation. We can see that the epilayer consists of two parts. The first
part, betweerx = 0 andx;, is the injection region where the hole density is comparable

to the electron density. The second part, betweea x; andWegyp;, is the ohmic region
where the hole density is negligible. At the point x;, the difference between hole and
electron quasi-Fermi levels is approximataa’.yz(;Xi ~ Vq.. We will use this observation

in the following.

Within the framework of the Kull model we can calculate the thickness of the injection
regionx;. Since the voltage drop over the injection region is small, the voltage drop over
the ohmic region is almost equal to the total voltage drop. For a constant doping profile
the resistance of the non-injected region is proportional to its length, and we can write

Veic, = VB,C, — VBoci = lepi Rev (11— Xi/Wepi) - (3.27)

By usingVs,c, here instead 0¥y the relation also holds for low current densitigs
0). We showx; / Wepj as function of current in FiglO (dashed line).

1. T T T T TTTTT T T T TTTT

0.5-

Xi / Wepi
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Iepi (A)

Figure 10: The normalised thickness of the injection region Xj/Wepi as function of the
current lepj for Vg,c;, = —1, —3V. Dashed line: Kull model Eqg. (3.28). Solid line
(axj = 0.1) and dotted line (ay; = 0.3): our model Eq. (3.31). From Refs. [36, 38].

From Fig.10 we observe that the Kull model has an abrupt onset of injection (this is
the point wherexj / Wep; starts to rise). This abrupt transition between the two operating
regimes leads to poor modelling of the higher derivatives of the current. This can, for
instance, be observed in low-frequency distortion analysis. Hence in Mextram we take
another approach, discussed below, in which the injection thickness is calculated using
the currentlepi, and not using the potentiak,c,.

3.3.2 The Mextram model without velocity saturation

We consider two parts in the epilayer: the injection region and the non-injected region.
Since by far most of the voltage drop is in the second region, we can use the equations
for the electric field to determine how wide it is, thereby calculating the thickness of the
injection regiorx;. Then, using a slight modification of the Kull model, we can calculate
the intrinsic junction bia¥g . from this thickness.
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The thickness of the injection region First we calculate;, the thickness of the injec-
tion region. When there is injectiortj(> 0) we can express this thickness as

Xi _ 4 Vie — VB,Cy
VVepi Iepi RCV

(3.28)

We can use this equation to determine the curtgntliscussed before, at which quasi-
saturation starts, by simply putting = 0. This results in

Ve — VBocy

(3.29)
RCv

Iqs ==

We can now express the thickness of the injection region as function of current and this
lgs @s
gs

Xj {1— lgs/lepi,  for lepi > lgs, (3.30)

Wep| B O, fOI’ Iep| < Iqs.

For our compact model we must of course create a smooth transition between both cases.
To do this we replace Eq3(30 by
Xi |
L1 B (3.31)
[ lepi

1+ ayi In{1+ exp[(lepi/lgs — 1)/axil}
1+ ay In{1+ exp[-1/ay]}

Note thatfepi is always larger tharys, unlesslepi = 0 in which casefepi = lgs. This
assures a non-negatixe Whenlgpi > lgs we have approximatelfépi ~ lepi, as desired.
The parameteay; has a smoothing purpose. From E@20 and 3.31) we have

Vdc - VBzC;L
Rev (1 — X/ Wepi) ’

(3.33)

Iepi =
a relation we state here for later reference.

The internal base-collector bias Next we need to calculate the internal base-collector
bias via the hole densityg. To prevent ambiguity, we denote the hole density calculated
using the current and the thickness of the injection layeyzasn contrast topg as calcu-
lated from Eq. 8.18. In this way pg is directly related td/g,c,, which we will not use
anymore, whereagy is in exactly the same way related\g ..

To calculatep; we need a description of the collector epilayer betweea 0 andx =
Xi. In this injection region the electric field is low, and we do not need to take velocity
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saturation into account. Hence we can suffice with the expression used in the Kull model,
Section3.3.1 We combine Egs3(26) and (3.27) to get

Xj 1+ pf;
— lepiRey = Ec = V1 [ 2ph — 2 —In 3.34
Wep epi Rcv C T |: Po Pw (1+ DW>:|’ ( )

where the right-hand side &5c expressed in terms of the hole densitgsand py . From
this equation we can not calculasg directly, since the equation does not yield an explicit
expression fopg;. We therefore approximate the equation above with

Xj
Wepi

pg+ pw +1
PG+ Pw + 2

lepi Rev = 2 V7 (DE’S — pw) (3.35)

The approximation foEc we just made does not differ more than 5% from the original
equation forEc over the whole range of; and pw values. Using the second order
equation 8.35 we can now calculat@; from pw, lepi andxj/Wepi. The internal base-
collector bias can be found from E@.198):

Ve, = Vde + V1 In[p§ (p§ + D] (3.36)

3.3.3 The Mextram model with velocity saturation

The equations we presented above hold only when velocity saturation in the epilayer does
not play a role. We will now include this in our description. As mentioned before, for
low electric field the drift velocity of the electrons is proportional to the electric field:

v = up E. For higher electric fields the velocity saturates and has as a maximum the
saturated drift velocitysa: We can estimate the currents for which velocity saturation
becomes important by considering the ohmic region (which has a constant electric field),
and calculating when the the drift velocity becomes equal to the saturated drift velocity.
The current that we find is the hot-carrier current introduced before:

lhc = 0 NepiAemvsat (3.37)

For epilayer currents of the order b or higher velocity saturation effects need to be
included.

In the original Kull model 9] velocity saturation is included, under the assumption,
however, that the epilayer is quasi-neutral throughout. When velocity saturation is im-
portant, this assumption does no longer hold, as we will show. Therefore the velocity
saturation part of the Kull model is insufficient and therefore can not be used to describe
velocity saturation effects, including the Kirk effect, which is important in many modern
technologies.

At a currentl,c the amount of electrons needed to sustain this current, assuming they are
travelling atvsy is equal to the doping level. For even higher currents (or lower effec-
tive velocity) the electron concentration is even higher. These electrons have a negative
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charge, whereas the doping atoms provide a positive background charge. The net charge
will be no longer negligible. With increasing current the net charge will become negative.
This has an effect on the electric field: it will not be constant anymore. Consequently,
once velocity saturation needs to be taken into accoldpt £ Inc), the assumption of
guasi-neutrality (and of a constant electric field) no longer holds. The net charge in the
epilayer will eventually lead to the Kirk effect (also a form of quasi-saturation).

The thickness of the injection region To include velocity saturation in our description

we will start with considering a very high current. Our approach is based on the same
principles as those of Ref38]. As before we consider the region without injection to
calculate the thickness of the injection layer. We start with E8§) @nd @3.10, which

we repeat for clarity:

dE q Nepi Iepi
— = 1-— 3.38a
Wepi
/ Edx = Ve,c, — V.. (3.38b)
Xi

Because of the high carrier concentration and hence the low resistance, the electric field
in the injection region can be neglected. As a boundary condition we therefore use that
the electric field at the end of the injection region is just the critical electric field, see
Eq. 3.3, needed for velocity saturation:

E(Xi) = —vsa/ tno = —lhc Rev/Wepi, (3.39)

where we used the low-field mobility. After a double integration of Bo38g and using
Eq. 3.38Dh we get

2

Xi X;

Vde — VBac1 = Ihe Rev (1 — WI ) + (lepi — Inc) SCRcy (1 - WI ) . (3.40)
epi

epi

Here SCRg, = ngi/stsatAem is the space-charge resistance of the epilayer, i.e. the
effective resistance of a region dominated by a current whose charge is not compensated
by a background charge.

Equation 8.40 is similar to Eq. 8.27) (of course withVg,c, — Vq_.) for the ohmic case.

Now, however, we have described quasi-saturation due to the Kirk effect instead of due
to an ohmic voltage drop. In both cases we have a similar base-wideging Q) and
injection of holes into the epilayer.

Interpolation between the two cases We have to find an interpolation between the two
cases of ohmic resistance and space charge resistance. We can use the same interpolation
that has been used in ReB3 Eq. (19)]. When we look at Eqs3.27) and @3.40 we
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see that the latter transforms into the former when weplet— lepi. So we find our
interpolation by replacingc in Eq. 3.40 by

Ihc |Q
| = , 3.41
low |hc | ( )

where we defined, conform E3.83, the current that would be running in the ohmic
case:

Vdc - VBQC]_

= . (3.42)
Rcv (1 — Xj/Wepi)

lo

The currentlioy Will go to lepi for low voltages over the epilayer. For high voltages
over the epilayetoy Will go to Ihc. The final result is found by substituting Eg8.41)
and @.42 into Eq. 3.40 and solving forlep. It gives a relation betweelp andx; / Wep:

Ve — VBsc1 Ve — VBocy + Ine SCRey Y72

lepi = 3.43
ep! SCRg¢y yi2 Vde — VB¢, + Ihe Rev Vi ( )
where we abbreviated
Xj
i=1-— ) 3.44
yi ( Wepi) (3.44)

Equation 8.43 can, as before, only be used for epilayer currents larger thathe cur-

rent at the onset of injection, because it assumes that the local bias at the junction reaches
atleastVy.. The currentlys can be determined by putting = 0 in the expressior(43

above, which gives us

— VdC — VBZC1 Vdc - VBZC]_ + Ihc SCRCV

lgs = (3.45)
as SCRey Ve — VBycy + Ine Rey

In Fig. 11 we have showrlgs as function ofVqs = Vg, — VB,c,. In AppendixB we
compare our approximation with an analytical expression, which is too complicated to
use, and see that both have a comparable behaviour.

Next we follow the same procedure as we did for the ohmic case. Now that wdyave

we use Eq. 3.32 again for the definition of the currerfgpi. We then replacdeyp; in

Eq. 3.43 by fepi. This leads to a third order equation fgr This equation can be solved

and an explicit formula can be given. However, we have found that we can simplify it to
a second order equation without loss of accuracy. This is much easier for the implemen-
tation in a circuit simulator. Finally we then find the following equation

- Vdo = VB,c; Vde — VBocy + Inc SCRey Vi
o SCRCV y|2 Vdc - VBzcl + IhC RCV '

(3.46)
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Figure 11: The current at onset of injection as function of the applied voltage Vqs =
V. — VB,c, for the default parameter set [1]. We have also shown the two limiting
cases, that intersect exactly at I,,c, which here equals 4 mA.

From this equation we solwg (or X;).

Note that in the limitl,. — oo we get the ohmic result back from the previous section.

In the other limit,Inc — 0, we getiepi = (Vg — Ve,c,)/[SCRey (1 — Xi/Wep)?]. The
relation between the current and the thickness of the injection region is now quadratic,
instead of linear as in Eq3(33.

The internal base-collector bias Just as we did in our model without velocity satu-
ration, SectiorB.3.2 we now calculate the internal base-collector Bids., from the
description of the epilayer betwean= 0 andx = Xj. As before we can suffice with
the Kull model in this region, because in the injection region the electric field is low and
we do not need to take velocity saturation into account. Hence, using the thickness
calculatepo from Eq. 8.39 and the internal base-collector big - from Eq. @.36).

3.3.4 Current spreading

The derivation we have given above contains the same physics as the Kull h@jdel [

the ohmic case or the Mextram 503 mode3,[37] when including velocity saturation.

Up to now it is a one-dimensional model. To take current spreading into account the most
important change is due to the fact that the three high current pararRe{giISCR¢, and

Ihc NO longer have their one-dimensional value. Instead they get an effective value. This
effective value depends on the actual size of the emitter region in relation to the epilayer
thickness. In Ref.33] an example is given of the scaling of the high-current equations
with geometry. We will discuss this again in Chapidr

The next concern is a change in current spreading as function of bias, or as function of
the current through the epilayer. In principle this could be included3BEq. (27)] it

was shown that this can be done by replac@@Rcy, by SCRc¢, /(14 Sr Xi /Wepi), With

Sk a spreading parameter. We observed that in practice the current spreading as function
of the epilayer current is of minor importance. Including it would mean solving a third
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order equation fog;, something which we do not want (for numerical reasons), if it can
be prevented. We therefore did not include this extra feature in our model.

3.3.5 Reverse behaviour

The reverse behaviour is very simple. The current is given byZEg6); Since in reverse
there are no velocity saturation effects we can safely Ygkg = Vg,c,. The expression
for the thickness of the injection layer can be found by combining B386(and @.27)
and is given by

Xj o EC
Wepi B EC + VC]_CQ .

(3.47)

3.3.6 The transition into hard saturation and into reverse

In the previous sections we have described the physics of the epilayer current model of
Mextram 504. In this section we consider two subtle points that need to be taken care of.
Both have to do with the transition from one working regime into the other.

The transition into hard saturation In a number of the equations of the (forward)
epilayer model we see the expressi) — Vg,c,. When the transistor goes into hard
saturation this term can become negative. Hence we will replacé/jshyo be calculated
below, which is always positive. The equations used in Mextram are then given by

Vqs Vqs + IhC SCRCV
SCRCV Vqs + Ihc RCv
Vs Vgs + lhe SCRey Vi

lepi = . 3.48b
epl SCRCV y|2 Vqs + Ihc RCV ( )

lgs (3.48a)

When the transistor goes into hard saturation the voltggenust go to zero. When does
this happen? We can say that this happens Whgg, = V., taking the same approach
as in describing quasi-saturation which starts Wldggtz = Vg.. We found, however,
that this is too early for high currents.

For high currents it is better to look at the internal junction tiiggcz (given the cur-
rent, but assuming still a reverse biased external bigs,) and saying that hard satu-
ration starts whews,c, equals this voltage. We can estimate this voltage by looking at
Eq. 3.35 and takingpy — 0. Since we are talking about going into hard saturation at
high currents we can take/Wepi — 1 andpj > 1. We then gep; >~ lepiRcyv/(2V7)

and therefore

epi RCv

|
ngcz ~ Vdc + 2Vt In 2V- (3.49)
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So at high currents we must havgs — 0 whenVg,c, approaches this internal bias.
Hence we can write

Iepi RCV
T

Vqs = VdC + 2VT In - VBZC:L' (350)

To make sure that we can use the same equation also for low currents, and to gevent
to actually become zero, the Mextram model has

lepi R

Vi = Ve 2vrin (“22E 1) v, (351a)
T

Vos = (Ve + /(vih2 +401vg0)2). (3.51b)

The situation around zero current Let us consider the situation that for gives,c,

the currentlep goes to zero. This is the situation where the forward and reverse models
meet. Mextram is not continuous in all derivatives here. But we need to make sure that at
least the effective resistance is continuous.

The effective resistance is found when we consider the relation between the dugrent
andV = Vg,c, — VB,c, inreverse, oV = Vp,c; —V,c, in forward. Let us first consider
reverse. After some algebra it can be shown that

lepi Rev = (1+ pw) V. (3.52)

For forward mode we consider E.89, which is being used to calculapg and hence
Vg,c,- After again some algebra we get

Xi
-~ ) lepi Rev = pwV. (3.53)

To have the same effective resistaiglepi both in forward as well as in reverse we must
demand that

Xi Pw
= . 3.54
(Wepi) - 1+ pw ( )

Note that this relation is true in the Kull model also. (In Appen@ixve discuss the
numerical behaviour of the Kull model aroumd,c, = 0.)

How is Xj/Wepi calculated in Mextram? Well, firgtj is found from Eq. 8.48. When
lepi = 0O we havefepi = lgs and hencg; = 1. When we then simply use/Wepi = 1—Y;
we do not get the right answer fay/ Wepi. In Mextram, therefore, we use

Xi 1 Yi
Wepi 1+ pwyi

(3.55)

Now, whenlepi — 0 and henceg; — 1 we do indeed finat; /Wepi — pw/(pw + 1).
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3.4 The epilayer diffusion charge

At this point it is convenient to discuss the epilayer diffusion charge. This is the charge
of the holes in epilayer, and is therefore directly linked to the injection model discussed
above. Note that these holes carry no net current, but that the diffusion current and the
drift current exactly cancel.

For the calculation of the epilayer charge we use EdL7)

2Dpn?, A2 s
lepi = 4" nMioBem ?Q 10”_em (eVBZCZ/VT — eV52C1/VT) , (3.56)
epi

where changetfs,c, into its more physical counterpafgzcz. The only thing we have to

do is replace the various terms using expressions from the previous section. The current
is re-expressed using E®.85 and the definition oR¢,, for the exponentials we use

Eq. 3.18 taking Vq. according to Eq.3.16), and we use the Einstein relatidy, =

un V7. Taking it all together we get

Wepi 0 4tn NepiA 5+ pw +1
e-pl Qqun epl- em 2Vr (P% = pw) pg Pw
Xi Wepi Po + Pw +2
2
qZDn |0Aem

N4
9 [P5(P5+ 1) — pw(pw + 1] —5=. (3.57)
epi Nio

Simplifying this equation gives us a very simple expression for the epilayer charge: Qepi

Qepi= 3 erlo (po+ pw +2), (3.58)

Wepl

where Qepio = qNepiAemWepi is the background charge of the epilayer. It is possible

to express this charge in terms of other parameters of the epilayer and of the base. In
parameter extractior?] this is used in the initialisation to get a first estimate. In Mextram
503 this is also implicitly used because no separate parameter is available. In Mextram
504, however, we introduce an extra transit time paramgggrwhich has physically the
vaIueWep,/4Dn. The background charge can then be expressed as

4 Tapi VT
Qepio = ;L- (3.59)
Cv

Let us discuss the epilayer charge a little bit more. In the normal forward operating regime
we can simplify the charge by takimgy = 0. Using again Eq.3.35 we get

Xi 2
Qepi = Tepi (W > lepi- (3.60)

epi

This equation was first given in Re27] and is used in other compact mode3$]|. Rather
than Eq. 8.60, we use the full expressio.68 for the charge because it also describes
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the charge in the case of hard saturation (where the current is small but the charge is not)
as well as in reverse mode of operation.

It is also interesting to compare our charge model with that of the Kull md®g| $ince
both basically describe the charge in the neutral injection region. Rewriting the Kull
charge model into our terms we find

Qkull 2 3 Qepio(Po + Pw — 2n7/NZ). (3.61)

The last contribution is clearly negligible, but note that the fag{@iVep; is completely
absent. The reason for this is that the Kull charge model is an approximation valid for
low injection conditions (in which case the charge is negligible anyhow) and very high
injection conditions (in which casg /Wepi >~ 1). A more complete expression for the
charge is also given in Refl9]. The difference between this expression and 08158

is due to our approximatior8(35. An other difference between the Kull charge model
and ours is that we do not split the charge into two terms, one between Bodesi Co

and one between nod8s andC,, but keep it as one charge between noigandCo.

3.5 The intrinsic base-collector depletion charge

Next we will calculate the depletion charg®. of the intrinsic base-collector junction.

It is basically the same aQtex but has one extra feature: it is current dependent. This
current dependence comes into the description in three places. First of all, the depletion
layer thickness changes due to the charge of the electrons moving at the saturated velocity
in the epilayer, as discussed in the paragraph about the electric field in S&&idrhis

effect is modelled by the factdl given below. The second place where the current plays

a role is in that the junction voltage to be used for the depletion charge must include the
voltage drop over the epilayer. So instead of takiiagc, as the voltage for calculating

the depletion layer thickness, we U4gnc, which equald/g,c, + lepi Rcy for low currents

(see also the paragraph about the nodes of the equivalent circuit in SB@iowt last

we must make sure that the transition into hard saturation does not give sudden changes
in the capacitance and hence in the total transit time. For this reason weMigpaledso
discussed below, current dependent.

For the calculation of the charge we use E3i6 dE/dx = p/e. The electric field
has the form sketched in Fid2. Integrating the electric field from the base-collector
junction, whereE = Eg < 0 to a position well into the buried layer where the electric
field is negligible, we find the total (depletion) charge in the epilayer

Q = Aem f/)dx = —¢&AemEo. (3.62)
0

So for the calculation of the charge we need to fiiid

Let us again use the basic equation of the electric field in the epilayer to calculate the
thickness of the depletion layer. We start with the equation for the electric field in the
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%!

Figure 12:Figure describing the electric field in the epilayer for the calculation of the
depletion width x4. For x > Xq the electric field has the value Ew = —lepiRcy/Wepi.

depletion layer.

dE q Nepi Iepi
— = -— . 3.63

The solution of the electric field is then given by

Nepi lepi
E(X) = Eq 4 4—e¥ (1 — ﬂ) X. (3.64)
& Ihe

The depletion region ends &§. Whenxy < Wepi the electric field in the region behind
the depletion layerx > x4, will be constant. We assume for a moment that it is ohmic,
and therefore write:

Ew = —|epiRCv/Wepi- (3.65)

Of course the electric field must be continuous at xq. This gives the relation

Nepi lepi
Ew = Eo+ 1P ( - ﬂ) Xg. (3.66)
& Ihc
Integrating the electric field over alland using again Eg3(5) we find
Vde — VBocy = —EwWepi+ 3(Ew — Eo)Xa, (3.67)

or, using Egs.3.65 and (3.66)

Nepi lepi
4epi (7 _ lepi Xg = V4. — VB,c;, — lepiRev- (3.68)
2¢ Ihe

We see thaxy depends on the current due to two effects, as mentioned before. When we
consider the right-hand-side, we see that insteadqypf— VB,c,, the normal expression
used when calculating depletion capacitances, the current becomes involved and we have
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Vde — Vjune. We will discussVjync in more detail below. We also have an extra factor
(1 — lepi/Inc)- When we calculate the ideal depletion charge from the equation above, we
find®

Q = 2V, Co/1— Viune/Vae /1 lepi/Ihe: (3.69)

whereCo = ¢Aem/Xqo IS the zero-bias capacitance, in our case equ@p Cj.. We
will denote the factor determining the current dependend@,ah the equation above the
last factor, byf,. We must make sure that the argument of the square robt cén not
become negative. We therefore repldgg by Icap, the current as used in the capacitance
model. It is defined as

e logi
hc “epi (3.70)

cap— 7 . 5 -
Ihc + Iepi

We also introduce a new paramete¢ to describe the current dependence of the capaci-
tance and write

fi = ( - E’)mc. (3.71)

Ihc

The capacitance is now given by

VdcT -
Vo, = 1—Cpc [1— fi (1— Vjc/Vaen)?! pc] + 1 bje (Viune — Vjo). (3.72a)
Vtc = (1 — XpT) VCV —+ XpTVBzCl, (3.72b)
th = XCJC Cch Vtc- (372C)

This equation is very similar to the incomplete expressihh?) given before, but now an
explicit expression is used instead of the functgpetion the current dependent junction
biasVjunc is used for the variable part, and the current dependent fdgtsrintroduced.

We still need to giveVj., in a similar way as described in Appendix
VFC = VdCT (l — bj_cl/pc> s (3733.)
Vic = Vjunc— Ven |n{1 + exp[(Vjunc — VFC)/Vch]}- (3.73b)
Here, however, we do not udg, = 0.1Vq. in forward mode, because this will give

a much too steep increase from the zero-bias valugjtaimes this value when due
to quasi-saturatioVjunc goes from negative values to values larger than the diffusion

5In the calculation of the charge a contributitdyc,Rcy/Wepi has not be taken into account. In the
original derivation this was a mistake. However, since it only contributes a constant transit time, it can
easily be compensated by other model parameters. Please note that this casreegaled to find a transit
time contribution proportional t€ - Rcy (1 — Xq), instead of onl\C - R¢y.
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voltageVy.. We therefore have to reduce this increase around quasi-saturation and do
this by increasing/cn, which describes the transition region:

2 lepi
Vep = Vg. (014+ — ). (3.74)
¢ lepi + lgs

Note that we use the currehys to determine when quasi-saturation starts.

Calculating the junction bias Vjync As a last point we need to calculatgn.. We
already mentioned that for small currents it must ek, + lepiRcy. Furthermore,

the point where for the capacitance a vanishing depletion width resftg  Vq.),

is physically equal to the onset of quasi-saturation. We need to make sure that the same
happens in our model. Hence we négghc = V4., Whenlegpi = lgs. A logical choice

would be to take/junc = Vg c,. There is however a catch to this.

Let us consider the total transit time. One of the contributions is due to the RC-time of the
base-collector depletion capacitance and the (differential) resistance of the epilayer. The
capacitance is fairly constant as function of current. The resistance, however, becomes
very small once the transistor goes into quasi-saturation. This means that the contribution
of this RC-time vanishes when the transistor is in quasi-saturation. This is not unphysical,
as device simulations show(]. However, in real life the total transit time is still smooth
because the total charge is a smooth function of the current. The decrease in transit time
due to one component is automatically compensated by an increase in another component.
(The distinction between the various components in device simulations is rather arbitrary
anyhow.) In a compact model, however, all the different components are modelled sep-
arately and added afterwards. Since each of these components has its own parameters
and bias or current dependence, we must make sure that each component itself behaves
smooth, even when going into quasi-saturation.

Let us consider the corresponding transit time in some more detail. We consider the Kirk
effect, just before quasi-saturation. The depletion width is then equal to the epilayer width
and the capacitance is given By = ¢Aem/Wepi. The partial resistance of the epilayer
equalsSCRg,. The contribution to the transit time is then

C x SCRey = -2 (3.75)

a well-known expression. The time needed to cross the epilayer is the width divided by
the velocity. The extra factor of 2 is a result from the electric field distribution which is
triangular instead of flat. The corresponding charge will be given by

lepi Wepi
Q~ y (3.76)
Usat

When injection starts, this charge will be modified. The effective space charge resistance
will get an extra facto(l — x; /Wepi)z. This means that the charge now becomes

e 2
Q ~ JepiWepi (1— al ) . (3.77)

2vsat Wepi
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In practice this means that the charge becomes nearly constant. The corresponding transit
time, which is the derivative of the charge w.r.t. the current, then vanishes.

The only way to prevent this in our model is to make sure that the effective epilayer
resistance, in as far as it is used in this capacitance model, does not vanish once the
transistor goes into quasi-saturation. We therefore take an expressivpfothat is
allowed to keep steadily increasing with current, even wigg: > Vq.. Furthermore,

we want it as close to our epilayer model as possible.

We need to calculate the effective voltage drop over the epilayer. The derivation is basi-
cally the same as the derivation of the current at the onset of quasi-satugatidsow,
however, we do not takés, the voltage drop at the onset of quasi-saturation, but the real
voltage dropVepi. Similar to Eq. 8.48), we therefore write

Vepi Vepi + Ihe SCRCv
SCRcy  Vepi+ lhe Rev '

lepi = (3.78)

From this equation we calcula¥@p; as function oflep;. Since we use it also wheq > 0,
even though the equation only holds fgr> 0, we call itVy,—o. The solution is given by

Bi = 3SCRcy(lepi — Iho); (3.79a)
B> = SCRcy Rey lhe lepis (3.79b)

Vi—o = Bi+,/B2+ By (3.79¢)

The junction voltage is now the external voltage plus the voltage drop over the epilayer:

Vjunc = VBzcl + in=0- (3-80)

3.6 Avalanche

The last part of the epilayer model we need to discuss is the avalanche model, presented
also in Ref. #1]. The avalanche current is a result of impact ionisation in the epilayer
due to the high electric fields. Our model is based on Chynoweth’s empirical law for the
ionisation coefficient42]

an(E) = Ay exp(—Bn/|EJ), (3.81)

whereE is the electric field and\, and B, are material constants. These two constants
also appear as constants in Mextram. They depend on the polarity of the transistor and
are therefore different for NPN and PNP transistors. We use the Si values given by van
Overstraeten and de Mad3]. Note that in practice these values can also be used for
other materials, even thought then the parameters of the avalanche model will differ from
their physical value.

As one can see the generation of electron-hole pairs is largest where the electric field is
largest. Since this is mainly in the epilayer, we will consider only impact ionisation and
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avalanche currents in the epilayer. To describe the electric field, we will not use the results
of the previous section. To keep the avalanche model and the depletion capacitance model
independent of each other, we have chosen for a formulation where the parameters are
separate. For the avalanche model we will therefore use a simple depletion approximation,
based again on the equatiordsg) and 3.9) for the electric field, given before. For low
currents, our model is very similar to that of Ref4[ 45]. The most important influence

of the current is due to the change in the slope of the electric field. This effect was already
incorporated in the model of Re#§]. In our model we also take the finite thickness of

the epilayer into account, and the possibility that the maximum of the electric field moves
to the interface witht the buried-layer.

The total avalanche current is the ionisation coefficient times the epilayer current, inte-
grated over all positions where this ionisation takes place. This holds of course only in
the weak avalanche regime, where the generated current does not generate extra avalanche
itself.® We can then write

Weff
lavl = lepi / an[E 0] dX = G lepi (3.82)
0

whereG is the generation factor we need to determine. The Valgein the integral is

the effective width (non-injected region) of the epilayer, which in normal cases is equal to
Wepi. The case of quasi-saturation will be discussed in Se@tié:3 The width of the epi-

layer is very important for determining the electric field. Therefore we use the parameter
W, for this width in the avalanche model. When the epilayer current becomes negative,
the epilayer will be flooded by electrons from the buried collector and the electric field is

low. Hence we take,, = O for negative currents.

The most important contribution to the integral is that for maximal electric field. For a
general electric field distribution we can linearise around the maximumEigld

[EX)| = Em (1 —-X/Ap), (3.83)

for some giveni.p. (Note that for the maximum of the electric field, as well as for its
average discussed below, we will take absolute values.) We will approximate this by
writing

Ewm

IE(X)] =~ m-

(3.84)

Performing the integral we find the value of the generation coefficient from the electric
field

An Bn Bn Wegt
GEM - B—n)\.D E|\/| {exp[—a] - exp[—a (l+ E)]} . (385)

We still need to determingp and Ey, both of which depend on collector voltage and
current.

6This is basically saying that ‘avalanche’ is a misnomer, since we explicitely do not take avalanching
into account. We will keep the term since it is widely used.
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Figure 13:Schematic representation of the absolutevalue of the electric field for use in
the avalanche model.

3.6.1 Normal avalanche modelling

In this section we will calculate the maximum of the electric fiBlg and the extrapola-

tion lengthi.p for normal usage. In this case the Mextram flag called ‘extended avalanche’
has to be put to zer&XAVL = 0. Extended avalanche modellingXAVL = 1) will be
discussed in Sectiod.6.3

As mentioned before the electric field is important. We have given a schematic represen-
tation of the electric field in Figl3. We start with the average of the (absolute value) of
the electric field over the depletion region, which is found from Bdp)(to be

Vdae — VB,ocy

3.86
TS (3.86)

Eav -

whereWp is the width of the depletion region, calculated below. From this expression
we see that the average of the electric field becomes zero Vid)ep= V... In that case

the base-collector junction is already far in forward and again the epilayer will be flooded
with electrons and holes resulting in a low electric field. We therefore ligke- 0 when

VB,c; > Vd.. Note that the expressions below are such that also the maximum of the
electric field will go to zero when its average goes to zero. The expres3i8y (or

the generation factor is such that at that point &sg will go to zero (including all its
derivatives!).

Next we consider the derivative of the electric field. At zero current it is given by

_ qupi . 2Vavl. (3.87)
&

dEdXo— = W >
avl

Here we introduced our second parameter of the avalanche nvgelT his new param-

eter is therefore a measure for the derivative of the electric field, especially around the
maximum electric field. For this simple and 1-dimensional model it should be equal to

the punch-through voltagg: SCRc¢y. In practice the electric field does not really have

a triangular shape. Especially due to non-local effects the effective electric field is much
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broader around its maximum. This means that the valig,gfcan become small. The
direct relation with the doping level is then also lost.

We can now calculate the electric fiely at the base-collector junction as (see also
Fig. 13)

I

Eo = Eav+ 1Wp ddeo( - %’) , (3.88)
hc

where we included the current dependence in the same way as for the capacitance model

using lcap instead oflepi to prevent a negative value &h. In normal operating regimes

the maximum of the electric field will be at the base-collector junction, and therefore we

take

Em = Eo. (3.89)

If, due to the reversal of the slope of the electric field (Kirk effect), the maximum of the
electric field moves to the epilayer-buried layer interface, the model becomes somewhat
more complex and numerically more unstable. Mextram can describe these effects, as
will be discussed in SectioB.6.3 but will only do so wherEXAVL = 1. Here we will
discuss the basic model, used wHeXAVL = 0.

Next we need to calculatep, representing the slope of the electric field. We could use
Eg. 3.83 and write

dE EM Icap
—| = — =dEdx - — . 3.90
ax |~ o 0( Ihc) 399

We prefer, however, an expression which can be used also in S&6d) when we
modify the expression for the maximum electric field. We can write for the electric field

2
B0l = Eo— o~ (Eo — Eay). (3.91)
D

which is given in such a way that the electric fieldxat= Wp/2 equals the average
electric field:|[E(Wp/2)| = Eay. In the case discussed here we hige= E\. From the
expression for the electric field, and frgdE /dx| = Ey/Ap we find the expression

EmWp

AD= —m8M.
2(EM - Eav)

(3.92)

The same expression fap can be found if the maximum of the electric field is at the
epilayer-buried layer interface (to be discussed in Se@&i6r8, in which case the electric
field is given by|E (x)| = Ew + 2(Xx — Wp)(Ew — Eav)/Wp.

The last thing we need to do is calculating the thickness of the depletion layer. As men-
tioned before we use a very simple abrupt junction depletion model and find [see also

Eq. 3.68)]

V4 —
Xp = |2 de — VBaC1. (3.93)
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wherelcapis defined in Eq.3.70. This formula can lead to depletion layers larger than
the (effective) epilayer widthlVesr (here taken to be equal W,,;). We therefore use for
the thickness over which the electric field is important the expression

Xp W,
Wp = —2—° (3.94)

VXB + Wei

3.6.2 Limiting the avalanche current

The value ofGe¢, can not be used directly to calculate the avalanche current, because it
may become very large, for instance in the iteration process of a circuit simulator, thus
destroying convergency. We will consider two upper bounds to prevent this

First of all, we demand that
G <1 (3.95)

This means that the avalanche current can never be larger than the epilayer current.

Next we need to consider the case that the collector voltage is very large, which means that
the avalanche current is large. This large current might lead to a negative base current.

The voltage drop over the base resistance then makes it possible for the internal base-
emitter voltageVg,g, to be larger than the external base-emitter voltage. This in itself

is not unphysical, but for convergence we demand that the internal base-emitter voltage

increases when the current increases. Turning the argument around, for convergence we
demand that the collector current increases when we increase the external base-emitter
bias.

The external base-emitter voltage is given by
VBe = VB,E; + (In + I8))RE + (I8, — la)RB. (3.96)

Here we neglect the reverse currents and the non-ideal base currents. The other quantities
can be given as

It

N = —. (3.97a)
O

It = ls(eVBE/VT — 1), (3.97b)

ls, = li/B, (3.97c)

lav = G lepi, (3.97d)

R, = Rgc+ Ra2. (3.97e)

Note thatRg», which will be defined in Eq.5.14) is not equal toRg,, but includes
the high injection effects and current crowding. This will be discussed in Sebtibn
To make sure that the collector current increases when the external base-emitter voltage
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Figure 14:The output characteristic of Mextram showing snap-back effects.

increases we needlVge/9Ve,e; > 0. In doing this derivative we assume thﬁst is
constant, which is nearly true. Furthermore we assume ghak Iy. We find

oV
Vi ——5 ~ V4 Iy Rg+ (It /B — G lepi) Rg > 0. (3.98)
0VB,E;
This leads to
Vv ' R
G < Gax = T 43, _ e (3.99)
Ic,c, (Rec +RB2) B Rec+ Re2
where we assumed tha§ =~ lep;.
Using these two upper bounds we finally find for the avalanche current | avi
GeM * Gmax- 1
lavi = lepi G = | . 3.100
v o CaC2 GeM - Gmax+ Gem - 1+ Gmax- 1 ( )

It is obvious thatG meets both requirement3.95 and (3.99).

3.6.3 Extended avalanche modelling

Mextram contains an extended avalanche model, that can be switched on by setting
EXAVL = 1. Two extra effects are then taken into account: the decrease of the effec-
tive epilayer width due to base-widening and the effect that due to change in sign of the
slope of the electric field the maximum of the electric field moves to the epilayer-buried
layer interface. When these effects are included it is possible to describe snap-back ef-
fects at high currents, see Fity. Although this describes a physical effect, it can lead to
serious convergence problems (multiple solutions are possible). It is for this reason that
this part of the model is optional. We will now discuss both effects.

As mentioned above, the effective width of the epilayer becomes smaller due to injection.
Hence we can write

X;
Weft = Way (1 - WI ) , (3.101)

epi
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Figure 15: The various extrema of the electric field normalised to the average electric
field as function of the current. We have taken dEdxg = Eay/Wp and Sy, = 2.

wherexj /Wepj is calculated in SectioB.3. Since this can lead to very small effective
width, giving very large electric fieldsjy, for instance), we modify the equation to be
numerically more stable to

Wt = Wayy (1 —5) (3.102)
eff = VWavl 2Wepi , .

which gives the same result for smail

For the description of the second effect, which is of course very much related to quasi-
saturation and the Kirk effect, we must calculate the electric figldat the end of the
epilayer. We could simply write

Ew = Eav— %wade(,( — %) . (3.103)
Cc

Note that here we do not need to takg, instead oflepi. We allow Ey to be below

Eav, Whereas we always ha®) > Eg,. For these high electric fields, however, current

spreading needs to be taken into account. This lowers the maximum electric field some-

what as function of current. With one extra parame&gr we describe this somewhat

empirically as (see also Re#]] and Fig.15)

X.
SHy = 1+ 2Ss (1+2 ! > (3.104a)
Wepi
l+th
Ep = — - 3.104b
Iei
Ew = Eav— 3WpdEdxg (Efi— —2 ). 3.104c
W av— 3 VWD 0 ( fi |thHW) ( )

For the maximum of the electric we take an smoothing function that determines the max-
imum of Eg andE:

Em =3 (Ew + Eo+ \/(EW — E0)? + 0.1 E, 'cap/|h<:> : (3.105)
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Note that forlepi = 0 the maximum of the electric field is at the base silg: = Eo.

Apart from the change iWesf and Ey the extended avalanche model is the same as the
normal model described in Secti@rb.1
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4 Extrinsic regions

4.1 Resistances

As mentioned already in Sectidnlthere are five basic resistances in our model. Three of
these resistances are constant. They model the resistance from the emitter contact to the
intrinsic transistor, from the collector contact to the buried layer and from the base contact
to part of the base under the emitter. These three resistances have their own parameters,
and we can write

Re = RE, (4.1a)
Rec = Regc, (4.1b)
Rec = Ree. (4.1c)

Furthermore we have two variable resistances. The variable base resistance is described in
Sectionb.1 The variable collector resistance modelled by the current through the epilayer
has already been described in Chagter

4.2 Overlap capacitance

Apart from constant resistances Mextram also has two constant overlap capacitances, that
can be used for parasitic, but constant capacitances in the transistor itself. The capaci-
tances are simply given by

Ceeo = Cgeo. (4.2a)
Ceco = Cgco- (4.2b)

4.3 Extrinsic currents

The extrinsic base currents are already given in Se@ién The substrate currents are
already given in SectioB.7.

4.4 Extrinsic charges

Now we will give the extrinsic charges, which, unlike the extrinsic currents, have not
been given in Chapt&, because the charges contain a contribution similar to the epilayer
chargeQepj discussed in the previous chapter. In the intrinsic transistor we have between
the base nod®; and the collector nod€; an extra nod€,, located at say the metal-
lurgical junction. In the extrinsic region we do not have such a node. Hence we can also
make no difference between the charge concentraiggpand pywex as we did forpp and
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pw in the epilayer. Furthermore, the charge is only useful in reverse, when the whole
epilayer is flooded, and effectiveky = Wepi. We therefore write, conform E@(8):

Qexepi = ar % Qepio Pwex- (4.3)

The extra pre-factaa;, is a result from the differences in surface between the intrinsic and
the extrinsic regions. We will discuss it below. The valuepgfex is determined in the
same way as for the intrinsic transistor, see BR4),

9o = 4e(V51c1—VdC)/VT’ (4.4a)

02
= — == 4.4b
Pwex 1+ 1+92 ( )

apart from a factor of 2, but very equivalent to formulations used in Seétidfor ng
andng, Egs. .27 and .28).

The second contribution tQex is similar to the diffusion charg®gc, given in Eq. 2.49).
It is given by

QexBC = ar 5 QB0 NBex. (4.5)

The value of the electron density at the base collector junction is given irRE) (

The total extrinsic charge is now given I8ex = Qexepi + Qexpc. For small reverse
currents, this charge will approximately be equad{d@zg + tepi) lintr, @ transit time times
the intrinsic current. The total effective transit time of this charge has its own parameter

TR, SUCh thatr = a; (zg + Tepi). Taking everything together, we get Qex
R 1 1
Qex=—"— (Q QBoNBex+ 5 Qepio pWex) . (4.6)
B + Tepi

4.5 Extended modelling of reverse current gain; extrinsic region

It is possible in Mextram to describe the extrinsic regions in some more detail. This is
done wherEXMOD = 1. The charges and currents in the extrinsic base-collector region
are split into two parts usin¥eyx:, just as we always, i.e. independentEXXMOD, do

with the base-collector depletion capacitance, see Sezih# We start with the charges
since these are related to what we mentioned in the previous section.

45.1 Charges

The extrinsic charge is split into two contributions, just as we did for the depletion charges.
This means first of all tha e is redefined as Qex

Qex = (1 — Xext) Qex- (4-7)
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This notation means that the actu@éy that is being used in the equivalent circuit (the
left-hand-side) is calculated as a factor times the previously calculated valg ¢the
right-hand-side). The other part of the charge, that between nBdesd C1, becomes

XQex dependent on the voltagéc,. Hence we get
Xg, = 4 e(VBei—Voe)/Vr (4.8a)
Xg2
X _— 4.8b
Pwex 1+ V1T X0 ( )
TR
XQex = FexXext ————— (% QBo Xngex + % Qepio XpWex) . (4.8¢)
B + Tepi

The value forXngex Will be determine below, when we consider the currents. Also the
extra factorFey Will be discussed below.

45.2 Currents

Next we consider the currents. These are also split into two contributions. Hence we
| ex redefine:

| sub
lex — (1—Xext) lexs (4.9a)
Isub — (1 — Xext) lsub (4.9b)

The other parts are again directly connected to the base terminal. We repeat the formu-
lations for Isyp and lex from before, Eqs.4.64—(2.67), but with a different bias and get
2lss (exp(VBCl V1) — 1)
XIMgup = Xext ) (4.10a)
I
1+ \/ 1+ 4= exp(Vac,/ V1)
ks
4 g
Xg1 = T exp(Vec,/ VT). (4.10Db)
Xg1
Xn = — 4.10c
Bex 1+ J1t X0, Xg1 ( )
X
XIMex = ﬂer_Xt (31 Xngex — Is) - (4.10d)
|
X sub Then we find the currents themselves as

A ex
Xlsub = Fex XIMsup, (4.11a)
Xlex - Fex XIMex. (411b)

Again we see the extra factéey. We will explain this in the next subsection.
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45.3 Modulation of the extrinsic reverse current

The reverse current$lex and Xlsyp We want to describe are basically diode currents be-
tween base and collector. For the Blode there is, in Mextram, no resistance between

the base contact and the diode. Two effects can take place. The first of these effects is a
maximum in the external collector current. The second effect is a current-voltage charac-
teristic which is not smooth, but has a wiggle. We will consider these effects separately,
although the way to prevent them is the same.

Consider the case of normal operation at high collector culgenihe voltage at node

Cy is given byVc, = Vc — IcRcc. The voltage drop over the B&liode then i, =

Vs — V¢ + IcRce. In the normal working regime the collector voltage is higher than the
base voltage, which means that the diode is reverse biased. Under high current conditions
however (strong quasi-saturation) the diode can be forward biased. When the forward bias
reaches the diffusion voltagé,. all extra intrinsic collector current will flow from the
extrinsic base into the collector and from there to the intrinsic transistor. This means that
the external collector current is limited to ab@Weg + V4. )/Rcc. This causes problems

in circuit simulators. Furthermore it is hardly physical reality.

Next we consider the total reverse current between base and collector. As mentioned be-
fore, it consists of two parts. Basically these are two diode currents over the junctions
B1C; and BG. The former has a larger saturation current and will therefore dominate at
low currents. For larger currents however it has an extra resisRgceompared to the
second diode. Consequently, at some point the current-voltage characteristic will become
less steep. For even higher voltages the second diode becomes dominating, making the
characteristic again exponentially, until this second current will be limited by the resis-
tanceRc.. This combination then results in a non-smooth current voltage characteristic.

The solution to both problems is adding an extra base node and an extra resistance in the
base, directly connected to base contact. However, an extra node leads to extra calcula-
tional time and was found to be an inferior solution. Instead the Bi@de itself was
replaced by the diode in series with a resistaReg. To overcome the problem of an

extra node, the combination of diode and resistor will be approximated by an analytical
formula. The current through the diode-resistor will then be limited due to the resistor.

Our goal is then to describe with a simple formula the combination of a diode (saturation
currentls,) and a resistorR) in series. Let the total voltage be given ¥y= Vp + Vg,
the voltage across the diode plus the voltage across the resistor. The current is given by
(neglecting the-1 in the diode part)

V
| = FR = 15,eVo/VT, (4.12)

This leads to the equation
I = Is, exp[(V — IR)/Vr]. (4.13)

This non-linear equation cannot be solved analytically in terms of elementary functions.
Therefore we construct an approximate solution. For small voltages the diode will dom-
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inate the behaviour. For large voltages the voltage drop across the diode will be rather
constant and the current is given by the resistance. Let us estimate the cross-over point.
The resistor has a conductande’dVg = 1/R. For some voltag®y,, the diode has the

same conductance. This voltage is given by

\%s
Vi, = V1 In . 4.14
dgm T Isd R ( )

This voltage will also be approximately the voltage across the diode for high currents. In
that case, the voltage across the resistor edtials V — Vg, and the current is given by
Imax = VR/R. For low voltages the current is given by the diode curigne Ig,eV/VT.

We need an interpolation between the two regimes. This interpolation will be given by

Imax
= —— " lg = Feyly. 4.15
|d T |max d exld ( )

Here we see the fact®ix appear. The curreffax = (V —Vy,,)/R as defined before can
become negative for small voltages. We need it to be not only positive, but also (much)
larger than the diode current (at small voltages). To this end we define

V = Vg +/(V = V)2 4+ K

5= (4.16)

Imax -
Now Imax has the correct behaviour for large voltages and is large enough for small volt-
ages. In the intermediate regime the cross-over is determinkdTaking this parameter
too small or too large results in a non-smooth curtdente. a current which has kink-like
behaviour in second and third order derivatives. A good valke=4s0.01. We can get an
even better behaviour when we addr2to Vg, , and increase slightly to 00121.

For the implementation in Mextram we must determine the saturation current. Itis a sum
of two components (a reverse base current part and a substrate part). The diode current to
be used idy = XIMgyp+ XIMex. The complete Mextram expression now reads

ISd = Xext (Is/ﬂri‘l‘ISs)» (4_17a)
ls, R
Vign = V7 (2—|n73d C°>, (4.17b)
\%)
VBex = 3 (Voc; — Viagn +/(Vac, — Viggn)? + 0,012
ex = 3| VB, — Vdgn ++/ (VBC; — Vdyy)= + 0.0121) , (4.17c)
VB
Fex = = (4.17d)

Rce (XIMsyb+ XIMex + |sy) + VBex’
(hencelmax = VBex/Rcc). The terml, is added inFey to prevent the current part in the
denominator to become negative, which would mean a vallk@,darger than 1.

This factor Feyx is derived based on the DC currents. We also use it to modulate the
diffusion charges. This is of course not completely correct. However for the case of
diffusion charges wher® ~ t | it should be a reasonable approximation.
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5 Current crowding

The variable base resistance in Mextram is the resistance between theBaatasB,.

It is intended to describe the (effective) resistance of the part of the base under the emit-
ter. This part of the base is in general thin. Hence a material parameter is the sheet
resistancep_. With this quantity one should be able to calculate the base resistance. One
should however bear in mind that the base current does not need to traverse the whole part
of the base under the emitter. A part of the base current already enters the emitter at its
boundary closest to the external base contact. Only a very small part will traverse to the
part of the emitter furthest away from the base connection. The effective resistance thus
depends on the geometry. It will be a (dimensionless) constant times the sheet resistance.
We will determine this factor in Sectidn1.1

There is also another effect which takes place in the part of the base discussed above. Due
the current flowing through the base there will be a potential drop across this base region.
For large currents this drop can be appreciable. The local voltage determines the local
part of the main current. A voltage drop means that the main current is not everywhere
under the emitter the same, but will be more or less concentrated at the position where the
base current enters the region under the emitter. This effect is called current crowding. In
Mextram this is taken into account by a variable base resistance, discussed in the next sec-
tion. For the AC currents also an extra capacitance is introduced. This will be discussed
in Section5.2 Crowding also has an effect on the (thermal) noise, see Ch@paed is
discussed in detail in Ref2p).

In this chapter we consider only the most relevant geometries, that of a rectangular and
of a circular emitter. Generalisations to more arbitrary geometries (but including also the
two specific geometries) have been published in R&f. [

5.1 DC current crowding: the variable base resistance

To study DC current crowdinglf7, 48, 49| in the pinched base (under the emitter) we as-
sume an emitter of lengthem, and a widthHem. The emitter surface i8em = HemLem

We assume an effectively one-dimensional system, such that the coordinaté glpisg
irrelevant. What we try to study is schematically shown in Ef§).\We have two indepen-
dent variables. One is the currdr(ix), going from left to right through the resistive base.
The other is the local potentids(x). DC current crowding can be calculated using the
equations

d_l _ Js Leme(VB(X)—VEl)/VT ’ (51a)
dx

dVs o

— = — I (X). 5.1b
™ Lo 0 (5.1b)

Herep_ is the pinch resistance of the baggis the forward current gain, anld = ls/Aem
is the saturation current density. We neglect all non-ideal base currents. As schematically
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Figure 16:0n the left a circuit showing a simplified mode of the equations we try to solve
for current crowding. On the right is the effective circuit, which is part of the Mextram
equivalent circuit. For the diodes we have shown the corresponding saturation current.

shown in Fig.16, we assume a base connection at only one side. The boundary conditions
are given byl (x=0) = Ig andl (x=Hem) = 0.

In Mextram the distributed system is modelled by the circuit shown in the right oflBig.

We just need to find an equation for the current frBmto Bo. The connection between
the extrinsic base and the pinched (distributed) base is the BpdeHence we have
Ve(x=0) = Vg,. In Mextram we also have an expression for the base current, which
goes fromB, to E1:

Iy — Js LemHemeszEl/vT. (5.2)

br

In this expression the node potentid, appears. Using the equations and the boundary
conditions we need to find an expression for the base current betweenByded B>,

i.e. we need to givég as function ofVg,g,. For small values o¥g, g, the currentig will

be proportional to this voltage difference. The param&gy will be chosen to reflect
this ohmic behaviour for low voltage¥s,s, = Is Rpy-

To find the exact solution to the differential equations above, it is useful to refer all volt-
ages toVg,, which is a kind of average ovéfg(x). (This also means thatg, is not
directly related to a certain position.) We therefore introduce

V(X) = VB(X) — VB,, (5.3)

and express the differential equatiobsly in terms of this voltage difference:

— = ——e"/'T 5.4a
dx Hem (5.4a)
dv o

—_— = - l. 5.4b
dx Lem ( )

Note that there is no longer a reference to the saturation current or the current gain. This
means that the expressions we find will be independent of the parameters belonging to the
diode part! Combining the two equations Bk4) we get

2 2
dl B v @ _ o dl

(5.5)

dx2 ~ HemVT dx T 2LV dx
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The solution to this equation can be given Bg|

2VT Lem

1 (x) =

Ztan[Z (1 — x/Hem]. (5.6)

This solution is already such thatx=Hem) = 0. There is still one integration constant,
Z, that can be found from the boundary conditiorx at O:

_ 2V1lem

PgMem

Is ZtanZ. (5.7)
We can also find the voltage, by using again Eg4)(and the solution fot :

Z
V/VT _
° ~ tanZ coF[Z (1 — X/Hem)] (5.8)

From this we find the voltage differentg,g, = V (0) as

z

eVB1B/VT — )
sinZ cosZ

(5.9)

We see tha¥ plays an important role. Frord we can find both the curredg and the
voltageVg,s,. Since the solution is only given in an implicit way, we need an approximate
formula. We will do this, following Groendijk49], by first looking at two limits.

Low current limit  In the low current limitZ will be small and we can approximate
Egs. 6.7 and 6.9 by Ig =~ (2Vr Lem/p Hem) Z2 ande?®:82/VT ~ 14 272, This gives
us

VB]_BZ _ PDHem
Is 3Lem

= Rpgy. (5.10)

This gives us a definition of the parameR, in terms of the sheet resistance. (We will
discuss this in some more detail in Secttof.J).

High current limit  In the high current limit we havé — /2. For the voltage differ-
ence we can then write

Z tanZ p-Hem
VB,B,/VT _ _ O
g "B1B2 = — ZtanZ = | . 511
S Z ®2Vr Lem (5-11)
This gives us
lg = —— eVB182/ VT 5.12
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Figure 17:The differential resistance dVg,g,/dlg normalised on Rgy, both for the exact
solution from Egs. (5.7) and (5.9) (solid) and from the interpolation (5.14) (dashed).

Interpolation We can now give an interpolatiod9] between the low and the high
current limits:

Is [2vr (722" — 1) 4 Viyg, . (5.13)

- BRBV

This interpolation is correct within 4% farg,g, > 0 and within 10% fog,g, < 0. The
expression has the correct limits & | < V1 and for|V| > V7.

Itis this interpolation that is used in Mextram. The full expression also includes a modula-
tion of the pinch resistance due to the Early effect and high injection, when more €harge
is present. This is similar to the discussion about the ‘resistance’ seen by the main current,
as discussed below EdL.(6 in Chapterl. We write

3R
Re2 = qBBV, (5.14a)
1
loig, = =— [ZVT (eVBle/ VT — 1) + Vslsz] . (5.14b)
B2

In Fig. 17 we have shown the differential resistance of both the exact solution and the
interpolation formula. The correspondence is quite good.

Large negative base current We already mentioned that the interpolation can also be
used for negative currents. This can be important when a transistor is used in normal

’Due to the fact that the hole charge is important, Wquemd notqé in the formal model definition.
See Chaptes.
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forward operation, but with a voltage on the collector larger tB¥g., The net base
current (forward base current minus avalanche current) will then be negative. Also in
this case current crowding can appear. But now, the part furthest away from the base
contact will get the largest current. This means that the current, on average, must pass
through more of the base resistance. The effective resistance will then increadegfyom

to 3Rgy = p Hem/Lem i.€. the total resistance under the emitter.

We can also show this from the exact solution. For finding negative base currents we need
to makeZ imaginary. We therefore writé = j&. This leads to a base current given by

lg = —(2Vr Lem/pyHem)& tanhi, and toe"®182/VT = &/ sinh& coshé. For very larges

we then find

I = 3Rgylg. (5.15)

In the situation of a large negative base current the transistor can collapse due to instabil-
ities [50, 51]. Mextram does not model these instabilities, because the generation factor
of the avalanche current is limited I8max See Sectio3.6.1 For a total emitter current
pinch-in (current crowding at the centre of the emitter) a model for the base resistance
is needed in which the resistance goes to infinity for large negative base currents. The
expression given below for a circular geometry, Exyl9), is one such expression.

5.1.1 Determination of the small voltage resistance from the sheet resistance

In the previous subsection we have seen that we can calculate the paBgei®m the
pinch resistancg_ and the geometry of the base. For the case of an enigigtong and
Hem wide we found

H
Rev = 30, — (5.16)

Lem’

The ratioHem/ Lem follows directly from Ohms law. The pre-factor however is dependent

on the geometry and the number of base contacts. For a rectangular emitter and only a
single base contact this pre-factor 831 When the base has a contact on either side, we
can use symmetry and the previous result to find the pre-factofl#s 10One factor of

2 comes from the fact that the current only needs to go half the distance. Then however
the length is twice the effective width, which gives another factor of 2.) The same factor
1/12 holds when a long rectangular bdsg, > Hem is contacted on all four sides.

In AppendixD we will give a method to calculate this pre-factor also in other geometries.
Here we will only present two more results. For a square emidgtf & Lem) contacted

at all sides the pre-factor is approximatej28.45. For a circular emitter we findg, =
pn/8m =~ p/25.1.
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5.1.2 DC current crowding in a circular geometry

In practice the base is not always a rectangle contacted at two sides. For small emitters the
base is often effectively contacted at all sides. It is not possible to give an exact solution
of current crowding in that case. However, in the case of a pinched base in the shape of
a disc, a solution is possibl&Z]. In the equations above, we have to replagg, by the
circumference 2r at a distance from the centre. The area is given Bym = 7 R?, with

R the radius of the pinched base. The equations then become

— = 2pr—eV/Vr 5.17
ar nrAeme , ( a)
av s

— = l. 5.17b
dr 2r ( )

(The fact that decreases when going from the boundarfR & the centre gives an extra
minus sign.) These equations can be solved exactly:

r2
I(r)=1lg

T (5.18)
R2 + (R —r2) gyt
With this solution we find, after some algebra similar to the case above, that the current
through the pinched base is simply given by

V
Ig = T (eVBle/VT — 1) , (5.19)
Rev

whereRp, = p_/87, as above.

5.1.3 DC current crowding in a rectangular geometry

No exact solution exists for current crowding in a square geometry, with contacts on all
sides. An approximate expression was given in R&d],[and was found to be the same

as Eq. .19, with a value ofRg, = p_/32. The exact low bias value of the resistance is
given in AppendixD and is close te_/28.45.

For rectangular geometries contacted on all sides a similar expression can b&4jsed [
Is = gVr/Rey x [exp(VB,B,/9VT) — 1], whereg is a geometry dependent factor of
order 1, such that one obtains a good fit to the exact result for not too large crowding.
Obviously it does not give the correct results in the limit of laxiges, and in reverse.

5.2 AC current crowding

To describe AC current crowding$] we first start with the case of small currents (no
DC-crowding) and consider the capacitance. The circuit we want to approximate and the
approximate circuit are both given in Fig8.
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Figure 18:0n the left a circuit showing a kind of transmission line between base and
emitter. On the right an effective circuit, as used in Mextram.

B1

The circuit consisting of the transmission line can be described using the differential equa-
tions

dVs IR
> 5.20
dx Hem’ (5.202)
dl joC 22
o (e — (Vg — Ve )—— 5.20b
I VB — Vg,) Hom (VB — Vi) AR’ ( )

where we defined? = joCR. The resistanc® and the capacitanc@ are the total
resistance c.q. capacitance present. The solution is given by

XX X X
VBiE (ez(l_ Fem —g 2+ Hem)) + VBuE, (e Hem —e Hem)
VB(X) = VE]_ + z —7 : (521)
e‘—e

Using the same boundary conditibtHe) = O as before, we find

VBHEl = VBlEl/ coshz, (5-22)
and consequently

VB]_E]_

Ig =10 = thanhz. (5.23)

From this we find that the voltage over the base-part is given by
i zcothz — 1

VB.B, = VBiE; — IB X JwC = IgR T (5.24)
This means that we can write the current in terms of voltage as

s = Veis, o e (24 ) = Ve @R 4 LjaC). (5.25)

8= VBB R coths —1 PB2\R TBR) T B sJwh ) o

This implies a parallel circuit containing a resistance and a capa®ty [

Rev = R/3, (5.26a)

Csy = C/5. (5.26b)
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The factor ¥3 we have seen before, calculating dc-current crowding for small currents.
The capacitance is new. Of course one can also calculate higher order corrections, and try
to find a more general fit to the exact result. We will not do this. Neither will we consider
an expression including both high-currents (DC-crowding) and AC-crowding at the same
time.

As discussed in Sectioh4.4 only whenEXPHI = 1 this capacitance model is used in
Mextram. AC-current crowding is then modelled as a capacité@hige equal to the ca-
pacitance of the base-emitter junction divided by 5, parallel to the variable base resistance.

dQ¢ dng dQe
cvzl( E 41 Q + , 5.27a
B 5 dezEl 2 Q BO q]_ dezEl dezEl ( )
QBB, = Csy VBB, (5.27b)

The total capacitance is taken as the derivative of the ch@rger Qge + Qe between
the base and emitter junctions. Instead of taking the total derivativ@gef we have

taken% QBo qfdn/dVBzEl, neglecting the derivatives qtf. This has only a very limited
influence on the characteristics, but is simplifies the implementation a lot.
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6 Heterojunction features

The model formulations presented in the previous chapters are satisfactory for describing
standard Si transistors. Modern processes involve processes which have a part Ge in
the base-region. These SiGe processes can, in many cases, be described using the same
formulations as pure Si processes. The parameters will have different values of course,
now directly related to, for instance, the bandgap narrowing in the base.

In a few cases, however, either the Ge that is present or the change in the doping profile
result in effects that can not be modelled by the formulations given before. In these cases
Mextram 504 offers two formulation$§|, each with one extra parameter, to describe the
effects.

6.1 Gradientin the Ge-profile

Let us start with recalling the description we use for the Early effect. We have seen
that Gummel’'s charge control relation forms the basis of modern compact models. An
important quantity is the total hole charge in the b&e We have seen that when we
neglect high injection effects, this base charge is a suQ gy, the charge at zero bias,
and the depletion chargé€¥,. and Q.. We can write

Xc
Qe = Qeo+ Qi + Q1. = qum/ p(x) dx. (6.1)

Since we do not take high injection effects into account we can \pKit¢ = Na(x), the
doping in the base. The limits of the integral are the boundaries of the neutral base region.
At zero bias we defingg = 0 andxc = Wpgg, and therefore have

Wao
QBo = qumf Na(x) dx. (6.2)
0
When we assume a constant doping profile, we get even simpler equations:

Qgo = qAemNaWEg0; Qs = qAemNa(Xc — XE). (6.3)

This gives us directly the link between the variation in the depletion thicknesses and the
depletion charges:

Qte = qAemNA(0 — Xg); Qtc = qAemNa(Xc — Wpgo). (6.4)

If we now recall that in Mextram we do model the Early effect via the fagpr=
Qs/Qpgo (see Sectiorr.3), we arrive at the following equations for the depletion thick-
nesses (again under the assumption of a constant base dope):

Vie Vic
O —Xxg) = —; (Xc —Wpo) = —. 6.5
E Vor C BO Ver (6.5)
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Figure 19:Schematic doping profile for the case of a SiGe transistor which has a graded
Ge content. The depletion layers are schematically shown with dashed lines. The trian-
gular Ge-profile is shown with a dash-dotted line.

Derivation The expressions we gave above are capable of modelling pure Si transistors,
as well as SiGe transistors with a reasonably constant Ge profile. In some cases, however,
the profile looks more like the one shown in Fig: the Ge content is low at the emitter

side and high at the collector side. This has a large influence on the description of the
Early effect b7, 58, 59.

If one carefully looks at the derivation of Gummel’'s charge control relati@n 60, 20],
one sees that the current is not really determined by the base charge, but rather by the base
Gummel number, defined, similar to E4.14), by

[ NaX) ng
Ge = /XE Dn () n20) 69

wherenjg is a reference intrinsic carrier concentration (e.g. that of un-doped Si). This
integral contains not only the variation of the doping profile, but also the variation of the
diffusion constant and the intrinsic carrier concentration. For a pure Si transistor it suffices
to take an average over the latter two quantities. The Gummel number then becomes

Xc

Gg = n%/n?Dy / Na(X)dx, (6.7)

XE

and therefore becomes proportional to the base chagge

In a SiGe transistor with a gradient in the Ge-content this is no longer allowed. The
variation of the intrinsic carrier concentration is too large to just work with an average.
For instance, at the collector side the Ge content is high, and therefore so is the intrin-
sic carrier concentration. That part of the base then has only a small contribution to the
total Gummel number. A variation in the depletion layer edge is then also of minor im-
portance. This mean$§]] that the forward Early effect is small (large effective forward
Early voltage). The most important contribution to the Gummel number comes from the
region where there is not much Ge: at the emitter edge. Any variation here of the deple-
tion width has a large influence on the current: the reverse Early voltage is small. Even
worse, the effective reverse Early voltage depends very much on whether the transistor
is forward biased or reverse biaséxb]. This variation of the Early voltage can not be
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modelled by the formulation of the Early effect we have given before. Hence we need a
new formulation.

To get an analytical formulation we will assume that the intrinsic carrier concentration
can be written as

2 X AR
n; ocexp(WB0 T ) (6.8)

What we basically assume here is that the bandgap will decrease linEgriy: Egqo —

AEg x/Wpgo, as was done in Ref6p]. The major part of this bandgap grading will be
due to the Ge, but part might also be a result of bandgap narrowing due to doping. The
new parameteA Ey is the difference in bandgap between the neutral edges of the base, at
zero bias. It can therefore be estimated using process knowledge.

Since the variation of the intrinsic carrier concentration is dominant, we will, as before,
assume a constant doping profile and diffusion constant. (It is maybe even better to say
that any variation in doping profile and diffusion constant will effectively be taken into
account by givindAEg an effective value.) The Gummel number can now be calculated
as

—— [XC X AE
Gg = NAniZO/an exp(—— —g)dx

———— kT Wpgo XE AEg Xc AEg
= Nan%/Dp —— |exp[ —— —2 ) —e — ——11.(6.9
/B0 e e~ G5t ) —e( s G5t | @9

We can also find the Gummel number at zero bias:

————— kT Wao AEq
Ggo = NanZ/Dn AE, [1— exp(—W)]. (6.10)

Using furthermore the relations in Ed.$) that give expressions for the depletion edges,
we find for the ratio of the Gummel number and the Gummel number at zero bias:

e g Z229) _ e 79
Gg ex'oqverJr ] kr ) P\, KT

Ggo o AEg
— -1
exp( kT

(6.11)

It is important to realise that in the limit &Eq — 0 we get back our old relation

G v
© =14

Vi
— = + o 6.12
oo (6.12)

Ver Vef .

©Koninklijke Philips Electronics N.V. 2005 81



NL-UR 2002/806— March 2005 Model derivation of Mextram 504 Unclassified report

Implementation We have seen that for the current we must not use the base charge, but
rather the Gummel number. For the charge description, as well as for the base resistance
of the pinched region, we still need the base charge. Both are modelled by ajtadiot

now we make a distinction betweem@for current () and one for charge<)):

Q Qs Vie  Vic
— =14 £ 4 _C 6.13a
o Qso Ver Vet ( )
AE — AE
o[y 57) oo )
_ Gs Ver] kT Vet KT
Go = = . (6.13b)
PURT

The normalised chargyg(') (and alscql', see Sectior2.3.]) is now used in the expression
for qé, Eg. .50, that is used for the main current EQ.T). The normalised charges

q(? and qf are used in the Early effect in the diffusion charges, B9, as well as

in the expression foqg that is used ing,g,, Eq. ©.14. In the formal model definition
[3, 1] we have used the superscripts in a consistent way, and never used the ambiguous
expressionsp, q1 andqg.

Effective Early voltages It can be useful to look at the effective Early voltages, and
how they depend on the parameteEg. For simplicity we will consider the zero bias
situation. The absolute values of the currents will be low, but the expressions for the
effective Early voltages become quite simple. For these low biases we can approximate
Vie =~ Vg andVi. =~ Vgc.

The forward Early voltage is normally found using the derivative of the current w.r.t. the
collector voltage. We can write (see also Rél) [

dlc -1
Veffective forward Early = Ic (3VCB) . (6.14)

Since the only collector voltage dependence (in normal forward operationjjéq lp

1/9o0), we can find the effective Early voltages using the derivative /gl The same
holds for the reverse Early voltage. For the Early effect on the charges, as well as for the
case of pure Si, we find (at zero bias)

effective forward Early, charge = Ve = Ve, (6.15a)
d(gg)
Vetfective reverse Early, charge = ( 3§EB = Ver. (6.15b)

We see here that in the case of pure Si the Early voltage parameters give the effective
Early voltages at zero bias. The effective Early voltages at normal operating biases can
differ from the parameters.
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For the current in a SiGe transistor with a graded Ge content, we need to take the derivative
of gj. We then find

-1
d(gp) eAE/kT _ 1
Veffective forward Early, current = ( 3)3(:8 = Vi W, (6.16a)
9

-1
3(q|)—1 1 — e~ AEg/kT
Veffective reverse Early, current = ( ngB = Ver W (6.16Db)
g

In a typical case wherAEg ~ 100 eV~ 4kT, we find that the effective forward Early
voltage has become 13V, whereas the effective reverse Early voltage has become
~ 0.24Ver. As mentioned in the introduction we indeed see a large forward Early voltage,
and a small reverse Early voltage.

It is also important to realise that the Early voltag@ameters, Ver andVes, have a value

that corresponds to a pure Si transistor with the same doping as that of the SiGe transistor.
In other words, the Early voltage parameters describe the Early voltages of the charges.
The Early voltages of the currents are determined by the combination of the Early voltage
parameters and Eg.

6.2 Early effect on the forward base current

Not all SiGe processes have a doping profile that can schematically be represented as in
Fig. 19. Some transistors have a doping profile more similar to that inZBigAlthough

the Ge-content now does not give rise to the need of an extra formulation, the very high
base doping can cause extra recombination (e.g. Auger recombination) in the base. This
means that neutral base recombination can become a significant part of the total base
current. Auger recombination is a three particle process. In a normal NPN transistor its
contribution of the base current scales with the integrgl4f, where the hole density

is equal to the base doping level since due to the high doping high injection effects in
the base do not occur. This means that the recombination base current depends on the
electron concentratiom and, just as the collector current, on the width of the base. The
base current therefore becomes collector voltage dependent: there is an Early effect on
the base current.

In Mextram 504 we model this very empirically by writing for the ideal forward base
current

| V
IB]_ = ES (eVBZEl/VT — 1) (1 + Xrec V_tC) . (617)

ef

Note the similarity of the last term and the expression for the forward Early effect in the
collector current, which is given by the factqg of Eq. 2.16. The new parameteXec
determines the amount of the base current that is due to neutral base recombination (as
opposed to hole injection into the emitter). The effective Early voltage of the base current
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C

Figure 20:Schematic doping profile for the case of a SiGe transistor which has a large
base doping, an emitter cap and a constant Ge content. The Ge-profile is shown with
a dash-dotted line. in the left figure the depletion layers are schematically shown with
dashed lines. In the right figure we have added schematically the electron concentration
(dotted) in case of high injection.

is Vet/Xrec. This formulation should suffice to model the collector-bias dependence of
the forward base currents at not too high base-emitter biases.

It is important to realise that this formulation can also be used when the Early effect of
the base current is not due to neutral base recombination, but due to other effects, like
recombination at the SiGe-Si interface.

High injection effects We have mentioned before that the neutral base recombination
current depends on the electron concentration in the base. Itis well known that in the case
of base widening (quasi-saturation, Kirk effect) the electron concentration at the collector
side of the base increases very much, as schematically shown 20F\ye need to take

this into account in our formulation.

The base current contains two contributions: a part corresponding to the hole injection
into the emitter, which scales with eR¢s,e,/Vr), and a part corresponding to the neu-
tral base recombination current. The latter contains the Early effect term, as well as
a term for the increases in the electron density at the collector edge, which goes with
exp(Vg,c,/ V7). The final formulation is then

I
le, — ;{<1—x151>[<1—xrec> (e¥emVT — 1)
T

* V
+ Xrec (evBZEl/VT + eVBZCZ/VT — 2) (1 + Vt(f: >] . (618)
efT

We also included the factor for splitting the base current between the intrinsic part and the
extrinsic part .
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7 Temperature modelling

In this chapter we discuss the temperature model of Mextram. Many of the model pa-
rameters describe physical quantities that are dependent on the temperature. Since most
parameters are effective parameters, rather than exact calculable quantities, also the tem-
perature dependence should have some free fitting parameters. Since in practice it is
difficult to determine the temperature parameters, we have chosen not to have too many
parameters that describe the temperature behaviour. Instead, some electrical parameters
share the same temperature parameter.

In Tablel we have given the parameters that are independent of temperature. The rest of
the parameters will be discussed below.

Table 1:Temperature independent parameters. Not included are the temperature param-
eters themselves.
LEVEL XIBl my ¢ SCRey P Cgeo Kt

EXMOD XCjic Vir  Ihe Pc  Cgsco K
EXPHI  XCj. Way ax Ps R A
EXAVL  Xext Vau My mc  Cin

MULT Xrec th

7.1 Notation

It is convenient to mention something about notation. In the rest of this report, we give all
parameters in a special font, elg. When we do this we implicitly mean the temperature
corrected quantity. In this section however we need to distinguish between the given
parametets and the temperature corrected paramkterSo we add a subscript T when

we mean a temperature corrected parameter.

7.2 Definitions

To describe the temperature effects we first need a few general definitions involving the
temperature. We define for instance

T = TEMP+dTs+ 27315+ Vyr, (7.1a)
Tret = Tref +27315, (7.1b)
t T (7.1c)
N = —, .
Tret

whereVyr is the increase in temperatutel due to self-heating (see Chap8&r We also
need the difference in thermal voltage

11 1_q<1 1) 72
Vat V1 Vi, K\T T/’ '
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7.3 General quantities

Let us start with the intrinsic carrier density. It is given by
n? = NcNye™Vo/VT, (7.3)

whereVy is the energy gap. BotNc and Ny are proportional tor 3/2. Hence we can
write

nf =n? oty e~ Vo/Var, (7.4)

To describe the resistances and some other quantities we need the mobility of various
parts. The mobility depends on the dope and on the temperature. Furthermore it is dif-
ferent for a minority carrier and for a majority carrier, as well as different for holes and
electrons. In principle, we therefore have 4 functiong;maj, 4 p,min, i4n,maj @ndiin, min.

For a certain region, say the base in a NPN transistor, we needuqth; and zin, min.

Both depend on the same dope level. Although it is possible to give expressions that give
these mobilities in terms of the doping levéB] 64], we will take a simplified approach

and write

ooty (7.5)

where the parametds takes the temperature dependence into account.

7.4 Depletion capacitances and diffusion voltages

The general formula for a diffusion voltage is given by

NaNp kT NaNp
VdT = V7 In 5 =—In 5 3 VgV
n; 0  Niep-tye 79/ 7aT

= ty Vg —3V7iInty + Vg(l —1in), (7.6)

with at the reference temperatwg = Vt In(NAND/nﬁref). For increasing temperatures

this diffusion voltage will decrease. It might even go negative. This is not physical, but
due to the fact that in the equation above it is assumed that the majority carrier concentra-
tion equals the doping concentration. For very high temperatures, however, the material
will become intrinsic again. Once this happens, the formulations in our compact model,
like those of the capacitances, are no longer valid. It is therefore not very useful to look
for a physical formulationg5] of Vy which does not go through zero. Since, however, in
some places in our formulations we divide by the diffusion voltage, we do need a way to

prevent the diffusion voltage to become zero. We take a lower limiygfy, = 50 mV (a
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model constant). For the three diffusion voltages in Mextram, we then get

Uger = —3Vr Inty + VdE tn + (1 —1tN) VgB, (7.7a)
VaeT = Udet + V1 In{1 4+ exp[(Vd jow — UdeT)/ V713, (7.7b)
Udser = —3V7 Inty + Vdc tIn + (1 —1tn) Vgc’ (7.7¢c)
Vit = Udet + V1 In{1+4 exp[(Vd,jow — UdcT)/ V71 (7.7d)
Ut = —3Vr Inty + Vs tn + (1 —tn) Vs, (7.7e)
Vogt = Ugst + V1 In{1+ exp[(Vaow — UgsT)/V11}- (7.71)

A depletion capacitance is in general given by

_eA

Cj= o (7.8)

where xq is the thickness of the depletion regioA,the surface, and the dielectric
constant. For zero voltage and for grading coefficiemte have

Xdo o (Vg)P. (7.9)

This means that the temperature dependence of the capacity at zero voltage is given by

Vg \P

We can use this directly for the emitter-base and collector-substrate junctions:

Vd Pe
C; = C; E , 7.11a
o = % (v) (7.11a)
Vds Ps
Cist = Ci Va.r . (7.11b)
s

For the base-collector depletion capacita@gewe need some more work, since it con-
sists of a constant part and a variable part (see Se&idr). We can write, with
xp = 8Abase/Wepi,

A 1 — Xqo/ Wepi X
covy= ¢ base( do/ Wepi 4 Xdo ) . (7.12)
Xdo \(1—=V/V)P ~ Wep
From this we find
A X
Cj, = —base Xp = —22 (7.13)

Xdo Wepi
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Since bothe andWep; are temperature independent, s€ig X,. Hence we have in all
cases

NI 7.14
pT— p . (' )

If we assume that around zero bias there is only a real depletion capacitance (no effect of
the finite epilayer thickness), we also have

Vdc Pc 21
Ciet=Cie (Ve ;) - (7.15)
C

This latter formula is however not the one implemented in Mextram. The reason for this
is as follows. The model fo€; is an approximation to a model which has a normal
dependence fo¥ > —V; and which is constant fo¥ < —V., for some criticalV,.

The constant part is of course given Gy, X,. The variable part is given b§;./(1 —

V /Vg.)%, whereq is the realistic grading coefficient. It should be thishat is used in

the temperature dependence(yf. How do we determine thig? This can be done by
demanding that the derivative Gf; atV = 0 is the same for both this model as well as
the model that is implemented in Mextram. We then fine= pc(1 — Xp). Hence we
write

&)pcu_xw , (7.16)

CjCT = CJC (Vd T
C

The capacitance increases less strongly than with only the pmwetn Mextram this
smaller increase is modelled as

Vdc Pc
Cit = Cic | (1 — Xp) (v ) +Xp |- (7.17)

dcT

This expression is appealing, since it is similar to the expression for the capacitance itself.
The reason for this choice is arbitrary and historical. Note that ardgpd= V4.1 both
expressions give the same result. Since the difference between the two expressions is not
too large, we chose not to change the expression used in Mextram 503 and keep with

Eq. (7.17).

7.5 Resistances

In Mextram all temperature dependencies of the resistances are modelled with a power
law. These resistances are directly linked to the mobilities. This means that the corre-
sponding temperature parameters will also influence other quantities that depend on these
mobilities, like saturation currents and gain factors. The general formula for the temper-
ature dependence of a mobility becomes

o~ tﬁA’ (7.18)
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with parameteA depending on the local doping, and therefore on the region of the tran-
sistor.

The temperature dependence of the resistances is then

Rer = RgtyF, (7.193a)
Rect = Rac ty™, (7.19b)
Reer = Rty (7.19¢)
Ror = Rev ™. (7.19d)

with parameteré\g, Aex, Ac, Aepi-
For the sheet-resistance of the base we can write

Aem

= —. 7.20
mp,8QBo (7.20)

Po

It is important to realise tha) g also depends on temperature. This is due to the change

in depletion layer width as function of temperature (a variation of the base width), and a
little on the change in ionisation factor. For our model we must model the temperature
dependence dD go, even though it is not a parameter. For simplicity we write:

A
Qeor _ £, %80 (7.21)
Qso

The temperature dependence of the intrinsic base resistance now becomes

Ag—A
Revr = Rey ty . (7.22)

7.6 Currents

Let us consider the saturation current,

B 92Dn A2 n?

7.23
Qso (7.23)

ls

The diffusion constanD,, = un V1 depends on the mobility of the intrinsic base, whose
temperature dependence is modelledAsy multiplied by the temperature vidr

T. The intrinsic carrier concentration is proportionallt, and contains an exponential
dependence on the bandgap. As we have s@eg,also depends on temperature with
parameteAq,,. This means that we could write

4—Ag—A
lst=lsty = % exp[-Vgy/Vatl. (7.24a)
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According to this scaling rule, the temperature dependence of the collector saturation
currentlst is expressed in terms of parameters that are shared with the temperature scaling
rules for the emitter-base diffusion voltagé {9, the zero bias base chargé4l) and

the intrinsic base resistancé.22. Such a sharing of parameters usually reduces the
burden of parameter extraction and is therefore generally considered as an advantage of
the model. Upto and including version 504.5, the ri#l249 was the temperature scaling

rule for the collector saturation current in Mextram. To provide more flexibility however,

in Mextram 504.6, the independent paramet@y,, having a default value 0, was added:

4—Ag—Aqg, +dA

|sT - Is tN exp[—VgB/VAT] . (724b)

The current gain can be expressed as
= —. (7.25)

The temperature dependence of the base Gummel number can be related to that of the
saturation current, sinck = qniZO/GB. Herenjq is the value of the intrinsic carrier
concentration at the reference temperature. The temperature dependence of the emitter
Gummel number can be given as

1 1

Gg X
2 2
Dpnie T'U“Pnie

oc T ~eVoe/Var, (7.26)

Note that there is no temperature dependent charge-componeQdiken the emitter.
This leads to a temperature dependence of the current gain

Ag—Ag—A
Br=pAty = 2 expl-dVgsi/Varl. (7.27)

HeredVggs = Vg, — Vg is the difference between the bandgap in the base and in the
emitter. Normally it is positive, but for a SiGe-base it might be negative. In the same way,
we write for the reverse current gain:

Bit = Bi exp[—dVgpr/Vat], (7.28)

whereg, is the the difference between the bandgap in the base and in the collector.

We also have the recombination current, the non-ideal base current. At high injection this
current can be given by
_ qAemLefi

=

Ig, eVB2E1/2VT (7.29)

Here L s Is some effective length not incorporated in Mextram. The inverse of the mean

free collision timero_l scales with the thermal velocityy, o« T2 This means that the
pre-factor scales with; /g or, in the casen s = 2:

lgfr = lgt t§ €xpl—Vg/2Varl. (7.30)
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This non-ideal base current has its own bandggpwhich should be the bandgap of the
region with the most recombination.

Whenm s becomes smaller, and close to 1, the non-ideal base cuggistalmost ideal

(it no longer models recombination). This must be reflected in the temperature depen-
dence, such that the temperature behaviour becomes similar as tBavofs/f (where

we will neglectAg). Hence we need a pre-facttﬂ‘, whenmy s — 1. We interpolate
between the two cases and get

6-—2
Igtt = Ipt tl(\l ML) eXp[_ng/mLf VAT]' (731)

For the reverse non-ideal base current we do not need the extra precaution and write
(without extra parameter)

lgir = lgr t§ eXpl—Vgc/2Varl. (7.32)
Next we consider the knee currents, given by

4D,
wg

lk = Qso. (7.33)

The temperature dependence®f and Qo is known. For the width we will take the
simplifying approximatiorwé o Qpgo, such that th&) gpo-dependence is not iR:

et = Ity 8. (7.34)

The expressions for the substrate current are now rather straightforward. We assume that
the effective thickness of the base of the parasitic PNP (i.e. the collector buried layer) does
not vary with temperature, or at least that this variation is negligible. The temperature
rules for the substrate currents are then given by the accordingly simplified counterpart of
Eq. (7.243 and a modified version of Eq7 (34):

lsst = lssty S expl—Vge/Varl, (7.352)
_ | |
st = lsti s =T S8 (7.35b)

Is lssT

For the substrate knee current we have to take into account that in the expression for
the substrate current we actually ugglys, instead oflsg/lks. This is reflected in the
temperature rule.

For the mobility we use the paramet&g, which must be related to the mobility of the n-
region most important for the Gummel number of the substrate current. We must make a
distinction between two kinds of buried layers. A closed buried layer is a layer beneath all
of the base region and closed in by some form of isolation (e.g. pn-isolation or deep trench
isolation). There is no current path from base to substrate that does not go through the
buried layer. The n-region that determines the Gummel number of the substrate current
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is the highly doped buried layer, and therefétg = Ac. An open buried layer, present

in older processes, is not beneath all of the base layer. Hence there is a current path from
base to substrate, without going through the buried layer. The n-region that determines
the Gummel number of the substrate current is now the epilayehgne Agpi.

7.7 Early voltages

The temperature rule for the Early voltages follows from the relatiags= Qgo/(1 —
XCj.) Cjc andVes = Qgo/XCj. Cj., given in Sectior.3. Hence

-1

A \V/ Pc
Ve = Ve tNQBO |:(l— Xp) (VddcT> +Xp:| , (7.36a)
c
A vV —Pe
VerT = Ver tNQBO (ﬁ) . (736b)
E

Note that these Early parameters are independent of the Ge-content, see Ghapter

7.8 Transit times

The transit time of the base is physically givendgy= W§/4Dn. Assuming again, as we
did for the very closely related knee current, m% o Qpo, We get

A +Ag—1
wmr =1t (7.37)

where we used the Einstein relatiby = un V7 to describe the temperature dependence
of the diffusion constanD, in the base.

The transit time of the epilayer is, similar to the base transit time, givemegy =
Wezpi/4Dn. The epilayer thickness is assumed constant, and the diffusion constant now
belongs to the epilayer. Hence we get

Agpi—1

TepiT = Tepi Uy (7.38)

The reverse transit time is simply the sum of the base and epilayer transit times, multiplied
by an area ratio independent of temperature. The temperature rule of the reverse transit
time is then simply

BT + Tepi

TIRT = TR u (739)
B + Tepi

The temperature dependence of the emitter transit time takes some more effort. The best
physical basis is given when we assume that the emitter charge is the neutral charge in the
base-emitter depletion regiodq]. It is then given by

Qg = 2V7 Cgep &P~ Veg)/2VT (7.40)
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Here Cqepl is the depletion capacitance, which we here assume to be constant, both as
function of bias and temperature (its variation is small anyhow). Furthermore, we can use
thate ~Vee/2VT — ni/Ng, whereNg is the doping in the emitter. This gives us then the
temperature dependence@E.

The expression for the charge, given in Eg40), impliesm; = 2. The expression for
the charge, in Mextram terms, is then

Qe = e Is I eYB2E/2VT, (7.41)

We are interested in the temperature dependence of the transit time parameter. We know
already the temperature dependence of all the parameters used THE).gxceptrg, as

well as that ofQg, as discussed above. Combining these temperature dependences, we
get

tN X t[:\%]/z e—VgE /2NT

e o the expl—(Vge — Vgg)/2 V1], (7.42)

2 A8/2 Vg2V 1/2—Ag/2

For simplicity we neglected the temperature dependen€gzof

In alternative caseSQg just describes the hole charge due to the hole current (the base
current) in the emitter. The corresponding charge will go as

2
_ qAemWEN; eVBaE/VT

Qe Ne (7.43)
In Mextram terms, witm; = 1, we have

Qe = 1 ls "85/ VT, (7.44)
For the transit time parameter we thus get

e ot 8 expl—(Vge — Vgg)/ V1], (7.45)
Interpolating between the two expressions, we get

e = e 1B T2 expl—(Vge — Vgg)/M V). (7.46)

To keep closer to the Mextram 503 formulation, and to make the temperature dependence
of g independent o, we take for the temperature parameter in Mextram 504

et = et expl-dVgr/Vat]. (7.47)
where the new parameter is physically giverd¥g,. = (Vg — Vgg)/m; V7.
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7.9 Avalanche constant
The Mextram parameters for avalanche are temperature independent. However, the mate-
rial constantB,, used in the avalanche modeltaken temperature dependent. Its depen-
dence is based on the work of Re44[ 45|, and given by

BnT = Bn [1+7.2-107% (Tk — 300 — 1.6 - 107°° (Tx — 300?]. (7.48)

Note that this temperature rule is independent gf sinceB, is a material constant.

7.10 Heterojunction features
The parametedEy is the difference between the bandgap at the two ends of the neutral

region. Hence, for a constant gradient in the bandgap, the parameter scales with the
neutral base widtWg, or with Qgo. We then get simply

A
dEgT = dEg t,,*®°. (7.49)

7.11 Thermal resistance

Since the thermal conductance decreases with temperature, the thermal resistance in-
creases with temperature. This is modelled as

T Ath
amb) . (7.50)

Rth,Tamb = Rih - (TRK

Please note that this temperature depedence is given in terms of the ambient temperature
Tamb= TEMP + DTA + 27315, (7.51)

and not in terms of the junction temperatulfg. For a more detailed discussion see
Ref. [66] or the report §7].
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8 Self-heating and mutual heating

In general a transistor will dissipate power. The generated power has an influence on
the temperature of the device and its surroundings. Hence, due to the power dissipation
the device will get warmer. This is called self-heating. To describe self-heating we need
to consider two things: what is the dissipated power and what is the relation between the
dissipated power and the increase in temperature. A more detailed discussion of the usage
of self-heating is given in Ref6[7].

8.1 Dissipated power

The power that flows into a device can be calculated as a sum over currents times voltage
drops. For instance for a three-terminal bipolar transistor we can write

P =lc Vce+ Is VBE. (8.1)

Since normally the collector current is larger than the base current and the collector volt-
age is larger than the base voltage, the first term is usually dominant.

Not all the power that flows into a transistor will be dissipated. Part of it will be stored as
the energy on a capacitor. This part can be released later on. So to calcuthiseiffaged

power, we need to add all the contributions of the dissipated elements, i.e., all the DC
currents times their voltage drops. In Mextram we then get

Pagiss = IN (VB,E; — VB,c,) + lcic, (Va,c, — VBacy) — lav Ve, (8.2)
+VEg,/Re + Vc,/Ree + Vi, /Rec
+ Ig,8, VBiB, + (I8, + 182)VBoE, + |§1 VB, E,
+ (lex + I3 + lsub) VB,c; + (Xlex + Xlsub) VB,
+ (Xlsub‘|‘ |sub— |Sf) Vcls-

The difference between the power flow into the transistor and the dissipated power, as
calculated above, must then be stored in the capacitances. In Mextram, as in other com-
pact models, the capacitances are not ideal. Instead they can depend on more than one
voltage. In that case itis no longer true that the capacitance (or rather the charge) does not
dissipate. One can show that under certain periodic bias conditions the charges actually
do dissipate a little. The amount of dissipation depends on the precise bias conditions, as
function of time. Since this effect is only due to our limited way of modelling charges,

we will not (and can not) take this dissipation into account.

8.2 Relation between power and increase of temperature

Next we need a relation between the dissipated power and the rise in temperature. In a
DC case we can assume a linear relatiolT. = Ry, Pgiss Where the coefficier®Ry, is
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Rth,Tamb —

Figure 21: The self-heating network. Note that for increased flexibility the node dT is
made available to the user (see also Fig. 22). The thermal resistance Ry tamp IS the one
after temperature scaling.

the thermal resistance (in unityW). We assume here that it does not maittkere the
power is actually dissipated. In reality, of course, a certain dissipation profile will also
give a temperature profile over the transistor: not every part will be equally hot. We will
not take this into account.

In non-stationary situations we have to take the finite heat capacity of the device into
account 68]. So we must ask ourselves, what happens when a transistor is heated locally.
The dissipated power creates a flow of energy, driven by a temperature gradient, from the
transistor to some heat sink far away. The larger the gradient in the temperature, the larger
the flow. This means that locally the temperature in the transistor will be larger than in the
surrounding material. This increased temperatifeis directly related to the increase in

the energy densitpU via the heat-capacitance:

AU = Cq, AT, (8.3)

whereCy, is the thermal capacitance (or effective heat capacitance) in yikitsAlpart
of the dissipated power will now flow away, and a part will be used to increase the local
energy density if the situation is not yet stationary. Hence we can write

Pdiss = —h + Cth——. (8.4)

8.3 Implementation

For the implementation of self-heating an extra network is introduced, se2I-ig.con-

tains the self-heating resistarRg, and capacitanc€y,, both connected between ground

and the temperature nod@& . The value of the voltag®yr at the temperature node gives

the increase in local temperature. The power dissipation as given above is implemented
as a current source.
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External network

transistor 1 transistor 2

Figure 22:An example of mutual self-heating of two transistors.

8.4 Mutual heating

Apart from self-heating it is also possible to model mutual heating of two or more tran-
sistors close together. To do this the termirdils of the transistors have to be coupled

to each other with an external network. An example is given in E&y. This external
network is not an electrical network, but a network of heat-flow and heat-storage (just
as the self-heating network within Mextram is not an electrical network). One has to be
careful, therefore, not to connect any ‘thermal’ nodes with ‘electrical’ nodes. The external
network can be made as complicated as one wishes, thermally connecting any number of
transistors. For more information we refer literature, e.g. Ré8&.70, 71].
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9 Noise model

9.1 Introduction

Apart from the DC and AC performance of the transistor model, we also have to consider
noise sources. With noise we mean random fluctuations in the currents or voltages in
the circuit. We refer to Refs7R, 73, 74, 75 for an introduction into noise characterisa-
tion. For a discussion of the calculation of (white) noise in compact models we refer to
Ref. [25]. Here we will give a basic introduction only.

Consider a resistor. Its currehtcan fluctuate, even when the applied voltdge kept
constant. Hence we can writét) = lp+i(t), wherelg = V/R. We cannot describigt)

in all detail. Instead we must look at its statistical properties. One of these properties must
be that its average vanishdst) = 0. We can safely assume that the noise is a result of
very many individual fluctuations. This means that the distributionfis a Gaussian.

We already calculated its mean. The distribution is then completely given by its second
momenti2(t). From elementary noise analysis it is known that we can write this average
in terms of its spectral intensit§; as

%:/wsi(f)df, (9.1)
0

where the integral is over all frequenciés It is not necessary here to give the definition

of the spectral intensity. Important is that within Mextram and other compact models the
noise is not directly given in terms of this spectral intensity. Rather, we give the average
of the current noise squared, in a certain frequency interval of width For a simple
resistance, for instance, we write

—  4kT

2 — — Af. 9.2
i2 - (9.2)

The total noise can then be calculated as a sum over different frequencies.

When looking at the equivalent circuit of this resistor we can add this current source
parallel to the resistor, as in Fig@3. Instead of a current noise term, one can also use

2
IR

R@ _
] e

Figure 23:Two equivalent ways of depicting the noise sources of a resistor. Left a current
noise source (parallel to the resistor). Right a voltage noise source (in series with the
resistor).
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a voltage noise term. From the intensity of the current noise term one can calculate the
intensity of the voltage noise term. Suppose we have applied a valtager the resistor.
We can then write for the current:

V —v
R

.V .
I+I:E+|: — v=—IR. (9.3)
Again we see that the average of the voltage fluctuation vanished. For the variance
we have

v2 = 4KTR Af. (9.4)

The thermal noise we have described here is normally given in terms of a voltage noise
source. We can also note that its squared average, or its spectral intensity, is independent
of the frequency. Hence it is called white noise.

9.2 Basic noise types

There are three basic types of noise that we will consider: thermal noise, shot noise and
flicker noise.

9.2.1 Thermal noise

Thermal noise is the noise normally associated with resistances. We have already seen
its normal behaviour above. It is a white noise, which means that its spectral density is
frequency independent. It does not depend on the current through the resistance, or its
potential.

9.2.2 Shot noise

The second basic type of noise is shot noise. This noise is a result from the fact that the
current consists of particles moving around. When considering for instance the current
over a pn-junction we know that either a carrier crossed the junction or it didn’t. The fact
that the carriers cross the barrier one by one gives a fluctuation given by

i200=2q1 Af. (9.5)
For a resistor the electrons can move about freely, and do not have to cross a barrier.
Therefore no shot noise is present in resistors. Shot noise is present in the various base
currents and in the main currents. Furthermore, Mextram also models the noise contribu-

tions due to impact ionisation or avalanche. This is discussed in detail inFgf. [
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9.2.3 Thermal noise and shot noise as one concept

Although their origin seems to be very different, thermal noise and shot noise in semicon-
ductor devices have the same background. Both can be found by considering the current
equations and solving them while adding local fluctuations. These local fluctuations are
based on thermal noise. We will see that shot noise in diodes can be derived from the
same basic principle of local thermal noise. Although here it is a bit technical, we need
the derivations for the noise in the main current and in the epilayer resistance. This also
means that the simplified picture presented in the previous section for shot-noise is not
quite true, although it is very good for getting quick results. We refer to the rep@irt [

for more detail on calculating white noise in compact models.

Under quite general conditions the differential equation for the current-voltage relation
can be given a$ = gdV /dx, where the conductance is not necessarily a constant. For
instance, the conductance can be directly dependent on the pogitierg(x), like in a
resistor where the resistance varies with the position along the current path. The current
noise is then given by

— 1 -1 T
i2=4kT Af —— dx = — Af, for g = g(x), 9.6
([s5%) =% g=g00.  (96)

whereR is the total resistance.

In some other situations, like in a diode and in a MOSFET, the conductance does not
directly depend on the position, but rather on the local voltage ¢, — ¢n, and we write

g = g(V). For instance, in a diode, we have from E.5 J = qunsn(V) dV /dx, where

from Eq. (L.9) the minority concentration is given byV) = niZeV/VT/NA. For these

kind of conductivities the formula for the noise i&7]

_ w
i2=4kT Af iz/ g[V (x)] dx, forg =g(V). (9.7)
W= Jo

It is important to realise the subtle difference between E9§) @nd 0.7). Especially

when one realises that in the latter equation the conductivity is in an indirect way also
a function of position. Here, however, this function will change with applied biases,
whereas in the case of E®.6) the function which giveg as function o is independent

of voltage. For constarg both give the same result. For conductivities that depend both
on position and voltage there is in general no simple expression that gives the current
noise. These subtleties are discussed in more detail in Rgf. [

In the case of short diode we have, as in the base of a bipolar (see SE4tBDM[V (x)] =
n(0)(1 — x/Wg). The noise for this case is given by

o Qtot

=2 Af ~2q1 Af. 9.8
qwg/an g (9.8)

The total charge is given b®t = g Aemn (0)Wg. Note that we basically used the charge
control relationQtot = 7 I, with t = W§/2Dn at low injection. It is important to realise
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that the noise for a diode, as given above, is more general than just for the case we have
derived above. It is well known that for a diode, independent of its doping profile or
lengttf, we have 72]

I = 15(e¥/VT —1), (9.9a)

i2 = 2915 (e"/VT +1) Af. (9.9b)

The difference between thel and the—1 explains the2’-sign in Eq. 0.8). Normally
this difference is not important in compact modelling. Only in the case of the main current
we will take the correct expression.

9.2.4 Flicker or1/f-noise

The last basic type of noise we will consider is called hoise or flicker noise. The
microscopic origin of Xf noise can be various. We will not try to understand these
mechanism. Rather, we use an empirical formula that gives the current noise as

-5 Af
i%/f = Kt [ |Af 5 (9.10)

whereAs andK; are parameters. Flicker noise will be added for all base currents, but not
for the main currents.

For flicker noise we have to be careful when modelling the noise over several transistors in
parallel (i.e. wheMULT # 1). The variance of the noisy signal of multiple transistors is
just the sum of the variances of the single transistors, since we assume independent noise

sources. This means that we need to add the spectral intensitiesj ar Tihe current of
a single transistor is the total current divided by the number of transistors. Hence we get

I
MULT

A AT

- (9.11)

-
i2, = MULT - K

For shot noise we should do the same. This does however not change the formula when
MULT > 1, since shot noise already scales linearly with the current. We will see the same
kind of formulas whenever a base current is split into two or more parts.

9.3 Noise due to avalanche

The excess noise due to impact-ionisation and avalanche is described ii@ReTHere

are two effects. First, the noise that is already present in the collector current is amplified
just as the DC collector current. Second, the impact ionisation process itself leads to extra
noise.

8We will neglect all high-injection noise effectg§, 79], which are due to the fact that hole current and
electron current become dependent on each other.
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In Ref. [76] we have shown the derivation. Here we just present the results and the actual
implementation into Mextram. For the noise sources without avalanche one can write

i2, = 2qlcoAf, (9.12a)
i2, = 2qlgo Af, (9.12b)
igoico = O. (9.12¢)

The subscript 0 stands for no avalanche. Including avalanche, the result for the noise at
the terminals of the intrinsic transistor is then

iZ = 2qlcoM@2M — 1) Af, (9.13a)
iZ = 2qlgo Af + (M — 1)(2M — 1)2qlco Af, (9.13b)
E = —2M(M —1)2qlco Af. (9.13c)

The expressions are given in terms of the multiplication faMorWe want to present it
in terms of the Mextram generation factGgy and the avalanche currehf,. In Mex-
tram the avalanche current given in E8.100Q is defined in terms of the total collector
currentlc,c,. Furthermore, it is limited in such a way that alwalg < Ic,c, and
lavi < Gmaxlc,c,. For the noise model we will neglect the influenceGhax (which
means we assume it is infinite). We can then write

Gewm
Iavl = m'Clcg = |0102 - |N- (9-14)

This allows us to writdlayy = GemlIn, Which is now in terms of the main currehy;.
This main current is equal to the currelfp as used in the noise expressions above.
Furthermore, we can now express the noise expression in ter@gwt= M — 1. The
result is

i2 = 2qlco(l+ 3Gem + 2G2y) Af

= 2C||N Af +ZQ|aV|(3+ZGEM)Af, (9.153)
iZ2 = 29lgo Af +2qlco(Gem + 2GEy) Af
iBic = —2qlco(2Gem + 2G2,,) Af
—20 lavi(2 + 2Ggm) Af. (9.15c¢)

The higher order contributiong)4,,/Gem AT are not really relevant for the accuracy of

the modelling. The avalanche current itself is not even accurate in that regime. However,
the terms are needed to make sure that the model remains consistent, in the sense that no
correlation coefficient larger than 1 (in absolute value) occurs.

Because of backward compatibility all noise contributions directly due to avalanche have
an extra prefactoKyy.
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9.4 Noise expressions in Mextram

For the three constant resistors in Mextram we can write {tNé stands for ‘noise cur-
rent’)

4kT
akT
2 _
N3, = Re Af, (9.16b)
- 4kT
iN2 = _— Af. (9.16¢)
Rec RCc

The value of the noise intensity in the variable base resistance mustinclude current crowd-
ing. The derivation is discussed in detail in ReA3,[25]. The resultis

. 4kT 4ev818/VT 4 5
iNZ = ap e S (9.17)
Rey RB, 3

The expressions for the shot noise in the main currents of the intrinsic transistor and the
parasitic PNP are now:

N e + 1r

iN2 = 2q 0 Af + Kayi - 29 1avi(3 + 2Ggwm) Af, (9.18a)
iNE = 2q [lsul Af, (9.18b)
iNZ_ = 29 [XIsu Af. (9.18c)

For the main current we added both the forward and reverse terms to make sure that it also
works in reverse. Furthermore, the contribution due to avalanche is taken into account.
Note that we do not model a reverse current of the parasitic PNP.

The shot noise and/I-noise of the ideal forward base current and the non-ideal base
currents are given by

iNZ = {29 (ll,| + I |)+ﬁ(1—><| ) _Me| "
B~ Bl TR Ty 517 \ 1= Xig,

K _ _
n % 1, [AmuDHAC mm} Af

+ Kavi - 20 lavi(1 + 2Gem) Af, (9.19a)
— K 5,1\
iNZg = 1291151+ — Xlg, (o] 1 Af, (9.19b)

f Xlg,

. 2 Kf Af
iNE, = 12g “B3|+T |15,] }Af. (9.19¢)
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Note that the 1f noise of the non-ideal base current has its own pre-factor and a fixed
power A; = 2). This is a result from the work of Koolen and Aar&J]. Also for the

base current, the contribution due to avalanche is taken into account. For this contribution,
also a correlation between base and collector current shot noise terms is négded [

iNg INE = —Kayi - 29 lavi(2 + 2Ggm) Af (9.20)
The parameteK,, is just a pre-factor that was introduced for backward compatibility

and should be set to its physical value of 1.

For the extrinsic reverse base current shot noise aridnbise we have to be careful.
WhenEXMOD = 0 we have

K
iNG {2q lexl + ||ex|Af} Af) (9.21)

ex

WhenEXMOD = 1 we have

2 Kf [ lexl A
ex f 1—Xext
— K | Xlex] \ ™
ex f Xext
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10 Small-signal approximations in the operating-point

Operating point information is a feature of the circuit simulator that gives the user in-
sight in the actual operating point of the transistor. This includes for instance the actual
transconductance and actual capacitances. In the Pstar implementation all small-signal
guantities are given, as well as many large signal quantitiesMore important for the
designer, however, are some compound small-signal quantities. One of them is the actual
cut-off frequencyfr. Other quantities are those of the approximate small-signal circuit

shown in Fig.24.

R
Cgc —Iz:l Cc ¢

0, VCiE; Om UB,E,

[z 6! 8 o

=]

Re
E

Figure 24:Simplified small-signal circuit that approximates the full Mextram small-signal
circuit. The names of the internal nodes correspond conceptually to the same nodes in the
full Mextram circuit. However, the value of their node voltages will be slightly different,
since it is an approximate circuit.

10.1 Small-signal model

We start with the calculation of the approximate small-signal model. All the elements
are calculated using the small-signal parameters of the full Mextram model. The exter-
nal collector and emitter resistance are just the parameters themselves (after temperature
scaling). The base resistance is simply given by

re = Rec + e, (10.1)

where the second term is already given in the operating point information. G\lsis
already given.

For the calculation of the other terms we need some more work. This is similar to what
we will need in the calculation oft later on. The part of the Mextram model located
between the three nod@&y, E; andC, contains four currentsly, Ic,c,, Ise and Igc

(see Fig25). The latter two are (intrinsic) base currents. Mextram does not have a real
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Isc Ic,c
R A D
|BEI/I IIN -—
E1

Figure 25:Circuit that describes the four main currents in the intrinsic transistor.

intrinsic base current that goes from base to collector. It does however have an avalanche
current that goes from the collector (nddg) to the base. Thereforégc = —lay.

The following derivatives are (or could be) present in the operating point information

LI A 0N
= aVBZEl’ W= aVBzcz’ o 8V82C1’
JRcw,x ZmZ gRvasz chvz=%;
’ 0VB,E; ’ 0VB,C, ’ 0VB,c;
Orn,x = aszEl; Orn,y = aszCz; On,z = 3V52c1;
dlgc dlgc dlgc
Oux = aVBzEl; Ou,y = aVBZCZ; Ou.z = Voo, (10.2)

Some of these terms are zero in Mextram (grg,,x. The conductances, y andg, ; are
non-zero only if base recombination is included). We include them here anyhow because
the present derivation can also be used for other models (like Spice-Gummel-Poon).

First we need to look at the nod&. It is not included in the small-signal model of
Fig. 24. Hence we must calculate the variationlg,c, as function ofVs,g, andVg,c;.
To this end we use

IN = Igc + lcic,- (10.3)
Taking the derivative we get

Ox dVBzEl + gy dVBzCz + 0z dVBzcl
= (JRev.x t9u.x) AVB,E; + (JRew.y+9u.y) AVB,c, + (GRev,z+9u.2) dVe,c, (10.4)

This directly leads to

d_y _ (M) _ 9x — 9Rev.x — Gux (10.5a)
dx 0VB,E; Ve,c, ORcv,y T+ Ou,y — gy’

d_y _ (3V52C2) _ 9z — ORecv,z — Guoz . (10.5b)
dz 0VB,c, Veye, Revy T 0uy =0y
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We can now look at the small-signal circuit elements. We start with the collector current
which is, at the end, only a function of two external biases, and given by diher =
lc,c,(VB.E;, VcuE;) OF Ic,c, = lc,c,(VB,E;» VB,c,). We can use the equivalence of both

to write for the transconductance

()
aVBzEl Ve
0VB,E, Ve,c, 0VB,E; Vore, VB, Ve,e; 0VB,E, Ve
- <3'0102) +(8'C1C2> (10.6)
0VB,E, Ve,c, VB, Ve e,

The latter expression can then be rewritten in terms of the known Mextram quantities,
using the fact tha¥s,c, is also a function of botg,g, andVs,c,. The transconductance
then given by

Om

1E1

dy dy
On = |9Rcu,x T+ gRCv,y& + [9Rcv,z + gRCv,yE

9Rev,y (Ox — 9u,x + 92 — 9u.2) — (QRev,x + YRew,2) (Qy — Juy)
ORev.y + Oy — Oy '

(10.7)

Next we have the base conductargze = gm/B8 for which we use the same kind of
techniques as above to go from its definition to the expression in terms of the full Mextram

small-signal equivalent circuit:
6 — (3(|BE + |BC)) B (3(|BE + |BC)> n (3(|BE + |BC)>
T — - — - -
0 VB2E1 Ve o} VBzEl VBZCI aVBZCl VB

dy d
= Orx+0ux+09rz+09uz+ Gry+Guy) [d—z + —y] : (10.8)

1E1 2E1

dz

It is not much use trying to simplify this last expression. The output conductance is

— dlc,c, dlc,c,
B = (Gvee k. = (e
CiEr VB,E, B2C1 /vg
dy
= —0ORcv,z — chv,yE

(9y — 9u,y)9Rev,z — (9z — 9u,2)ORew,y
Orevy +9uy — Oy

2E1

(10.9)

Note that for small current§rcy,y >~ —0rev,z- This makes that the second expression
in gm andgeyt are numerically unreliable since they contain a subtraction of two almost
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equal numbers. At last we have the reverse transconductance

0, = — (3(|BE + |Bc)) _ . (3(|BE + |Bc))
g aVeiE, VB,E; IVB,c, Vs

d
= Orz+0uz+ Qry+ gu,y>d—Z- (10.10)

2E1

The reason for calling this term, is that in the simple case where the BE-base current
depends only oWg,g, we can writeg,, >~ g, ; + 0,,y. Hence itis directly related to the
conductance between base and collector. When we translate the circuit 24 Fitp the
hybrid-pi model of Fig.26 (see next section) we see that it is indeed between the nodes
B, andCj.

10.1.1 Mextram implementation

In the equations we derived above we made no assumptions for the currents. This means
that the small-signal circuit is also correct when the transistor is used in reverse! However,
we did not yet include the extrinsic regions. For the implementation in Mextram this is
necessary. This also means that we need to approximate to keep the small-signal model
simple. Furthermore, when including the charges it is also not possible to keep all of the
Mextram structure intact.

The currents for the extrinsic regions can be added as follows

0r — Or+0;. (10.11a)
Ou —  Ou+ Guex + Xduex (10.11b)

whereg? is the conductance of the base curre@ltthrough the sidewall. Note that the
substrate current (which goes from the base node to the substrate node) is not modelled at
all. This should not influence the collector and emitter currents.

For Mextram we have implemented:

On = 9Rev,y (9x = Gux + 92 — Guz) — (GRev.x + GRev,2) (Gy — Gpu.y) ,(10.12a)

gRCv,y + gu,y - gy

Or = 05+ Urx +Oux +Grz 4Gz + @y + Guy) [% + %] . (10.12b)

B = Om/Ox, (10.12c¢)

Jout = (gy - gu,y)chU,z - (gz - gu,z)gRCU,y ’ (10.12d)
gRCU,y + g,u,y - gy

Oy = Orz+9uz+ Qry+ gu,y)g—z + Juex + XJpex (10.12¢)

Cee = Cgex+ Cie + Cocx+ (Caey +Caey) g—i + CgEo. (10.12f)

d
Cec = (Cgey+Caecy) d_Z + Cgc.z + Cgcex + XCgcex + Caco- (10.129)
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Figure 26:Small-signal hybrid-pi circuit that also approximates the full Mextram small-
signal circuit. It is equivalent to the circuit of Fig. 24.

Note that in the implementation we will uge= gm /9, instead ofg,, directly. The base-
emitter capacitanc€gg contains every term that is dependentgre,, evenif itis in the
complete circuit not between the nodg@sandE;. The base-collector capacitanCec
contains in a similar way all contributions that dependveit;,.

10.1.2 The hybrid-pi model

Sometimes one would like to have the elements of the hybrid-pi small-signal circuit of
Fig. 26, instead of the elements of the rather symmetric circuit of EdgAll the elements

in the figure now have an extra prim¢ (o denote the difference with the original small
circuit model.

To go from the circuit of Fig24 to that of Fig.26 we have to move the current source

0. vc,E,- This means also changing the other terms. The redistribution of the current
source is shown in Fig27. From this we find the elements of the hybrid-pi model in
terms of the symmetric model:

On = Om—+ 0y (10.13a)
9r = Or — Ou (10.13b)
Jout = Yout— Uu- (10.13c)
9, = Ou (10.13d)
B = On/9r (10.13€)

Note that the conductangg, is between different nodes than the term corresponding
t0 g,.

©Koninklijke Philips Electronics N.V. 2005 109



NL-UR 2002/806— March 2005 Model derivation of Mextram 504 Unclassified report

B> C1 B> JuVB,C,q C1
ap
8guvclEl @ngBZEl 8gMUBZEl @gﬂvclEl
E]_ El

Figure 27:The figure shows how to replace the current source g, vc,g, that is present
in the circuit of Fig. 24 and here shown on the left side, by the equivalent circuit of four
currents here given on the right side. These equivalent four current sources, of which
three can be replaced by resistances, are part of the circuit in Fig. 26.

Using this transformation we now find for the complete hybrid-pi model:

; ORev,y(Ox—0u.x+92) + 9p,y (ORev,x+02) — 9y (9u,z+9Rev,x +IRev,2)

In = ORev,y T 9u,y — 9y
dy
+ O,z + gn,yE» (10.148.)
) dy
O = Orx+0ux+ (Ory+ g,u,y)d_x, (10.14b)
’ 9y(9u,z + 9Rew,z) — 92(9p,y + IRew,y) dy
= — Onz — Ory—, 10.14c
out Orony + Oy — Oy Orz — Omy ( )
dy
O = GrztGuz+ Gry+Ouy) g (10.14d)

These relations have been verified with Mathematica.

10.1.3 Simple case

Let us now consider what the equations above mean in a simple case. We take normal
base and main currents that depend only on the nodes they are connected to. This means
Ory = Orz = Oux = Ouz = 9, = 0. We assume a negligible and constant collector
epilayer resistance. This meagg, x = 0 andgrcy,y = —JRrev,z IS Very large. We take

the limit of grey,y — oo. This leads to

d

by _ (%) ) (10.15a)
dx 0VB,E, Ve,c,

d 9

Y _ ( VBZcZ) - 1 (10.15b)
dZ aVBZCl VBZE]_
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For the conductances we get

Onm = Ox+0y— Guy, (10.16a)
Or = Onx T+ 0uy, (10.16b)
Jout = OGu,y — 9y, (10.16c¢)
O = Ouy- (10.16d)

After the transformation to the hybrid-pi circuit we then have

On = Ox+ 0y, (10.17a)
9r = Orx (10.17D)
Jout = —Oy (10.17¢)
9, = Ouy- (10.17d)

Note that since in genergl, < O the output conductance is positive. The result is as
expected: the conductance at the base is indeed given by the derivative of the base current
w.r.t. the base emitter voltagg x, the output conductance is given by the derivative of the
collector current w.r.t. the collector-base voltaggy, the feedback conductance due to

the avalanche current is the derivative of this avalanche current w.r.t. the collector voltage
0.,y and the transconductance is the derivative of the main current w.r.t. the base-voltage,
which is a sum of the derivative w.r.t. the base-emitter voliggand the derivative w.r.t.

the base-collector voltagg, keeping the collector voltage constant.

10.1.4 The reverse hybrid-pi model

In very few cases it might be useful to have a hybrid-pi model for the reverse behaviour.
We don't think it is useful to include in the operating point information. But here we show
how one can very easily construct the model from the quantities we already have. We use
the hybrid-pi model of Fig26 as a starting point.

We have already mentioned that in principle the given hybrid-pi model can also be used
in reverse. We only need to add the substrate current, and we need to rewrite it such that
not vgg but rathervgc is the controlling voltage. When we do this we find the circuit as
given in Fig.28. Note that some of the quantities will now be negative, tikeandg’.

The reverse current amplification is ngt, but it is —%/%- This does include the
extrinsic reverse base currents. In reverse mode we must also take the substrate current
into account, as has been done by adding an extra current source.

This reverse hybrid-pi model has not been tested very much.

10.2 Calculation of ft

Now we want to calculate the cut-off frequenty = 1/(27 7). We will do this in more
detail and accuracy than in the previous section. The total transittiiniethe ratio of
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Figure 28: Small-signal reversehybrid-pi circuit that approximates the full Mextram
small-signal circuit. Note the positions of the various external nodes. The value of g,
will be negative, and therefore so will g’.

the variation in the total charge connected to the B&¥@and the variation in the current
8 lc when keeping the collector-emitter bias constagg = 0

g=2Q . (10.18)

$ IC 8Vce=0

To calculate the variation of the charges we first need to know what the variation of the
internal biases is. This can be done in a similar way as above. Again we take the biases
VB,E;, andVg,c, as the independent quantities.

Variations of important quantities We start again with current conservation at the
nodeC» which, as before, leads to

d_y _ (8V52C2> _ Ox — 9Rev,x — Gu,x (10 198.)
dx OVBoEr Ng,c.  9Revy + Oy — Oy’

d_y _ (8V52C2> _ 9z — ORcv,z — Quz (10 19b)
dz 0VBoCi Jyg.e. YRevy T 9uy — 9y

We can now look at the collector-emitter bias
Vce = Ic Rec — VB¢, + VBoE, + IE RE- (10.20)

We assume that there are no reverse base currents. Hereéc,c,. The emitter current
equals the sum of the main currdntand the forward base currelys = Igg+1 gl. When
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we take the derivative dfcg to the two independent biases we get

dVcE > [ dy]
- v + v - R + l
(BVBzEl Ve, 9Rovx + GRevy g | Ree
dy
+ [ 9x +9Bfx +(Qy + ng,y)& Re. (10.21a)
dVcE > [ dy]
- v + v - R - l
(aVBzcl VB,E; ORev.z T ORe Y dz ce
dy
+ 9z +0sf.z + (Qy + ng,y)E Re. (10.21Db)

We will calculate the various derivativggs of the base current later on. The variation of
the collector-emitter bias can now be written as

oVcE 0VcEe
SVcE = ( ) 8VB,E, + ( ) 8VB,C; - (10.22)
0VB,E, Ve,c, VB, Ve e,
For the derivation offt we demand that
8Vce = 0. (10.23)
This leads to
1) 0 0
o Ve _ ( Vce ) /( Vce ) ' (10.24)
§VB,E, 9VB,E; VB,Cy VB,cy VB,E;

We can now calculate the variations of all quantities under the conditior Ygt= 0,
in terms of§Vs,g,. For instance, we have

d d
Slc =dlc,c, = [chv,x + chv,y% + o (chv,z + chv,yd—Zﬂ §Vs,E;. (10.25)

Conductance of forward base current We still need to calculate the various conduc-
tances of the forward base current. We can write

Igs = lge + |§1(V52E1 + VB,B,), (10.26)

using the fact that the sidewall base current is a functiobig§,. To calculate the con-
ductance we first need the derivativelgf g,. To this end we write

Ig,8, = lge + lac. (10.27)
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The currentdge andlgc are the same as used in the previous section. Taking for instance
the derivative w.r.tVg,g, we get

1 9V
— ZBibe + 9Rbv,x = Gz, x + G, x- (10.28)
gy 9VB,E,

whererg, is also present in the operating point information. This leads to the following
definitions

A%

W= 282 = (g x4 Oux — ORbux) TBos (10.29a)
0VB,E,
V)

‘}/y = ﬂ == (g;-[vy + g,u,,y - gva,y) rBU? (1029b)
0VB,C,
A%

Ve = 22— Qs+ Oz — ORbuz) TBu- (10.29¢)
0VB,c,

We now find for the derivatives dfs+

Osfx = Orx +05 (14 1), (10.30a)
Osfy = Ory+ 05 Wy, (10.30b)
Ogfz = Orz+05 12 (10.30c)

Variation of biases We need to now the variation of various biases per unit variation of
the collector current. For the three intrinsic biases we get

SV d dy\1™
x = 5?2E1 - [chv,x + chv,yd_)): to (chu,z + chv,yd_Z)] . (10.31a)
. _ 8VBgC2 _ 1- ORcv,xMx — 9Rev,zIz (10 31b)
y Slc ORcu,y ’ .
r, = % = aly. (10.31c¢)
Slc

For the calculation of, we used that
8lc = gRrev,xIx + 9Rrev,yFy + GRev, 21z (10.32)
We can also calculate the variation¥f, g,

3VB,B,
Sle

Fbib2 = =Y Ix+yyly+v: Iz, (10.33)

where we used Eq10.29. For the base current we can write
Ig = Igf + lgc. (10.34)
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The current amplification then is

Slc

hfe = g = [(@8f.x + Uux) Tx + 98ty +9puy) Ty + (O8f,2 +9pu.2) 1)1 .(10.35)

Using the current amplification we get the last two internal biases:

3 %:Ne
fex = 2 =1, + Ipipp, (10.36)
Slc
3 R
Xrex = 2% — 1, + rpips + —20. (10.37)
5|C hfe

For the overlap capacitances we also need the variation of the external base:

Vsc  dVeE
Sl Slc

== Xrex - RCC' (1038)

Total transit time  The total transit time is now simple. It is given by

o = 8Quot _ 3 9Qtot SVI
slc Vi Slc

= Cge (rx + piv2) + (Caex + Cgg + Caex) Mx + (Ceey + Cacy) Ty
+ (Cge.z + Cgc.z) 'z + Chcex l'ex + XCgcex Xrex
+ (Cgeo + Cgco) (Xrex — Ree).- (10.39)

We neglected the excess phase shift contribution which are presenBMdl = 1.

10.2.1 Mextram implementation

In this section we present the equations implemented in Mextram to caldwlatEhey
are presented in an order such that each equation can be evaluated on basis of either
existing operating point information or previously calculated results. We also use that in
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Mextramgrey.x = 0. The cut-off frequency can then be calculated as:

d _
T e (10.40a)
dx ORev,y T 9u,y — 9y
d — ORev.z —
7 o ST ORwe e (10.40b)
dz ORev,y T 9u,y — 9y
¥x = (Oz,x +9u,x — 9Rbu,x) MBus (10.40c¢)
Yy = (gn,y + Ou.y — gva,y) B, (10.40d)
Y2 = (Ur,z +9uz — 9Rbv,z) Bus (10.40e)
Osfx = Orx +05 (1410, (10.40f)
gBf,y = Ory+ g; Yy (10.409)
08fz = Orz+0; ¥z (10.40h)
1+ [gRCU,y%] Rce + [gx+ng,x+(gy+ng,y)g_)¥] Re (10.40)
a = ,(10.40i
1- [chv,erchv,y%] Rce — [gz‘l‘ng,z‘l‘(gy‘l-ng,y)%] Re
d dy\17t _
ry = [gRCv,yd_)): +« (chv,Z + chv,yd—)Z/)] ) (1040])
r, = afy, (10.40Kk)
1- v
ry = 79% 22, (10.401)
Rcv,y
M2 = YxIIx +yyry +y: Iz, (10.40m)
Fex = Iz + b2, (10.40n)

Xrex = TextRec[(98f.x+0u x)Ix+(98f.y+0u.y)ry+(98f.2+0,.2)r2)], (10.400)
1 = Cge (rx + rpw2) + (Ceex + Caex) I'x + (Caey + Cacy) Iy
+ (Cge,z + Cic,2) 'z + Cicex Fex + XCacex Xrex
+ (Cgeo + Ceco) (Xrex — Reo), (10.40p)
fr = 1/@m 7). (10.40q)

10.2.2 Possible simplified implementation

The calculation above is quite complicated, but very good. In practice one might not need
it. To simplify matters, we neglect al, terms and assume thh, g, is only a function of
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VB,B,. We also assume that the forward base current only depends,en We then get

dy
dx
dy
dz

dBf,x

Ox
ORcvy — Oy
9z — ORevz
ORevy — Oy
Orx + 95 [1+ Grx MBol.

1+ [gren.y & | Ree + |04 + gsrx + 9y & | Re

1- [gRCv,z + chv,y?T)Z/] Rce — [gZ + gyg—;{] Re

dy dy\ 1™
gRCv,y&‘i‘a chv,z+chv,yE ,

oIy,

(1 — 9Rrev,2r2)/9Reu,ys

Iz + 1By Or,x I'x,

lex + Rec 98f.x ',

(Cgex + Cgg + Crex) I'x + (Cee,y + Cac y) Ty
+ (Cge.z + Cgc.z) 'z + Cicex l'ex + XCgcex Xrex
+ (Cgeo + Ceco) (Xrex — Reo)-

9
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(10.41d)
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(10.41f)
(10.41g)
(10.41h)
(10.41i)

(10.41j)
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11 Geometric scaling

Geometric scaling rules are not incorporated into Mextram. The reason is that bipolar
processes vary too much, already in possible layout structures, for one set of geometric
scaling equations to be applicable in all cases. For that reason geometry scaling has to be
tailored to the specific process, outside of the model.

Many geometry scaling equations have been presented in the report about parameter ex-
traction P], in some places even with some derivation. This chapter can therefore be very
short. We will only discuss the scaling of the high-current parameters and those of the
self-heating parameters. Appendbdiscusses the scaling of the variable base resistance.

11.1 High current parameters

The scaling of the high-current parametBis,, SCRc¢y, lhe, andS¢, has been discussed
extensively in Ref.33]. We will not repeat the derivation here, but only give the results.

Note that these results are depending on the actual spreading model one assumes, and are
therefore somewhat empirical.

The derivation starts with assuming that the collector current contains a bulk and a side-
wall part, in the same way as does the saturation curggnt [

|C = Jbulk(Aem + Yc Pem)» (11-1)

wherePem = 2(Lem + Hem) IS the perimeter of the emitter, ardgyk is the bulk current
density. The next assumption is that the spreading is such that the bulk current density
can be written aslpyk(x) o« 1/(1 + ax) as function of the deptl below the base-
collector junction. The value dd = tana Pern/ Aem depends on the spreading angle

The effective parameters can now be expressed in teriysanid the spreading angles

for low currents andyy, for high currents as

Rev = Revad 1+08f|_’ (11.2a)
lhe = |hc,1d1+08ﬂ_» (11.2b)
SCRcy = SCRey.1d lfoH, (11.2c)
where
Ye Pem
6 = (1+ ZCA::) : (11.2d)
St = tang V\g}%l::n, (11.2e)
Sty = tanap W;'C’A;j:n (11.2f)
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Here it is assumed that the prodiRg, I equals its low current value. The quantitys
related to the ratio of the collector current that actually goes through the main part of the
epilayer and the collector current that goes around (the sidewall part).

In the derivation of Ref.33] already a few approximations are made. Furthermore, the
basic assumptions are not necessarily valid. This makes the calculation of the spreading
rather empirical. Since we do not need a very detailed spreading model (current dependent
spreading was found to be of minor importan88,[36]), but only a geometric scaling
model, we can make some further simplifications. Since the scaliAigso¥ery similar

to that of Sy andSty, we can take the scaling éfequal to that of eithes_ or Sty .
Assuming, furthermore, values of tan= 0.5 and tarxp, = 1 we arrive at the scaling
equations given in Ref2]:

Wepi 1
Rey = Crg, - -, (11.3a)
qNepi 40 Aem (1 + Sﬂ_)
w2 1
SCRcy = Cscre, P! . (11.3b)
2 & vsatAem (]_ + SfH)
2
lhe = Ci qNepi Aemvsat (1+ SfL) , (11.3c)
VVepi Pem Wepi Pem
S = ——; StH=——. 11.3d

Here each parameter has a pre-factor—which should be of the order of one—to give them
effective values, rather than ideal values. When we look at these equations we see that the
effect of the scaling is simply to make the area used for the calculation of the parameters
an effective area, one that is larger than the emitter area. The increase in area depends on
the size of the emitter area throu§h. andS+y.

The parameteB¢,, which is important for avalanche at high currents (but only if the
extended avalanche model is us&XAVL = 1), is basically the same as tBey above,
and therefore scales in the same way, although it might have a different pre-factor.

11.2 Self-heating

Self-heating in a transistor is a complex process. The source of dissipation is distributed
over the transistor, and also the temperature varies, depending on the location within the
transistor. Nevertheless, we model this with a simple self-heating network, containing a

thermal resistancBy, [K/W] and a thermal capacitancgy, [J/K].

The thermal resistance is directly related to the thermal conductvifyw/Km]. A di-
mensional analysis then tells us that the thermal resistance must be given as one over the
thermal conductivity times some length scélé&o, apart from a pre-factor, we can write

RTH X l/(K f) (114)

We can also give a derivation for the same effect, in the ideal case of a sphere of dissipa-
tion in an infinite substrate. We assume that the dissipation density inside this sphere of
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radiusR is uniform, and therefore given U‘ydiss/(%n R3). The energy flux densityy is
related to the local temperature incre@se via the diffusion equatiod, = —K VAT.
Solution of this equation and the continuity equatdd, = 0 in an infinite spherical
symmetric medium gives

Pai 3 r?
ﬂ(———z), forr <R,
AT (r) = 4gdKR 2 2R (11.5)
1SS forr > R.
4o Kr

The temperature in the region of interest, where the dissipation takes place, scales with
one over the size of this regidi.

In practice of course, the region of dissipation is not a sphere. It is more of a rectangular
region. Nevertheless, the scaling is basically as given above. For a box with square
surface and small constant thickness, for instance, the thermal resistance scales with the
length of a side. For the reasons above, the geometric scaling of the thermal resistance
can approximately be given as

1
VAem

Some experimental evidence confirms this relation.

(11.6)

RTH X

For small but long devices 3D effects become less important and the thermal resistance
will scale with the length of the transistor

1
RTH X — (117)

Lem’
In practice the behaviour will be somewhere in between the square-root dependence on
the emitter length and the linear dependence.

For the thermal capacitance there is a direct relation to the heat capacity per unit volume
C, [J/m3K], which is proportional to the thermal conductivity = D C,, with D the
diffusion constant (the same as for the electrical behaviour). Again, from a dimensional
analysis, we fincCy, = C, £3. The thermal delay time is then given by= Ry, Cin =

¢?/D. This is indeed a well known relation for a diffusive process: the time scales with
the length squared.

For a transistor we therefore take the thermal capacitance proportional to the dissipating
volume, which, for a fixed vertical structure, scales with the emitter area:

CTH (08 Aem. (118)

The reason that the delay time does no longer scale with the length of the emitter squared,
but with the length itself, is due to the assumption of a small thickness of the dissipation
region: the heat transport to the outside of this region can now go partially vertically,
which makes it faster.
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A General compact model formulations

A.1 Smooth minimum and maximume-like functions

Let us look at functions with the following properties

Fx) =~ {0, forx <0, (A1)
x, forx > 0.

Basically this is the ‘max’ functionf (x) = max(x, 0). For compact modelling we need
a smooth transition between the two asymptotes. In this section we present some possible
formulations.

A.1.1 Hyperboles
Within Philips we mainly use the hyperbolic functions like
f(x) = 1 (x VX2 + 452) . (A.2)

It is shown if Fig.29. Note that this function indeed describes a hyperbole. The disadvan-
tage of this function is that it does not converge very fast to the asymptotes.

A.1.2 Exponents

An alternative function is
f(x) =e In(1+e*%). (A.3)

This function converges very rapidly to both asymptotes.

1.0
Z 05— —
0.0 — el 1
-1.0 -0.5 0.0 0.5 1.0

X

Figure 29:The hyperbole f (x) from Eq. (A.2) and its asymptotes (¢ = 0.1).
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The disadvantage of this function is that it has a very abrupt transition between both
asymptotes (as one would get by takinip the hyperboles very small). In that case even
though the function i€ (i.e. continuous in every order derivative), numerical routines
may still experience problems around the transition to find a solution to the equations.

Another disadvantage is possibly the increase of computation time. Previously the time
to calculate logarithms and exponents on a computer was much longer that that of square
roots and simple multiplications. Due to the advances in modern compilers and IC design
this difference has become much smaller. Given the complexity of the rest of the model,
we don’t consider the time constraints here as an issue anymore.

McAndrew [65] has made a slight improvement on the function above by writing
f(x) = 1 (x n \/ﬁ) +eln (1 + e_m/a) . (A.4)

The advantage of this latter formulation is that, although it is mathematically equivalent
to the previous one, numerically it is much more accuratecfer 0. The reason is that

the argument of the exponential is always negative. Hence the argument of the logarithm
is always between 1 and 2, and doesn’t become exponentially large. Since the only advan-
tage is from an implementation point of view, in our opinion the best way to implement
the function is using

X/e
f(x):{g In (1+ e*/¢), forx <0, (A5)

X+ & In(1+e—x/€), forx > 0.
A.1.3 The linear function with a maximum

Sometimes a variation on the functions above is needed, one ghere~ x, up to a
certain maximum, e.g.

x, forx <1
X)=14" ’ A.6
900) {1, for x > 1. (A.6)

The functiong is more or less a ‘min’-functiong(x) = min(x, 1). One can make use of
the functions above by writing(x) = 1 — f(1 — x). The results are

gix) = %(X+l—\/(x—1)2+482), (A7)

or 1—¢ln (1 + e(l‘x)/‘?) =Xx—¢ln (1 + e‘(l‘x)/8> . (A.8)

Often, as an extra demand on the functg(x) one would like to havey(0) = 0 and
g’(0) = 1. In other words, for smalkk one would likeg(x) ~ x. This is not easy to

achieve. For the hyperbole, for instance, we hg@® ~ —&?, and this is not very small.
The use of the function with exponents is better, since in that ge®e~ —s e~ Y/¢,
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which is very small for smal, and hence in most practical cases already negligible. For
instance, witte = 0.1 it gives a value ofg(0)| < 5- 1075.

An alternative function for this special case is

X
_ A.
gm(X) (1+X2m)1/2m9 ( 9)
with, for smallx,
X2m+1
On(X) > X+ ——+ O(x2M+2), (A.10)

This equation fulfils all the properties we need for= 0. However it is an odd function,
which means that it has also a lower limit-efl whenx < —1.

If one really wants to have a function which approximatder x < 0, one could use

X
Om(X) = : (A.11)
) (1= 30x + x|y x2n-1) Y2

For this function Eq.A.10) holds as long as is positive. For negative we haveyy (x) =
X. This means that the function is no lond&i°, but only 2n times differentiable.

A.2 Depletion capacitances

In the ideal case the depletion capacitance and the depletion charge have the form

Co

CV) = m, (A.12)
. CoVy 1—
Q) = 5 [1—(1—V/Vd) P]. (A.13)

This formulation however gives problems whén> V4. Hence we need a continuation

of the formulation. It is important to realise that it is not so important to have a physical
description of depletion charge f&r > Vy. The diffusion charge in that region is much
more important. Hence we can choose a formulation that is best for compact modelling,
i.e. a smooth formulation.

The formulations should be such th@{0) = 0 (which is simple to achieve). But we
also demand that (0) = Co, just as one would expect. This latter requirement is not
fulfilled in all compact models, especially when looking at temperatures different than
the reference temperature. We will show this below.

Various formulations of those discussed below are illustrated in3eig.
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3.0
2.5 ",_I\/Iextram 503 _|
o0 Mextram 504
S
O
>~ 1.5 _
>
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1.0 '\ _
\
0.5~ '\ _
De Graaff
~.
0. | ] ] ] \'r -----
0.0 0.2 04 0.6 0.8 1.0
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Figure 30:The various formulas for the depletion capacitances, normalised to the zero
bias value. Shown are the ideal curve (solid) from Eg. (A.13), the De Graaff expres-
sion (dashed-dotted) from Eq. (A.15), the expression used in Mextram 503 (dotted) from
Eq. (A.17), and the expression used in Mextram 504 (dashed) from Egs. (A.18) and (A.25).

A.2.1 Spice-Gummel-Poon

In older compact models like the Spice-Gummel-Poon model the capacitance is ideal up
to a the voltagd-c Vy, with Fc a parameter. From that voltage on a linear extrapolation

is used for the capacitance. The clear disadvantage of this model is that higher order
derivatives are not continuous. This gives kinks in for instance the output conductance
and the cut-off frequency and discontinuities when looking at distortion.

A.2.2 De Graaff and Klaassen

In a formulation given by De Graaff] the charge is limited from above:

_ _ 2 1=p
cv) = Co A=V/N) +VAZVNOZ K| g
V@ =V/V)2 +k 2

CoVa <1V/vd>+J<1V/vd)2+kT"

Q) = 5 1—[ -

(A.15)

Herek is a constant of order.01. The capacitance decreases quite rapidly for biases
beyondVy. Fork — 0 one gets the ideal formulation up Y6 = Vy. After that the
capacitance is 0.
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A.2.3 Earlier versions of Mextram

The general Mextram formulation for levels up to and including 503 is the one given by
Poon en GummeHd1]:

1+kP/2 (21— p)d—V/Va)? +k

c “T¥k—p [A—V/Va)?2+K]p/2L’ (A-16)
B 1+k (1—-V/Vg) 14k)P/2
Q Covd1+k_p[ - [(l—V/Vd)2+k]P/2]' (A.17)

Againk is a constant of order.01. This formulation is such th&tis symmetric arounily.
This means that it will decrease again slowly whén- Vy. Fork — 0 we regain the
ideal formulation (but still symmetric). The formulation is not very elegant. Furthermore
the capacitance has a very small and high peak arvuadVy. Sometimes the effects of
this peak can be seen in higher-order derivatives.

A.2.4 Modern compact models
All of the modern compact models use expressions similar to each other. The idea is to

have the ideal capacitance curve Yor< Vg and a constant capacitance ¥6rZ Vy. The
capacitance can then be expressed as

C

dv; dv;
Co ) Co (1 —J) . (A.18)

S A—Vi/VoP v T @ —Vever U v

HereVj = V;(V) is afunction like the ones we discussed in SecAdh ForV < Vg we
haveV; ~ V and forV > Vg we haveVj ~ V. In this way the derivative\d; /dV is 1

for V. < VE. Only the first part of the expression is important. For Vg the derivative
goes to zero, and only the second part is important. The transition of this derivative from
1 to 0 happens around the switching voltage In other words, this derivative acts as a
kind of switch between the ideal capacitance and a constant capacitance.

The corresponding equation for the charge is

CoVyq
1-p

{(1 — Vjo/Va)r P — (1 - vj/vd>1—p]

Co _ _

HereVjo = Vj(V=0), to make sure that the charge vanishes at zero bias. The value of
VE is calculated such that the constant capacitance equals adgetonodel constant in
Mextram, depending on the junction) times the zero bias capacitance.
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Figure 31:The capacitance from Egs. (A.18) and (A.24), normalised to its zero bias value,
as function of bias for T = 300 Kand 500 K. The different curves are for V¢, = 75 mV
(dotted), Ven = 3V7 (dashed), and V¢, = 0.1Vy (solid). No difference can be seen at
T = 300K The parameters are V4 = 0.75V, p = 0.3 and a = 2, whereas the bandgap
used for the temperature scaling of Vg4 is 1.2 V. The inset shows a detail of the curves
aroundV =0V.

The difference between the various compact models lies in the formulatidh(f).
Hicum [10, 82] uses

Vi = V-=Vrin(1+exp[(V —VE)/V1], (A.20)
dv; B 1
dav. 1+ expl(V — VE)/Vr] (A.21)

The advantage of using this function is that the zero-bias capacitance is to very high
accuracy equal t€o, and that we can takéjo = 0 V. Vbic [10, 83, 84] uses

Vv = %(v +VF—\/(V—VF)2+k>, (A.22)
av; . V — Vg

Ni _o1f1- . A.23
dv 2( \/(V—VF)2+k) 29

Using this formulation means that a correction is needed to make sufe®ai0) = Co.
In Mextram 504 we use an equation like E4.Z1):

Vi =V — Ven In(1+exp[(V — VE)/Ven]) . (A.24)

To make the transition between the ideal capacitance and the constant capacitance less
abrupt we choose for a higher value\gf,, around 75 mV at room temperature. This can
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be done in three ways/ch = 75mV, Ve = 3VT, or Ve = 0.1Vy. At room temperature

there is not much difference between the three expressions, as can be seen3ih Fig.
However, when we increase the temperature, we see the difference of the three possible
expressions fo¥c,. Only when we us&, = 0.1Vy we are guaranteed that the zero bias
capacitance is indeed the capacitance we expect from temperature scaling. Hence we use

Vj =V —0.1VgIn 1+ exp[(V — V§)/0.1Vg]) . (A.25)

Together with this equation fofj, and withVe = Vg (1 — a—1/P), we can now define the
function used in the depletion capacitances:

V,
VdepletiodV | Vg, pla) = 1 dp [1 - (1- Vj/Vd)l_p] +a (V—-Vj). (A.26)
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B Analytical calculation of the critical current

Under some assumptions it is possible to give an analytical relation between the current
at the onset of quasi-saturatidgy and the voltage&/qs ~ V4. — Vg,c,. For this we use
the equations

dE Nepi lepi
dE _ QNep (1_—ep' ) (B.1a)
dx € q NepiAemvdr
E
v = —~molEl (B.1b)
1+ wunol El/vsat
VVepi
0

that have already been used in Cha@erHere, however, we do not assume that all
electrons travel at the saturated veloaigy; but use the drift velocityq, to calculate the
electron density. The boundary condition we usg ) = 0 for lepi = lgs. This means

that we assume that quasi-saturation starts once the electric field at the base-collector
junction vanishes. In practice it will not really vanish, but keep a finite value. But we
already mentioned before that in the injection region it is very small.

B.1 Derivation

We will start with writing all the equations in normalised quantiges, r, y andv:

E = elncRev/Wepi (B.2a)
lgs = ilhe, (B.2h)
Rcy = r SCRgy, (BZC)
X =y Wepi (B.2d)
Vgs = vlheRey. (B.2e)

We will see that it is then possible to express the normalised voliageerms of the
normalised currentand only one parametar, The equationsg.1) above now become

de 2 L.
& - F(1—|+|/e), (B.3a)
1
v = —/ edy. (B.3b)
0

In our derivation we will first calculat&,y, or rather its normalised variant, as function
of the current. Then we will calculaté,s using its expression given above.
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I I I -0.5

Figure 32: The function x = WeW, which is the inverse of the two branches of the
Lambert W-function: W_ < —land W, > —1.

Calculating Ew  For our derivation we start with finding the electric fieldxat= Wep;
(i.,e.y = 1) by integrating the equation foegdy:

L ro[ew de
v [o=5 ] i
ir 1—i 1—i
- e e ()] oo

From this equation we can soleg as function of normalised currentgiven the resis-
tance ratiar. To do so we introduce the help-variables

i —i)2
£ = ew¥, and f = 2(1I7r') (B.5)
We then need to solve
f=¢&—In(1+&). (B.6)

The solution to this equation can be expressed in terms of the so-called Lambert-W func-
tion.

The Lambert-W functiong5] is defined as

W (x) exp[W (x)] = Xx. (B.7)

The function is called ProductLog in programs like Mathematica and Maple. It can be
used for instance to calculate the analytical solution of the current through an ideal diode
in series with a resistoB8p]. We have plotted the functiowe" in Fig. 32. As one can

see the inverse is not unique. The function has two branches. We tléfige as the
function on the intervalf1/e, co) giving a resulW (x) > —1. We definéV_(x) as the
function on the interval{1/e, 0) giving a resultW_(x) < —1.
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lgs (MA)
T

CO

2 3
Ves (V)

Figure 33:The current Igs at onset of injection as function of the applied voltage Vs for
the default parameter set [1], just as in Fig. 11. We have again shown the two limiting
cases. The dash-dotted line is the exact result from Eq. (B.10)

We must now realise thgtcan have two signs. Sindgy and hencey are negative, we
haveé¢ < Ofori < 1. Fori > 1 we havet > 0. Hence we need the two branches of the
Lambert-W function:

. {_1— Wy (—e ), fori <1(i.e.lgs < Ino), (B.8)

~1-W_(—e~="), fori>1(.e.lgs > Inc).

Calculating Vqs The next step in our derivation is the calculation\gf, or ratherw.
The integral forv can be expressed as

B /1ed _r/eW ede _r/eWe(l—i+i/e)—i de
U= Y To ), 1Sixie 2, 1-i 1—iti/e

r 1 Ew roi /eW de
= —— ede — = - —
21—-1Jg 21—-iJog 1-—-i+i/e
2 -
re i
= W -, (B.9)
401 —-1) 1-—1

where we used EqB(4) for the second integral. Expressingow in terms of the solution
we found forey before (using rather tharey ), we get

i riZe?
= — . B.10
YT aa—is (B.10)
B.2 The Mextram expression
In Mextram we have from Eq3(45 the normalised equation
1
= wd+ry (B.11)
1+
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When we invert this we get

o

|
JA-D2+4ir+1—i

We have shown the exact result fé4s = v Inc Rey from Eq. B.10) in Fig. 33, together

with the Mextram result. One can see that the exact result and the Mextram expression are
very similar, although the exact result is somewhat lower. This means that after parameter
extraction the parametdy. will be somewhat smaller than the ideal value, which is not
something to worry about.

(B.12)

vV =

B.3 The critical current in limiting cases

We can use the analytical solution to find various limits. We will consider< Inc,
lgs = Ihc @andlgs > Inc.

Small currents In the case of small currents is very large and ~ —1. The error
in £ is exponentially small and can be neglected. We then find, both for the analytical
expression derived here as for Mextram, to lowest order:

vV~ | OI’ Vqs ~ Iqs RCV' (813)

The situation where lgs = Inc  The caselgs = Ine, Ori = 1, is special in the sense
that we can find an expression fothat does not use the Lambert-W function. We must
expand around = 1, and therefore write = 1 + §. One can then fing to second order
in$ as

26  4—r
g2 AV
Jr 3r

52. (B.14)

Using this in the expression far, and taking the limis — 0, we find

4 4 /
V= 3_\/F or VC]S =3 RCV SCRCV IhC' (815)

The Mextram equivalent is

1
V= —F or Vqs =V RCV SCRCV Ihc (B.16)
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Large currents In the case of large currents we halves> 1. We can then writé ~ f.
Using this first estimate, we can even give a better estimate by witing f + In f.
Using this in the expression far, we find

-1 2

v ¥ ——1+4+In— or
r r

2lgs SCR
Vgs =~ SCRey (lgs — Ine) + Ihe Rey (—1+ In —°—— CV) : (B.17)

Ihc RCv

For Mextram we find
i—1

v~ — +1 or Vgs 2 SCRcy (lgs — Inc) + Inc Rev- (B.18)
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C The Kull-model around zero current

When the voltage over the epilaygg, c, is very small, the equations for the currégic,
and forEc, Eq. 3.26), and especially taht for the thickness of the injection regigiWep;,
Eg. 3.47), can become numerical inaccura®@]| For this reason here we study the Kull
model [L9] aroundVc,c, = 0 and discuss the numerical implications.

We assume that the bidd,c, is fixed and express the quantities in term&/of Vc,c,.
We start with the expression and derivative f

Ko(V) = \/l 4 4e(V+VBZC1—VdC)/VT : (Cla)
dKo = K§-1 (C.1b)
dv.  2KgVr' '

Ko Kg—1
Tz — 4K§’VT2' (C.1¢)

From the definitions in SectioB.3.1 we also haveKy = Ko(V =0). Next we consider
the quantityEc:

Ko+1
E: = Vi Kog—Kw —1I C.2
c T ( 0o— Kw —1In K © 1), (C.2a)
dE V1 K
c — TR0 (C.2b)
dKo Ko+1
dE. Ko—1
9% _ , C.2
av 2 (C.2¢)
dZEC dKO
_ Ro c.2d
dv?2 2dv ( )
d3E. d’Ko
= —. C.2
av3 20V2 (C.2¢)

We can now give an expansion fBg aroundV = 0:

dE¢ 1,0 OPEc 1,3 CEc
Ec ~ Eclyeo+V — z Ly
c cv=ot+V —¥ veo 20 vz, 8T dv3|,_,
dKo d2K0
1 1\/2
= v (Ky-14V —> L
2 ( WAtV oW veo ° 2dv2 vzo)
K& —1 Ky — 1
1 W 1v/2 *W
= v Ky—-14Vv- 2 41y . C.3
2 ( WY Ay 3 8K§VVT2> €9

Let us now consider the numerical accuracyEgf For the computer accuracy we write
8 ~ 10715 SinceE. is calculated as the difference of two, possibly large, numbers,
its numerical accuracy can be given by V1 Ky . For small values oV it is better to
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have an approximation fd that is numerically more accurate. Of course, the difference
between the approximation and the exact result must be smaller than the typical numerical
error of the exact expression. From EG.3) we find for the approximation

dK

) ~ 3V [Kw — 1+ (Ko — Kw)/2],  (C.4)
V=0

where we use&g >~ Ky + VdKp/dV |y—o. This leads to
Ec.appr= %V (Ko+ Kw — 2] = v (Po + pw) =V pav, (C.5)

where pay is used in the model documentatidi.[ The error in this approximation is of
the order of the last term in EqC(3), i.e. of the order of or smaller thanKy, / V2. If
this error is smaller than the numerical error in the exact result/t Ky, it is better to
take the approximation. Both errors are of the same order when

V ~ 8- Vr ~ 1075V, (C.6)

So forVc,c, < 1072Vt it is better to use the approximatio@.6) instead of the exact
result C.2). Note that apart from the error made by the approximatihppr also has
a numerical error. This error is of the orderdf E¢ appr Which is a factoV /Vr smaller
than the numerical error in the exact result.

Within the Kull model also the thickness of the injection layer is defined:

Xj Ec
Wepi  Ec + Vo0, ’

(C.7)

which is already given in Eq.3(47). Since in this expression we divide two small and
possibly inaccurate numbers wh¥n= Vc,c, is small, it is very important that we ap-
proximate it, using Eq.G.5), by

Xi Pav

~ . (C.8)
Wepi  Pav+1
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D Current crowding at small currents

In Section5.1.1we have seen that the effective low current resistance of a distributed
system like the pinched base can be given as a factor times the sheet resistafhite
pinched base. In this appendix we want to give a method to calculate this pre-factor for
more general geometriedq]. The derivation is maybe not so important. So, after we
have given the derivation, we will give a recipe to calculate the pre-factor. At the end we
will present some examples.

D.1 Derivation

Our analysis is based on the analysis of Sechidn Here, however, we will only look
at the small current limit, but we will allow for general non-linear currents from base to
emitter. The derivation is therefore much more general than just for the pinched base.

We consider a two-dimensional pinched base, with sheet resistandée geometry of

this base is not yet fixed. Some parts of its outer boundary are connected to the external
base. These will have a potentidd,. Where the base is connected current will flow into

the pinched base. Other parts of the outer boundary are, possibly, not connected. The
current that flows in this pinched base is givenythe base sheet current density (in
units A/m). At every point of the pinched base a part of the current will go to the emitter
(in our case). This amount of current is givenlgy (x)]/Aem, and therefore depends on

the local potential. When the sheet resistance of the base is zero, wé(@ave Ig, a
constant over the whole base. The equations we need to solve are very similar to those in
Section5.1

_x;? (D.1a)

VW o= —p.J. (D.1b)

V.J =

To solve these equations we need some boundary conditions. First of all, there is no
current leaving or entering the base (under the emitter) where there is no connection. So
at these places we hawe- J = 0, wheref is a unit vector normal and outward to the
boundary. This directly implied - VV = 0. At the places where theiga connection,

we haveV = Vg;B,.

Let us now introduce a dimensionless quantity, defined by

Rey, V
B 7 (D.2)

f .
Pn lBog

Of course,Rg, = VB,B,/Ip Still needs to be determined. From the boundary conditions
we see directly thaf = 0 at connected boundaries. At non-connected boundaries we
haven - Vf = 0. The differential equation fof can be found from Eq{.1):

1 1(Vv)

Vof = D.3
Aem IB ( )
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As mentioned before, we only consider small currents. This also meang thad. We
can therefore write

dl
L(V) > g + o V. (D.4)

where the derivative is taken &t = 0. In the limit of smallV the right-hand-side
of Eq. (0.3) becomes simply-1/Aem. The differential equation forf is now a very
elementary one, which has no longer any link to the actual expressidO\Mor So f can

be found. Next we need to finkg,. To this end we need the following integral over all
points of the pinched base

= / fdA = R ! /
= » +—— [ VdA. D.5
Aem ® " Aemle (D-3)

If the last term vanishes, we have a way of calculafg. To show that it does, we first
consider the integral

The second step is by using a general theorem for rewriting a surface integral to a line
integral over the boundary of this surface. The last step is an expression of the fact that
all current must actually enter the pinched base through its boundary. UsinQ.Epwe

can express the same integral also as

di di
/I(V)dA:/IBdA—e—d—V /VdA:AemIB—i-d—V deA. (D.7)

Combining two equations gives inde¢d/ dA = 0 (since d /dV # 0).

D.2 Recipe

We are now ready to give the recipe to calculgtg . First one needs to solve the differ-
ential equation

V2f = —1/Aem (D.8)

for a dimension-less quantitfy. The boundary conditions are = 0 everywhere where

the base is connected to the external basefaNdf = 0 at the boundaries of the pinched
base not connected to the external base. The low-current resistance is then given by an
integral of f over the whole area of the pinched base.

Rg, = 8 ffdA. (D.9)
Aem
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D.3 Examples

One-sided base contact For a rectangle connected at one side we have only one dimen-
sion to take into account. The differential equation is given by

o f

The boundary conditions are(0) = 0 and df /dx|n,,, = 0 which givesf = (HemX —
%x2)/ Aem. We thus find

Hem

Lem

H
_ em 1
Ro = poAgilem [ (Honx = ik = 29, (D.11)

For a square, contacted at one side, this mé&as—= %pu.

Two-sided base contact Next we consider a rectangle connected at two sides, located
atx = +Hem/2. The boundary conditions reaf+Hem/2) = 0, so we findf =
(H2,,— 4x?)/8Aem. This gives

1 Hem
T2 Loy

Res (D.12)

For a square, contacted at two sides, we Rad = %Zpu, just as we mentioned before.

Circular base As a third example we consider a disc, where all around the circular
boundary a connection is made. The radiuRisnd the radial coordinate is The
boundary condition i (r=R) = 0. Furthermore we demand a non-singular solution to

1d
r

d 1
T fn=-— (D.13)

T R2
The solution isf = (1 — r2/R?)/4x which gives

1 1

RBU:_IOD:ZS_:LIOD.

= (D.14)

Rectangular base contacted on all sidesAs a last exact example we will consider a
rectangle connected at all sides. A general expressiori fora rectangular geometry,
such that the boundary conditions are obeyed, is given by

Hem Lem

nTx . m
f = Zanm sin22 sin ny’ (D.15)
m,n
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where we take the rectangle to have the coordinates such that 8 Hemand O< y <
Lem. Solving the differential equation gives

2\*4 1
anm = | — when bothn, m odd, (D.16
nm (7‘[) nmMHemLem(N2/H2,+ m2/L2)’ d( )

anda,m = 0 otherwise. One then finds

6
Jo 2 1
Rpy = D =
Bv HemL em (7‘[) Z n2m2(n2/HZ, +m2/L2 )

n,m odd
o Hem 16 (amﬂ ams
P em — tanh—) , D.17

wherea = Hgm/Lem. In the limit for Hem < Lem (@ — 0) we regain the case of a base
contacted on two side&gy = p Hem/12Lem. For a square emitter we find

16 /mmx mm o
Rev=ro 3 s (T ~1amh) = 5z (©-19)

From numerical device simulations a valuesf28.6 was found in Ref.33].

In the case of a rectangular base with a general valli&@f Lenm it is not possible to give

a simple expression. We therefore need a useful approximate formula. For a four-sided
contacted square base the resistance is approximaté¢h8, as presented above. For
non-square base it is assumed that we can apply the well know 1D relation to the middle
region, which has lengthen — Hem. Then both resistances are placed in parallel. We
then get

P

R1 = 28.45" (D.19a)
Py Hem
Ry = 12(|—eDm— T (D.19b)
H
Rev = RT1+RF2€2 T 12 Lempi 1?45 Hem’ (D.19¢)
Possibly a better expressiosd], giving a result closer to EqD(17) is given by
Rg, = P2 Hem [i _ (i — i) @] . (D.20)
Lem |12 \12 2845/ Lem
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E Crosslinks of variables and parameters

The full equivalent circuit contains a number of current and charges. In Zak&have
tabulated for each electrical model-parameter which currents and charges are functionally
dependent on it. A same kind of cross-link is given between the temperature parameters
and the electrical parameters in TaBle

Table 2:The relation between the parameters and the currents and charges of the equiv-
alent circuit. When some | or Q is given, also the XI or XQ is meant if it exists. We
disregarded the normally unimportant dependence of 15, on Gmax. We also disregarded
the fact that 1, depends on many extra parameters when Xyec # O.

Parameter Direct influence Indirect influence Very indirect influence
EXMOD  lex, lsub Qex
EXPHI Qge, Qsc. Qg;B,

EXAVL lavi
ls IN, lexs lsub |Bl» |§1»
QEe, Qge, QBc 1,8,
Ik In, Qe, QBe, QBc, lex I8;8,
Ver In, Qge, QBc I8,B,
Vet In, Qse, QBC I, B,
B IB; |§l
|t IB,
my¢ IB,
Xlg, Ig,. 15,
.Bri Iex XIsub
Igr I,
Vir I,
Xext lex, lsub, Qtex, Qex
Wavl Iavl
Valvl Ialvl
Sth lavi
Re RE
RBC RBc
Rgv I,B,
RCc Ree Xlex, Xlsub
Rey Icicys Qtes Qepi In, Qpc lavi, IB;B,, QBE
SCRcy Qtc» Qepi In, QBc lavi, IB,B,, QBE
Ihc th» eri |N» QBC Iavl, IB]_BQ» QBE
ay Qepi In, Qsc, Qtc lavi, 18,8, QBE
Cie Qte, Qtz;
Ve Qte. Q; In, Qge, QBc IB,B,
PE Qte, Qi In, Qse, QBc Ig, B,
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Parameter Direct influence Indirect influence Very indirect influence
XCig Qte QtSE

CgEeo Qgeo

Cjc th» Qtex

Ve Qtc> Qtexs Qepis Icicy, lavi  In, QBe, QBC I,B,
Pc Qtc» Qtex In, Qge, QBC IB;B,
mc Qtc In, Qse, QsC I,B,
Xp Qtc» Qtex In, Qge, QBC Ig,B,
XCjc th» Qtex

Cgco Qpco

mq QE

e 0]=

B Qge, Qsc Qex

Tepi Qepi Qex

R Qex

dEg In

Xrec |Bl

|Ss |sub |Sf Iex

Iks Isub Iex

Cis Qts

Vds Qts

Ps Qts

Table 3:The relation between the temperature parameters and the electrical parameters.

Parameter Direct influence Indirect influence
AQgo Rev, B Is, Ver, Ve, T8 ks

Ag Re, B

Ag Rav, B Is, Ik, 8 ks

Aex RBC

Ac Rce

As Iss, ks

dVgps B

dVgﬂr ﬂri

Vs Ve, Is) T, Cics ks
Ve Ve Ir Cic
Vy; I

Vgt TE

Vgs Vs, Iss Cigs lks
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F Expression of parameters in physical quantities

In the derivation of several parameters we use a microscopic model. This gives us param-
eters in terms of microscopic quantities. Here we will summarise these expressions.

From the 1D main current (assuming a constant base doping profile)

anAemni2
ls = ——— F.1
s Wa Na (F.1)
Qo = qAemWgNa, (F.2)
Qeols = q°DaAZ N7, (F.3)
4Dn 4n?  4qDpAemNa
lk = =ls— = : F.4
2
‘L’B = WB . (F5)
4 D,
From the 1D epilayer model:
NZ .
e/ = 2, (F.6)
ni
Roy = —esl (F.7)
anONepiAem
lhe = 0NepiAemVsas (F.8)
Rev Ihe _ Usat_E (F.9)
VVepi B MnO_ © '
Wezpi qupiWe?pi 1 V4 Wezpi
cvsatPem 2¢ lhe Ihe Xdo0
2eV,
Xdo = i ) (F.11)
qupi
NepWayi®
Vai = SCRey Ipo = 221 (F.12)
W2,
Tepi = 45'0', (F.13)
n
41, 'VT R | QBO
Qepio = gNepiAemWepi = =LA R eVde/VT, (F.14)

RCv VT

Note that for the last expression we assume that the diffusion constants in the base and in
the epilayer are equal. The expression\gy; is in practice often not valid.
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p base n*T emitter D -
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B1 Qe s 2& 1
\ L [ N
e L oo | T | L
|:j| Rcg Rgc B, Qge o %T
— ] )
8.8, Qsc lavi
— th
=I§Qte> J__Qtex T =L @T
L Xlg Xlsub Isub lexHlBs —|_eri C,
XQex @l 81 Qex . ' | 1Co
V4 VA n epilayer Hf ¢
/
N N
J J C
Isf 1 n )
T o n™ buried layer
| =
oS p substrate

Figure 34:The full Mextram equivalent circuit for the vertical NPN transistor. Schemat-
ically the different regions of the physical transistor are shown. The current |p,p, de-
scribes the variable base resistance and is therefore sometimes called Rg,. The current
Ic,c, describes the variable collector resistance (or epilayer resistance) and is therefore
sometimes called R¢,. The extra circuit for self-heating is discussed in Chapter 8.
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