
ARM Cortex-M4 User Guide (Interrupts, exceptions, NVIC)
STM32L4xx Microcontrollers Technical Reference Manual

ARM and STM32L4xx
Operating Modes & Interrupt Handling

1

Cortex-M structure

Nested Vectored
Interrupt Controller

CMSIS = Cortex Microcontroller Software Interface Standard2

Cortex CPU core registers

Process SP (handler or thread mode – select in CONTROL reg.)
Main SP (selected at reset – always used in handler mode)

• Two processor modes:
• Thread mode for User tasks
• Handler mode for O/S tasks and exceptions

• Stack-based exception model
• Vector table contains addresses

Convention:
PSP in thread mode,
MSP in O/S & handler mode

3

Cortex-M4 processor operating modes

• Thread mode – normal processing
• Handler mode – interrupt/exception processing
• Privilege levels = User and Privileged

• Supports basic “security” & memory access protection
• Supervisor/operating system usually privileged

4

Exception states
 Each exception is in one of the following states:
 Inactive: The exception is not active and not pending.
 Pending: The exception is waiting to be serviced by the processor.
 Active: The exception is being serviced by the processor but has not

completed.
 Active and pending - The exception is being serviced by the

processor and there is a pending exception from the same source.

 An interrupt request from a peripheral or from software can
change the state of the corresponding interrupt to pending.

 An exception handler can interrupt (preempt) the execution of
another exception handler. In this case both exceptions are in the
active state.

5

Cortex-M Interrupt Process
(much of this is transparent when using C)

1. Interrupt signal detected by CPU
2. Suspend main program execution

 finish current instruction
 save CPU state (push registers onto stack)
 set LR to 0xFFFFFFF9 (indicates interrupt return)
 set IPSR to interrupt number
 load PC with ISR address from vector table

3. Execute interrupt service routine (ISR)
 save other registers to be used 1
 clear the “flag” that requested the interrupt
 perform the requested service
 communicate with other routines via global variables
 restore any registers saved by the ISR 1

4. Return to and resume main program by executing BX LR
 saved state is restored from the stack, including PC

Pre-IRQ
top of stack

IRQ
top of stack

1 C compiler takes care of saving/restoring registers6

Cortex-M CPU and peripheral exceptions
Priority1 IRQ#2 Notes

Reset -3 Power-up or warm reset

NMI -2 -14 Non-maskable interrupt from peripheral or software

HardFault -1 -13 Error during exception processing or no other handler

MemManage Config -12 Memory protection fault (MPU-detected)

BusFault Config -11 AHB data/prefetch aborts

UsageFault Config -10 Instruction execution fault - undefined instruction, illegal
unaligned access

SVCcall Config -5 System service call (SVC) instruction

DebugMonitor Config Break points/watch points/etc.

PendSV Config -2 Interrupt-driven request for system service

SysTick Config -1 System tick timer reaches 0

IRQ0 Config 0 Signaled by peripheral or by software request

IRQ1 (etc.) Config 1 Signaled by peripheral or by software request

1 Lowest priority # = highest priority
2 IRQ# used in CMSIS function calls

Vendor peripheral interrupts
IRQ0 .. IRQ90

C
PU

 E
xc

ep
tio

ns

7

Vector table

• 32-bit vector(handler address)
loaded into PC, while saving
CPU context.

• Reset vector includes
initial stack pointer

• Peripherals use
positive IRQ #s

• CPU exceptions use
negative IRQ #s

• IRQ # used in CMSIS function
calls

• Cortex-M4 allows up to
240 IRQs

• IRQ priorities user-programmable
• NMI & HardFault priorities fixed

8

9

STM32L4
Vector
Table
(partial)

Tech. Ref.
Table 57

(Refer to
Startup
Code)

STM32L4 vector table from startup code (partial)

10

AREA RESET, DATA, READONLY

__Vectors DCD __initial_sp ; Top of Stack
DCD Reset_Handler ; Reset Handler
DCD NMI_Handler ; NMI Handler

……
DCD SVC_Handler ; SVCall Handler
DCD DebugMon_Handler ; Debug Monitor Handler
DCD 0 ; Reserved
DCD PendSV_Handler ; PendSV Handler
DCD SysTick_Handler ; SysTick Handler

; External Interrupts
DCD WWDG_IRQHandler ; Window WatchDog
DCD PVD_PVM_IRQHandler ; PVD/PVM… via EXTI Line detection
DCD TAMP_STAMP_IRQHandler ; Tamper/TimeStamps via EXTI
DCD RTC_WKUP_IRQHandler ; RTC Wakeup via EXTI line
DCD FLASH_IRQHandler ; FLASH
DCD RCC_IRQHandler ; RCC
DCD EXTI0_IRQHandler ; EXTI Line0
DCD EXTI1_IRQHandler ; EXTI Line1
DCD EXTI2_IRQHandler ; EXTI Line2

Special CPU registers

of current
exception

(lower priority
cannot

interrupt)

PRIMASK = 1 prevents (masks) activation of all exceptions with configurable priority
PRIMASK = 0 permits (enables) exceptions

ARM instructions to “access special registers”
MRS Rd,spec ;move from special register (other than R0-R15) to Rd
MSR spec,Rs ;move from register Rs to special register

Use CMSIS1 functions to clear/set PRIMASK
__enable_irq(); //enable interrupts (set PRIMASK=0)
__disable_irq(); //disable interrupts (set PRIMASK=1)

(double-underscore at beginning)
Special Cortex-M Assembly Language Instructions

CPSIE I ;Change Processor State/Enable Interrupts (sets PRIMASK = 0)
CPSID I ;Change Processor State/Disable Interrupts (sets PRIMASK = 1)

Processor Status Register (PSR)

Prioritized Interrupts Mask Register (PRIMASK)

1 Cortex Microcontroller Software Interface Standard – Functions for all
ARM Cortex-M CPUs, defined in project header files: core_cmFunc.h, core_cm3.h

PRIMASK

11

Prioritized interrupts

• Up to 256 priority levels
• 8-bit priority value
• Implementations may use fewer bits

STM32L4xx uses upper 4 bits of each
priority byte => 16 levels

• NMI & HardFault priorities are fixed
12

“Tail-chaining” interrupts

• NVIC does not unstack registers and then stack them again, if
going directly to another ISR.

• NVIC can halt stacking (and remember its place) if a new IRQ is
received.

13

Exception return
 The exception mechanism detects when the processor has

completed an exception handler.
 Exception return occurs when:

1. Processor is in Handler mode
2. EXC_RETURN loaded to PC
3. Processor executes one of these instructions:
 LDM or POP that loads the PC
 LDR with PC as the destination
 BX using any register

 EXC_RETURN value loaded into LR on exception entry (after
stacking original LR)
 Lowest 5 bits of EXC_RETURN provide information on the return

stack and processor mode.

14

Interrupt signal: from device to CPU
In each peripheral device:
 Each potential interrupt source has a separate arm (enable) bit

 Set for devices from which interrupts, are to be accepted
 Clear to prevent the peripheral from interrupting the CPU

 Each potential interrupt source has a separate flag bit
 hardware sets the flag when an “event” occurs
 Interrupt request = (flag & enable)
 ISR software must clear the flag to acknowledge the request
 test flags in software if interrupts not desired

Nested Vectored Interrupt Controller (NVIC)
 Receives all interrupt requests
 Each has an enable bit and a priority within the VIC
 Highest priority enabled interrupt sent to the CPU

Within the CPU:
 Global interrupt enable bit in PRIMASK register
 Interrupt if priority of IRQ < that of current thread
 Access interrupt vector table with IRQ#

xIE xF

&

Enable Flag

Peripheral
IRQn

Peripheral Device
Registers:

CPU

PRIMASK

&

Interrupt

NVIC

15

Nested Vectored Interrupt Controller
 NVIC manages and prioritizes external interrupts in Cortex-M
 90 IRQ sources from STM32L4xx peripherals

 NVIC interrupts CPU with IRQ# of highest-priority IRQ signal
 CPU uses IRQ# to access the vector table & get intr. handler start address

16

NVIC registers (one bit for each IRQ#)
 NVIC_ISERx/NVIC_ICERx
 Each IRQ has its own enable bit within NVIC
 Interrupt Set/Clear Enable Register
 1 = Set (enable) interrupt/Clear (disable) interrupt

 NVIC_ISPRx/NVIC_ICPRx
 Interrupt Set/Clear Pending Register
 Read 1 from ISPR if interrupt in pending state
 Write 1 to set interrupt to pending or clear from pending state

 NVIC_IABRx – Interrupt Active Bit Register
 Read 1 if interrupt in active state

x = 0..7 for each register type, with 32 bits per register, to support
up to 240 IRQs (90 in STM32L4xx)
 Each bit controls one interrupt, identified by its IRQ# (0..239)
 Register# x = IRQ# DIV 32
 Bit n in the register = IRQ# MOD 32

17

EnableK

PendK

NVIC registers (continued)
 NVIC_IPRx (x=0..59) – Interrupt Priority Registers
 Supports up to 240 interrupts: 0..239 (90 in STM32L4)
 8-bit priority field for each interrupts (4-bit field in STM32L4)
 4 priority values per register (STM32L4 – upper 4 bits of each byte)
 0 = highest priority
 Register# x = IRQ# DIV 4
 Byte offset within the register = IRQ# MOD 4
 Ex. IRQ85:

o 85/4 = 21 with remainder 1 (register 21, byte offset 1)
Write priority<<8 to NVIC_IPR2

o 85/32 = 2 with remainder 21: write 1<<21 to NVIC_SER2

 STIR – Software Trigger Interrupt Register
 Write IRQ# (0..239) to trigger that interrupt from software
 Unprivileged access to this register enabled in system control register

(SCR)
18

Priority

CMSIS: Cortex Microcontroller Software Interface Standard
Vendor-independent hardware abstraction layer for Cortex-M
(Facilitates software reuse)

•Core Peripheral Access Layer provides name definitions, address
definitions, and helper functions to access core registers and core
peripherals.
•Device Peripheral Access Layer (MCU specific) offers name
definitions, address definitions, and driver code to access peripherals.
•Access Functions for Peripherals (MCU specific and optional)
implements additional helper functions for peripherals.

19

NVIC CMSIS functions: enable/disable interrupts

 Interrupt Set Enable Register: each bit enables one interrupt
NVIC_EnableIRQ(n); //set bit to enable IRQn

 Interrupt Clear Enable Register: each bit disables one interrupt
NVIC_DisableIRQ(n); //set bit to disable IRQn

 For convenience, stm32l476xx.h defines a symbol for each IRQn
Examples: EXTI0_IRQn = 6 ; //External interrupt EXTI0 is IRQ #6

TIM3_IRQn = 29 ; //Timer TIM3 interrupt is IRQ #29

Usage:
NVIC_EnableIRQ(EXTI0_IRQn); //enable external interrupt EXTI0
NVIC_DisableIRQ(TIM3_IRQn); //disable interrupt from timer TIM3

20

NVIC CMSIS functions: interrupt pending flags
 NVIC interrupt pending flag for each IRQ

 NVIC sets pending flag when it detects IRQn request
 IRQn status changes to “pending”
 IRQn status changes to “active” when its interrupt handler is entered

 NVIC clears pending flag when handler exited
 IRQn status changes to “inactive”

 CMSIS functions to set/clear/get IRQn pending status
 Write 1 to NVIC_ICPRx to clear IRQn from pending state

NVIC_ClearPendingIRQ(IRQn);
 Write 1 to NVIC_ISPRx to force IRQn into pending state

NVIC_SetPendingIRQ(IRQn); //simulates IRQn request
 Read 1 from ISPR if IRQn in pending state

NVIC_GetPendingIRQ(IRQn);

 If IRQn still active when exiting handler, or IRQn reactivates while executing the
handler, the pending flag remains set and triggers another interrupt

 Avoid duplicate service by clearing IRQn pending flag in software:
21

NVIC CMSIS functions: interrupt priorities

 Each IRQn assigned a priority within the NVIC

 NVIC selects highest-priority pending IRQ to send to CPU
 Lower priority# = higher priority (default value = 0)
 If equal priorities, lower IRQ# selected
 STM32L4xx uses 4-bit priority value (0..15)

(NVIC registers allocate 8 bits per IRQ#, but vendors may use fewer bits)

 Higher priority IRQ can interrupt lower priority one
 Lower priority IRQ not sent to CPU until higher priority IRQ service

completed

 Set IRQn priority via CMSIS function: NVIC_SetPriority(IRQn, priority);

Ex: NVIC_SetPriority(EXTI0_IRQn, 1); //set ext. intr. EXTI0 priority = 1

 Get IRQn priority via CMSIS function: NVIC_GetPriority(IRQn_Type IRQn)

22

STM32L4 external interrupt/event controller
• 26 configurable event/interrupt requests

• external interrupts (via GPIO) and some peripherals
• 14 direct event/interrupt requests

• from peripherals to generate wakeup from stop event or interrupt

External
interrupt
signal
(GPIO pin)

IRQ
to

NVIC

PRIMRRTSRFTSR

23

STM32L4xx external interrupt sources
(select in System Configuration Module – SYSCFG)

Example: Select pin PC2 as external interrupt EXTI2
SYSCFG->EXTICR[0] &= 0xF0FF; //clear EXTI2 bit field
SYSCFG->EXTICR[0] |= 0x0200; //set EXTI2 = 2 to select PC2

SYSCFG_EXTICR1 is
SYSCFG->EXTICR[0]

15 12 11 8 7 4 3 0
EXTI3 EXTI2 EXTI1 EXTI0

• 16 multiplexers select GPIO pins as external interrupts EXTI0..EXTI15
• Mux inputs selected via 4-bit fields of EXTICR[k] registers (k=0..3)

• EXTIx = 0 selects PAx, 1 selects PBx, 2 selects PCx, etc.
• EXTICR[0] selects EXTI3-EXTI0; EXTICR[1] selects EXTI7-EXTI4, etc

24

25

STM32L476
EXTI interrupts
and events.

1. All the lines can wake up
from the Stop 0 and Stop
1 modes. All the lines,
except the ones
mentioned above, can
wake up from the Stop 2
mode.

2. This line source cannot
wake up from the Stop 2
mode.

STM32L4 EXTI Registers
23 bits per register (configurable lines)

 EXTI_IMR – interrupt mask register
 0 masks (disables) the interrupt
 1 unmasks (enables) the interrupt

 EXTI_RTSR/FTSR – rising/falling trigger selection register
 1 to enable rising/falling edge to trigger the interrupt/event
 0 to ignore the rising/falling edge

 EXTI_PR – interrupt/event pending register
 read 1 if interrupt/event occurred
 clear bit by writing 1 (writing 0 has no effect)
 write 1 to this bit in the interrupt handler to clear the pending state

of the interrupt

 EXTI_SWIER – software interrupt event register
 1 to set the pending bit in the PR register
 Triggers interrupt if not masked

26

27

Project setup for interrupt-driven applications
 Write the interrupt handler for each peripheral

 Clear the flag that requested the interrupt (acknowledge the intr. request)
 Perform the desired actions, communicating with other functions via shared global

variables
 Use function names from the vector table

Example: void EXTI4_IRQHandler () { statements }
 Perform all initialization for each peripheral device:

 Initialize the device, “arm” its interrupt, and clear its “flag”
Example: External interrupt EXTIn
 Configure GPIO pin as a digital input
 Select the pin as the EXTIn source (in SYSCFG module)
 Enable interrupt to be requested when a flag is set by the desired event (rising/falling edge)
 Clear the pending flag (to ignore any previous events)

 NVIC
 Enable interrupt: NVIC_EnableIRQ (IRQn);
 Set priority: NVIC_SetPriority (IRQn, priority);
 Clear pending status: NVIC_ClearPendingIRQ (IRQn);

 Initialize counters, pointers, global variables, etc.
 Enable CPU Interrupts: __enable_irq();

28 (diagram on next slide)

/*---
Interrupt Handler – count button presses

--/
void EXTI0_IRQHandler(void) {

//Make sure the Button is really pressed
if (!(GPIOA->IDR & (1<<0)))
{

count++;
}

//Clear the EXTI pending bits
NVIC_ClearPendingIRQ(EXTI3_IRQn);
EXTI->PR|=(1<<0);

}

#include "STM32L476xx.h"
/*--

Intialize the GPIO and the external interrupt
--/
void Init_Switch(void){

//Enable the clock for GPIO
RCC->AHB2ENR |= RCC_AHB1ENR_GPIOAEN;

//Pull-up pin 0
GPIOA->PUPDR |= GPIO_PUPDR_PUPDR0_1;

//Connect the portA pin0 to external interrupt line0
SYSCFG->EXTICR[0] &= SYSCFG_EXTICR1_EXTI0_PA;

//Interrupt Mask
EXTI->IMR |= (1<<0);

//Falling trigger selection
EXTI->FTSR |= (1<<0);

//Enable interrupt
__enable_irq();

//Set the priority
NVIC_SetPriority(EXTI0_IRQn,0);

//Clear the pending bit
NVIC_ClearPendingIRQ(EXTI0_IRQn);

//Enable EXTI0
NVIC_EnableIRQ(EXTI0_IRQn);}

EXTI example – accessing registers directly (in C)

29

System tick timer interrupts
 SysTick Timer is a 24-bit down counter

 Interrupt on count from 1 -> 0
 Count rolls over from 0 to 24-bit “reload” value (determines interrupt period)
 User provides interrupt handler: SysTick_Handler(void)

 Control register bits:
0: enable
1: interrupt enable
2: clock source

FCLK = free-running internal core clock (default)
STCLK = external clock signal

16: rollover flag (set on count down from 1->0)
 CMSIS function starts timer, enables interrupt, selects clock source & reload

value:
#include “core_cm4.h”
SystemCoreClockUpdate(); /* Get Core Clock Frequency */
if (SysTick_Config(SystemCoreClock / 1000)) { /* SysTick 1 msec interrupts */

while (1); /* Capture error */
}

30

Supervisor Call Instruction (SVC)
 Use a software-triggered interrupt to access system resources

from O/S (“privileged operations”)
 Interrupt vector SVC_Handler is defined in the vector table
 SVC interrupt handler written as a C function:

void SVC_Handler()
{ your code }

 SVC interrupt handler as an assembly language function:
EXTERN SVC_Handler

SVC_Handler
your code
bx lr

31

Supervisor Call instruction (SVC)
 To execute SVC_Handler as a software interrupt
 Assembly language syntax: SVC #imm
 C syntax: __svc (imm)

 imm is an “SVC number” (0-255), which indicates a particular
“service” to be performed by the handler
 imm is encoded into the instruction, but ignored by the CPU
 Handler can retrieve imm by using stacked PC to read the SVC

instruction code (examples provided later)
 Since this is an “interrupt”, R0-R3 are pushed onto the stack:
 Arguments can be passed to the handler in R0-R3
 SVC handler can retrieve the arguments from the stack
 SVC handler can also return results by replacing R0-R3 values in the

stack, which will be restored to R0-R3 on return from interrupt.

32

// Stack contains eight 32-bit values:
// r0, r1, r2, r3, r12, r14, return address, xPSR
// 1st argument = r0 = svc_args[0]
// 2nd argument = r1 = svc_args[1]
// 7th argument = return address = svc_args[6]

void SVC_Handler(unsigned int * svc_args) {
int a,b,c;

a = svc_args[0]; //get first argument from stack
b = svc_args[1]; //get second argument from stack
c = a + b;
svc_args[0] = c; //replace R0 value in stack with result to “return” result in R0

}
}

Access SVC arguments in C

33

Access SVC arguments in assembly language

; Stack contains: r0, r1, r2, r3, r12, r14, return address, xPSR
; The saved r0 is the top entry in the stack

EXPORT SVC_Handler
SVC_Handler

TST LR,#0x04 ;Test bit 2 of EXC_RETURN
ITE EQ ;Which stack pointer was used?
MRSEQ R4,MSP ;Copy Main SP to R4
MRSNE R4,PSP ;Copy Process SP to R4
LDR R1,[R4] ;Retrieve saved R0 from top of stack
LDR R2,[R4,#4] ;Retrieve saved R1 from stack

….
STR R1,[R4] ;Replace saved R0 value in stack

BX LR ;Return and restore registers from stack

34

SVC in C programs
 May associate “standard” function name with the

__svc (imm) function call
 May pass up to four integer arguments
 May return up to four results in a “value_in_regs” structure
 Syntax:
__svc(int svc_num) return-type function-name(argument-list)
 svc_num (8-bit constant) = immediate value in SVC instruction
 “return-type function-name(argument-list)” = C function prototype

 Call the function via: function-name(argument-list);
(examples on next slide)

ARM Compiler toolchain Compiler Reference: __svc35

/*---
Set up SVC “calls” to “SVC_Handler”
SVC_Handler function must be defined elsewhere

---/
#define SVC_00 0x00
#define SVC_01 0x01

/* define function “svc_zero” as SVC #0, passing pointer in R0 */
/* define function “svc_one” as SVC #1, passing pointer in R0 */
void __svc(SVC_00) svc_zero(const char *string);
void __svc(SVC_01) svc_one(const char *string);

int call_system_func(void) {
svc_zero("String to pass to SVC handler zero"); //Execute SVC #0
svc_one("String to pass to a different OS function"); //Execute SVC #1

}

Example: SVC call from C code

Reference: ARM Compiler toolchain Developing Software for
ARM Processors”: Supervisor Calls, Example 5636

// Stack contains eight 32-bit values:
// r0, r1, r2, r3, r12, r14, return address, xPSR
// 1st argument = r0 = svc_args[0]
// 2nd argument = r1 = svc_args[1]
// 7th argument = return address = svc_args[6]

void SVC_Handler(unsigned int * svc_args) {
unsigned int svc_number;

//Read SVC# byte from SVC instruction code
svc_number = ((char *)svc_args[6])[-2];

//Execute code for each SVC #
switch(svc_number) {

case SVC_00: /* Handle SVC 00 */
break;

case SVC_01: /* Handle SVC 01 */
break;

default: /* Unknown SVC */
break;

}
}

SVC_Handler with SVC #imm operand
(example in MDK-ARM Help)

Ignore SVC#
if only one
“service” in
the handler

37

Access SVC immediate operand in assembly language

; Parameters in R0-R3 were pushed onto the stack
EXPORT SVC_Handler

SVC_Handler
TST LR,#0x04 ;Test bit 2 of EXC_RETURN
ITE EQ ;Which stack pointer was used?
MRSEQ R0,MSP ;Copy Main SP to R0
MRSNE R0,PSP ;Copy Process SP to R0
LDR R1,[R0,#24] ;Retrieve stacked PC from stack
LDRB R0,[R1,#-2] ;Get #N from SVC instruction in program
ADR R1,SVC_Table ;SVC Vector Table address
LDR PC,[R1,R0,SLL #2] ;Branch to Nth routine
….

SVC_TABLE ;Table of function addresses
DCD SVC0_Function
DCD SVC1_Function
DCD SVC2_Function

38

	ARM and STM32L4xx�Operating Modes & Interrupt Handling
	Cortex-M structure
	Cortex CPU core registers
	Cortex-M4 processor operating modes
	Exception states
	Cortex-M Interrupt Process�(much of this is transparent when using C)
	Cortex-M CPU and peripheral exceptions
	Vector table
	Slide Number 9
	STM32L4 vector table from startup code (partial)
	Special CPU registers
	Prioritized interrupts
	“Tail-chaining” interrupts
	Exception return
	Interrupt signal: from device to CPU
	Nested Vectored Interrupt Controller
	NVIC registers (one bit for each IRQ#)
	NVIC registers (continued)
	CMSIS: Cortex Microcontroller Software Interface Standard�Vendor-independent hardware abstraction layer for Cortex-M�(Facilitates software reuse)
	NVIC CMSIS functions: enable/disable interrupts
	NVIC CMSIS functions: interrupt pending flags
	NVIC CMSIS functions: interrupt priorities
	STM32L4 external interrupt/event controller
	STM32L4xx external interrupt sources�(select in System Configuration Module – SYSCFG)
	Slide Number 25
	STM32L4 EXTI Registers�23 bits per register (configurable lines)
	Slide Number 27
	Project setup for interrupt-driven applications
	Slide Number 29
	System tick timer interrupts
	Supervisor Call Instruction (SVC)
	Supervisor Call instruction (SVC)
	Access SVC arguments in C
	Access SVC arguments in assembly language
	SVC in C programs
	Example: SVC call from C code
	SVC_Handler with SVC #imm operand �(example in MDK-ARM Help)
	Access SVC immediate operand in assembly language

