ELEC 5200-001/6200-001
Computer Architecture and Design

Fall 2013
Pipelining (Chapter 4.5, 4.6)

Vishwani D. Agrawal & Victor P. Nelson

Department of Electrical and Computer Engineering
Auburn University, Auburn, AL 36849

Fall 2013 ELEC 5200-001/6200-001 Pipelining

ILP: Instruction Level Parallelism

1 Single-cycle and multi-cycle datapaths
execute one Iinstruction at a time.

1 How can we get better performance?

1 Answer: Execute multiple instructions at a
time:

1Pipelining — Enhance a multi-cycle datapath to
fetch one instruction every cycle.

1 Parallelism — Fetch multiple instructions every
cycle.

Fall 2013 ELEC 5200-001/6200-001 Pipelining

Automobile Team Assembly

= Adhour
® o

1 car assembled every four hours
6 cars per day

180 cars per month

2,040 cars per year

Fall 2013 ELEC 5200-001/6200-001 Pipelining

Automobile Assembly Line

Task 1 Task 2 Task 3 Task 4
1 hour 1h ur 1 hour 1 hour

Al el

Mecahnical Electrical Painting Testing

First car assembled in 4 hours (pipeline latency)
thereafter, 1 car completed per hour

21 cars on first day, thereafter 24 cars per day
/17 cars per month

8,637 cars per year

What gives 4X increase?

Fall 2013 ELEC 5200-001/6200-001 Pipelining 4

Throughput: Team Assembly

Mechanical Electrical Painting Testing Mechanical Electrical Painting Testing

L | | | | | | | | >

Blue car Blue car Time

started completed
Time of assembling onecar = n hours

where n is the number of nearly equal subtasks,
each requiring 1 unit of time

Throughput 1/n cars per unit time

Fall 2013 ELEC 5200-001/6200-001 Pipelining 5

Throughput: Assembly Line

Car 2
Car 3
Car 4 l X
Car 1 Car 2 ------------------- t|me
complete complete
Time to complete firstcar =n time units (latency)
Cars completed intimeT =T-n+1
Throughput =1-(n=-2)/T cars per unit time
Throughput (assembly line) 1-(n=-1)/T nn —1)
= = n— — n
Throughput (team assembly) 1/n T as T—x

Fall 2013 ELEC 5200-001/6200-001 Pipelining 6

Some Features of Assembly Line

delivered (JIT)

Task 2
1h ur

\|§\’f 7 ,
o e :

Mechanical Electrical Painting Testing

3 cars in the assembly line are suspects,

to be removed (flush pipeline) Defect
found

Fall 2013 ELEC 5200-001/6200-001 Pipelining 7

Stall assembly line
to fix the cause of
defect

Pros and Cons
1 Advantages:

1 Efficient use of labor.
1 Specialists can do better job.
1 Just in time (JIT) methodology eliminates warehouse cost.

1 Disadvantages:

1 Penalty of defect latency.

1 Lack of flexibility in production.

1 Assembly line work is monotonous and boring.

1 hitp://www.youtube.com/watch?v=c8LxscnmdNY &feature=related

1 http://www.metacafe.com/watch/752497/chaplin with a spanner
set modern times/

1 http://www.metacafe.com/watch/762944/crazy chaplin screwing

up everything modern times

Fall 2013 ELEC 5200-001/6200-001 Pipelining 8

http://www.youtube.com/watch?v=c8LxscnmdNY&feature=related
http://www.metacafe.com/watch/752497/chaplin_with_a_spanner_set_modern_times/
http://www.metacafe.com/watch/752497/chaplin_with_a_spanner_set_modern_times/
http://www.metacafe.com/watch/762944/crazy_chaplin_screwing_up_everything_modern_times
http://www.metacafe.com/watch/762944/crazy_chaplin_screwing_up_everything_modern_times

Pipelining iIn a Computer

1 Divide datapath into nearly equal tasks, to be
performed serially and requiring non- overlapplng
resources.

1 Insert registers at task boundaries in the
datapath; registers pass the output data from
one task as input data to the next task.

1 Synchronize tasks with a clock having a cycle
time that just exceeds the time required by the
longest task.

1 Break each instruction down into the set of tasks
so that instructions can be executed in a
staggered fashion.

Fall 2013 ELEC 5200-001/6200-001 Pipelining Y

Pipelining a Single-Cycle Datapath

Instruction Instr. Instr. Execution | Data | Write | Total
class fetch | Decode (ALU access | Back | time
(F) | (alsoreg. | Operation) | (MEM) | (Reg.
file read) (29 file
(D) write)
(WB)
lw 2ns| 1ns 2NS 2ns | 1ns [8ns
S\ 2ns| 1ns ALS
R-format 2ns| 1ns 2Nns
add, sub, and, or, slt
B-format,beq | 2nS| 1ns 2Ns

No operation on data; idle times equalize instruction lengths.

Fall 2013

ELEC 5200-001/6200-001 Pipelining

10

Execution Time: Single-Cycle

lw $1, 100($0) | IF ID EX MEM WB Time (ns)

lw $2, 200($0)
lw $3, 300($0)

Clock cycle time =8 ns

Total time for executing three Ilw instructions = 24 ns

Fall 2013 ELEC 5200-001/6200-001 Pipelining 11

Pipelined Datapath

Instruction |nstr. Instr. Execu- | Data Write Total
class fetch | Decode tion | access | Back time
(F) |(alsoreg. | (ALU 1 (viEm) | (Reg.
file read) | Opera- file
(=4 (WB)
lw 2Nns Ans 2Nns 2Ns 10ns
2Nns 2Nns
S 2Nns ns! 2Nns 2Nns 10ns
2Nns
R-format: add, ons Anas ons 10ns
sub, and, or, slt NS
B-format:
beqg

No operation on data; idle time inserted to equalize instruction lengths.
Fall 2013 ELEC 5200-001/6200-001 Pipelining 12

Execution Time: Pipeline

0 2 4 6 8 10 12 14 16
| | | | | | | | |

lw $1, 100($0) 1= ID EX MEM RW

w82, 20080) - IF D EX MEM RW
" (F D EX MEM RW

Clock cycle time = 2 ns, four times faster than single-cycle clock

\ 4

Time (ns)

Total time for executing three Iw instructions = 14 ns

Single-cycle time 24
Performance ratio = = — =17
Pipeline time 14

Fall 2013 ELEC 5200-001/6200-001 Pipelining 13

Pipeline Performance

Clock cycle time =2 ns

1,003 Iw instructions:

Total time for executing 1,003 lw instructions = 2,014 ns
Single-cycle time 8,024
Performance ratio = = = 3.98
Pipeline time 2,014

10,003 Iw instructions:

Performance ratio = 80,024 / 20,014 = 3.998 — Clock cycle ratio (4)

Pipeline performance approaches clock-cycle ratio for long programs.

Fall 2013 ELEC 5200-001/6200-001 Pipelining 14

Single-Cycle Datapath

WB:
IE: Instr. fetch | ID: Instr. decode, . EX: Execute, ; MEM: mem. : write
| reg. fileread | addresscalc. | access ' back

MemtoReg

MemWrite
MemRead _v

- —p
Data
mem.

—
16-20 P
-
S
(&)

11-15
RegDst

T

RV | ALU |
Cont. |

Sign
ext.

A\ 4

left 2

Fall 2013) ELEC 5200-001/6200-001 Pipelining) ' 15

Pipelining of RISC Instructions
(From Lecture 3, Slide 6)

1= ID EX MEM WB

Instruction Decode Execute Memory Write
Fetch instruction and Operation Back
Fetch operands to Reg
file

Although an instruction takes five clock cycles,
one instruction is completed every cycle.

Fall 2013 ELEC 5200-001/6200-001 Pipelining 16

PC

This requires a
CONTROL not too
different from
single-cycle

Fall 2013

Pipeline Registers

==Y
=]
< .

A MemtoReg

11-15

16-20

RegDst

Sign

ext.

MEM/WB
1D |

Zero MemWrite

Mem Real
A

I| Data |
mem.

ALUOp | gAARY; I
Cont.

ELEC 5200-001/6200-001 Pipelining

17

Pipeline Register Functions

1 Four pipeline registers are added:

Register
name

Data held

IF/ID

PC+4, Instruction word (IW)

ID/EX

PC+4, R1, R2, IW(0-15) sign ext., IW(11-15)

EX/IMEM

PC+4, zero, ALUResult, R2, IW(11-15) or IW/(16-20)

MEM/WB

M[ALUResult], ALUResult, IW(11-15) or IW(16-20)

Fall 2013

ELEC 5200-001/6200-001 Pipelining 18

Pipelined Datapath

EX/MEM MEM/WB

)

_ —
opcode ;Soef;::ftz <
26-31
Zero
21-25

PC 16-20

I

Fall 2013 ELEC 5200-001/6200-001 Pipelining 19

11-15 for R-type
16-20 for I-type Iw

0-15

Fall 2013

Five-Cycle Pipeline

CC1 CC2 CC3 CC4 CC5
©) a) 0 L
Ll D W =
x = > W

ELEC 5200-001/6200-001 Pipelining

20

Add Instruction

2 add $t0, $s1, $s2
Machine instruction word
000000 10001 10010 01000 00000 100000

opcode $s1 $s2 $tO function
O
o & =
read $s1 add wrlte $t0

read $s2 $s1+$s2

Fall 2013 ELEC 5200-001/6200-001 Pipelining 21

Pipelined Datapath Executing add

EX/MEM

MEM/WB
S
2 D

d Shift —
opcode i
> left 2 <

82- AII E I

0-15

11-15 for R-type
16-20 for I-type Iw

1{0)

Fall 2013 ELEC 5200-001/6200-001 Pipelining 22

Load Instruction

a|w $t0, 1200 ($t1)
100011 01001 01000 OOOO 0100 1000 0000

opcode $t1 $t0 1200

CC1
O LL
ek gy E

IF MEM
read $tl add read wrlte $t0
sign ext $t1+1200 M[addr]
1200

Fall 2013 ELEC 5200-001/6200-001 Pipelining 23

Pipelined Datapath Executing Iw

EX/MEM

MEM/WB
S
2 D

d Shift —
opcode i

> left 2 <
0-15

(2{0]0)

Fall 2013 ELEC 5200-001/6200-001 Pipelining 24

11-15 for R-type
16-20 for I-type lw

1{0)

Store Instruction

asw $t0, 1200 ($t1)
101011 01001 01000 0000 0100 1000 0000

opcode $t1 $t0 1200
CC1
Jug Jub
IF =Y
read $tl add write

sign ext $t1+1200 M[addr]
1200 (addr) — $t0

Fall 2013 ELEC 5200-001/6200-001 Pipelining 25

Pipelined Datapath Executing sw

EX/MEM MEM/WB

S
2 -

d Shift —
opcode i
> left 2 <

to II E

0-15
1200
Fall 2013 ELEC 5200-001/6200-001 Pipelining 26

11-15 for R-type
16-20 for I-type Iw

Executing a Program

Consider a five-instruction segment:

lw $10, 20($1)
sub $11, $2, $3
add $12, $3, $4
lw $13, 24($1)
add $14, $5, $6

Fall 2013 ELEC 5200-001/6200-001 Pipelining

Program Execution
C3

CC4 CC5 » time

CC1 CC2 C

L
= w $10, 20($1)
=
Sy I c
D4E sub $11,$2,83 S
7
. 2
©)
add $12, $3, $4 0 s 5
LL S
= S
o
w $13, 24($1)
O
add $14, $5, $6 0
@ T

Fall 2013 ELEC 5200-001/6200-001 Pipelining 28

WRITE

CCS MEM: WB:

IF: add $14, $5, $6 ID: lw $13, 24($1) EX: add $12, $3, $4 sub $11, $2, $3 Iw $10, 20($1)

EX/MEM MEM/WB

)

_ —
opcode ;Soef;::ftz <
26-31
Zero
21-25

PC 16-20

I

Fall 2013 ELEC 5200-001/6200-001 Pipelining 29

11-15 for R-type
16-20 for I-type Iw

0-15

Advantages of Pipeline

1 After the fifth cycle (CC5), one instruction is
completed each cycle; CPI = 1, neglecting the
Initial pipeline latency of 5 cycles.

— Pipeline latency is defined as the number of stages in
the pipeline, or

— The number of clock cycles after which the first
Instruction is completed.

1 The clock cycle time Is about four times shorter
than that of single-cycle datapath and about the
same as that of multicycle datapath.

1 For multicycle datapath, CPI = 3.
1 So, pipelined execution is faster, but . . .

Fall 2013 ELEC 5200-001/6200-001 Pipelining 30

Science is always wrong. It never solves a problem
without creating ten more.

George Bernard Shaw

Fall 2013 ELEC 5200-001/6200-001 Pipelining

31

Pipeline Hazards

1 Definition: Hazard in a pipeline Is a
situation Iin which the next instruction
cannot complete execution one clock cycle
after completion of the present instruction.

1 Three types of hazards:
— Structural hazard (resource conflict)
— Data hazard
— Control hazard

Fall 2013 ELEC 5200-001/6200-001 Pipelining 32

Structural Hazard

1 Two Instructions cannot execute due to a
resource conflict.

1 Example: Consider a computer with a
common data and instruction memory.
The fourth cycle of a lw instruction
requires memory access (memory read)
and at the same time the first cycle of the
fourth instruction requires instruction fetch
(memory read). This will cause a memory
resource conflict.

Fall 2013 ELEC 5200-001/6200-001 Pipelining 33

Example of Structural Hazard

CC1 CC2 CC3 CC4 CC5 >
[w $10, 20($1)
G
¥ =& sub $11, $2, $3
=
Common data
and instr. Mem. 5 (La " ||.|_J
add $12, $3, $4 = o E ha
=
duo@ 3 gut
lw $13, 24(%$1) - = H:J < @ T g;:
o

Nedded by two instructions

Fall 2013 ELEC 5200-001/6200-001 Pipelining

time

34

Program instructions

Possible Remedies for Structural
Hazards
1 Provide duplicate hardware resources In
datapath.

1 Control unit or compliler can insert delays
(no-op cycles) between instructions. This
IS known as pipeline stall or bubble.

Fall 2013 ELEC 5200-001/6200-001 Pipelining 35

Stall (Bubble) for Structural Hazard

cC cC4 > illls

lw $10, 20($1)

HLE

FILE
READ
WRITE

Ii,J = = sub $11, $2, $3
T o < v
wn
c
O
O, N o
add $12, $3, $4 ¥ o < =
gl €
- =
5
Stall (bubble) =
a
o' L
lw $13, 24($1) w4y E
@ —
=

w
(o]

Fall 2013 ELEC 5200-001/6200-001 Pipelining

Data Hazard

1 Data hazard means that an instruction

cannot be completed
data, being generatec

necause the needed
by another

Instruction in the pipe

Ine, IS not avalilable.

1 Example: consider two Iinstructions:

1 add $s0, $t0, $t1
1 sub $t2, $s0, $t3

Fall 2013 ELEC 5200-001/6200-001 Pipelining 37

Example of Data Hazard

CC1 CC2 CC3 CC4 CC5

Write sO in CC5

sub

REG.
FILE
WRITE

Read sO and t3in CC3

We need to read sO from reg file in cycle 3
But sO will not be written in reg file until cycle 5

However, sO will only be used in cycle 4
And it is available at the end of cycle 3

Fall 2013 ELEC 5200-001/6200-001 Pipelining

add $s0, $t0, $t1

$t2, $s0, $t3

38

> time

Program instructions

Forwarding or Bypassing

1 Output of a resource used by an
Instruction is forwarded to the input of
some resource being used by another
Instruction.

1 Forwarding can eliminate some, but not
all, data hazards.

Fall 2013 ELEC 5200-001/6200-001 Pipelining

39

Forwarding for Data Hazard

CcC1 CC2 CC3 CC4 CC5 » time
v Write sO in CC5

add $s0, $t0, $t1

sub $t2, $s0, $t3

Read sO and t3in CC3

Program instructions <

Fall 2013 ELEC 5200-001/6200-001 Pipelining 40

Forwarding Unit Hardware

ID/EX EX/MEM MEM/WB

, Data
Mem é I
Data ' =
®
to reg.
file
Destinati@n registers
Source reg. |
IDs from
opcode

Fall 2013 ELEC 5200-001/6200-001 Pipelining 41

Forwarding Alone May Not Work

CC1 CC2 CC3 CC4 CC5 » time
s Write sO in CC5

lw $s0, 20($s1)

sub $t2, $s0, $t3

ALU
REG.
FILE

WRITE

[
>

Read sO and t3in CC3 /

data needed by sub
(data hazard)

data available from memory
only at the end of cycle 4

Program instructions

Fall 2013 ELEC 5200-001/6200-001 Pipelining 42

Use Bubble and Forwarding

CCl CC2 CC3 CC4 CC5 » time
Write sO in CC5

lw $s0, 20($s1)

stall
(bubble) ye

sub $t2, $s0, $t3

Program instructions

Fall 2013 ELEC 5200-001/6200-001 Pipelining 43

Hazard Detection Unit Hardware

Disable
write

PC

Instruction

IF/ID

EX/MEM MEM/WB

~, Data
Mem.

Control
signals

register
IDs from
prev. instr.

Fall 2013

ELEC 5200-001/6200-001 Pipelining

44

Resolving Hazards

1 Hazards are resolved by Hazard detection
and forwarding units.

1 Compiler’s understanding of how these
units work can improve performance.

Fall 2013 ELEC 5200-001/6200-001 Pipelining 45

Avoiding Stall by Code Reorder

C code:
A=B + E;
C=B+F;
MIPS code:
lw $t1, 0(%$t0) . $t1 written
lw $t2, 4(%$t0) $t2 written
add $t3, $t1, $t2 ./ $t1, $t2 needed
sw $t3, 12($t0) . /
lw $t4, 8($t0) ¥ . $t4 written

add $t5, $t1,$t4 00 0@ .. $t4 needed
S $t5, 16($t0)/

Fall 2013 ELEC 5200-001/6200-001 Pipelining 46

Reordered Code

C code:
A=B + E;
C=B+F;

MIPS code:
A $t1, 0($t0)
lw $t2, 4($t0)
lw $t4, 8($t0)

add $t3, $tl, $t2 no hazard
SW $t3, 610))
add $t5, $t1, $t4 no hazard

S $t5, 16($t0)

Fall 2013 ELEC 5200-001/6200-001 Pipelining

47

Control Hazard

1 Instruction to be fetched is not known!

1 Example: Instruction being executed Is
branch-type, which will determine the next
Instruction:

add %4, $5, $6
beq %1, $2, 40
next instruction

40 and $7, $8, $9

Fall 2013 ELEC 5200-001/6200-001 Pipelining 48

CC1

beq %1, $2, 40

Stall (bubble)

next instruction or
and $7, $8, $9

Fall 2013

Stall on Branch

CC2 cCc3 cc4 CC5 > time
(D' L
2 oY E add $4. $5, $6
< gk
=
wn
c
L 5 IS
-l 1 O
m < =
(s}
<
=
©
(@)]
o
al
5 O w
i B2y
< LL ;
ELEC 5200-001/6200-001 Pipelining 49

Why Only One Stall?

1 Extra hardware in ID phase:
1 Additional ALU to compute branch address
1 Comparator to generate zero signal

1 Hazard detection unit writes the branch address
in PC

Fall 2013 ELEC 5200-001/6200-001 Pipelining

50

Ways to Handle Branch

1 Stall or bubble

1 Branch prediction:

— Heuristics
1 Next instruction
1Prediction based on statistics (dynamic)
1 Hardware decision (dynamic)

— Prediction error: pipeline flush
1 Delayed branch

Fall 2013 ELEC 5200-001/6200-001 Pipelining

51

Delayed Branch Example

1 Stall on branch 1 Delayed branch
add $4, $5, $6 beq $1, $2, skip
beq $1, $2, skip add $4, $5, $6
next instruction next instruction

skip or $7, $8, $9 skip or $7, $8, $9

Instruction executed irrespective
of branch decision

Fall 2013 ELEC 5200-001/6200-001 Pipelining

52

Delayed Branch

, time

CC1 CC2

add $4, $5, $6

FILE
READ
REG
FILE
WRITE

-
—

FILE
ALU

next instruction or
skip or $7, $8, $9

ID, REG
FILE
READ

Fall 2013 ELEC 5200-001/6200-001 Pipelining

ALU

FILE
WRITE

53

Program instructions +——

FILE
WRITE

Summary: Hazards

8 Structural hazards
— Cause: resource conflict
— Remedies: (1) hardware resources, (ii) stall (bubble)

1 Data hazards

— Cause: data unavailablity

— Remedies: (1) forwarding, (ii) stall (bubble), (i) code
reordering

1 Control hazards
— Cause: out-of-sequence execution (branch or jump)

— Remedies: (i) stall (bubble), (i) branch prediction/pipeline
flush, (i) delayed branch/pipeline flush

Fall 2013 ELEC 5200-001/6200-001 Pipelining 54

	ELEC 5200-001/6200-001�Computer Architecture and Design�Fall 2013 �Pipelining (Chapter 4.5, 4.6)
	ILP: Instruction Level Parallelism
	Automobile Team Assembly
	Automobile Assembly Line
	Throughput: Team Assembly
	Throughput: Assembly Line
	Some Features of Assembly Line
	Pros and Cons
	Pipelining in a Computer
	Pipelining a Single-Cycle Datapath
	Execution Time: Single-Cycle
	Pipelined Datapath
	Execution Time: Pipeline
	Pipeline Performance
	Slide Number 15
	Pipelining of RISC Instructions�(From Lecture 3, Slide 6)
	Slide Number 17
	Pipeline Register Functions
	Slide Number 19
	Five-Cycle Pipeline
	Add Instruction
	Slide Number 22
	Load Instruction
	Slide Number 24
	Store Instruction
	Slide Number 26
	Executing a Program
	Program Execution
	Slide Number 29
	Advantages of Pipeline
	Slide Number 31
	Pipeline Hazards
	Structural Hazard
	Example of Structural Hazard
	Possible Remedies for Structural Hazards
	Stall (Bubble) for Structural Hazard
	Data Hazard
	Example of Data Hazard
	Forwarding or Bypassing
	Forwarding for Data Hazard
	Forwarding Unit Hardware
	Forwarding Alone May Not Work
	Use Bubble and Forwarding
	Hazard Detection Unit Hardware
	Resolving Hazards
	Avoiding Stall by Code Reorder
	Reordered Code
	Control Hazard
	Stall on Branch
	Why Only One Stall?
	Ways to Handle Branch
	Delayed Branch Example
	Delayed Branch
	Summary: Hazards

