ELEC 5200/6200 VHDL PROJECT #2

Due: Wednesday, September 18

- 1. Design, test, simulate, and debug VHDL models of the following four components. These can be used as building blocks for your MIPS CPU. Where possible, perform operations on 32-bit vectors rather than individual bits to keep the models simple ("register level" rather than gate level).
- a. 32-bit parallel-load register, loaded on the *falling* edge of clock, CLK, when the enable input (EN) is *high*.
- b. 32-bit parallel-load latch, loaded via *active-high* latch-enable signal LE.
- c. 32-bit 2-to-1 multiplexer with input selection line S.

- d. 32-bit bus transceiver.
 - CPU side: IEEE std_logic_vector, with bits having values '0' or '1'
 - BUS side: IEEE std logic values, with bits having values '0', '1' or 'Z'
 - The receiver outputs should default to '0' when its bus input is 'Z' (each individual bit).
 - The bus driver outputs should be 'Z' when disabled (Enable=0).

2. Create the following datapath, using the above components and your previously-designed adder/subtracter. The circled signals indicate external inputs and/or outputs for this datapath.

Provide annotated simulations of the individual components and the datapath. Test the datapath by doing the following:

- 1. Load different data values into latches 1 and 2.
- 2. Load the sum of the values in latches 1 and 2 into the register and put this value onto the data bus.
- 3. Load new data into latch 2.
- 4. Subtract the data value in the register from the data value in latch 2 and put the result into the register and onto the data bus.

Note that you will stimulate the control signals as if you were a "control unit" for this datapath.