Other Instruction Set Architectures

ARM
x86

| MIPS instructions | _Name _| Format | Pseudo MIPS_| Name | Format_
add

add R move move R
subtract sub R multiply mult R
add immediate addi | multiply immediate multi |
load word Tw | load immediate 1i |
store word SW | branch less than b1t |
[load half Th | branch less than |
[load half unsigned Thu || orequal ble !
| store half sh | branch greater than bgt [
| load byte 1b | branch greater than
[load byte unsigned 1bu I or equal bge I
[store byte sb | '
load linked 11 |
store conditional sC |
load upper immediate Tui |
and and R
or or R
. nor nor . R
and immediate andi |
| or immediate ori |
| shift left logical sll R
[shift right logical srl R
'. branch on equal beq |
| branch on not equal bne |
| set less than slt R
set less than immediate slti |
set less than immediate sltiu |
| unsigned
jump J J
| jump register jr R
| jump and link jal J

FIGURE 2.44 The MIPS instruction set covered so far, with the real MIPS instructions on the left and the
pseudoinstructions on the right. Appendix B (Section B.10) describes the full MIPS architecture. Figure 2.1 shows
more details of the MIPS architecture revealed in this chapter. The information given here is also found in Columns 1 and
2 of the MIPS Reference Data Card at the front of the book. Copyright © 2009 Elsevier, Inc. All rights reserved.

Chapter 2 — Instructions:
Language of the Computer
— 2

Instruction class MIPS examples HLL correspondence m
Arithmetic add, sub, addi Operations in assignment statements 16% 48%
Data transfer Tw, sw, 1b, 1bu, 1h, References to data structures, such as arrays 35% 36%
Thu, sb, Tui
Logical and, or, nor, andi, ori, Operations in assignment statements 12% 4%
s11, srl
Conditional branch beq, bne, s1t, s1ti, If statements and loops 34% 8%
sltiu
Jump i, jr, jal Procedure calls, returns, and case/switch statements 2% 0%

FIGURE 2.45 MIPS instruction classes, examples, correspondence to high-level program language constructs,
and percent age of MIPS instructions executed by category for the average SPEC2006 benchmarks. Figure 3.26 in
Chapter 3 shows average percent age of the individual MIPS instructions executed. Copyright © 2009 Elsevier, Inc. All

rights reserved.

Chapter 2 — Instructions:

Language of the Computer
—3

Date announced 1985 1985

Instruction size (bits) 32 o2

Address space (size, model) 32 bits, flat 32 bits, flat

Data alignment Aligned Aligned

Data addressing modes 9 3

Integer registers (number, model, size) 15 GPR x 32 bits 31 GPR x 32 bits
/O Memory mapped Memory mapped

FIGURE 2.31 Similarities in ARM and MIPS instruction sets. Copyright © 2009 Elsevier, Inc. All rights reserved.

Chapter 2 — Instructions:
Language of the Computer
—4

T ectonname || wes
' | Add add

addu, addiu
Add (trap if overflow) adds; swivs add
' Subtract sub subu
Subtract (trap if overflow) subs; swivs sub
Multiply mul mult, multu
' Divide — div, divu
) . And and and
Register-register | or e pe.
Xor eor xor
'Load high part register — lui
Shift left logical IsI* sllv, sll
' shift right logical Isrt srlv, srl
Shift right arithmetic asrt srav, sra
Compare cmp, cmn, tst, teq slt/i, slt/iu
Load byte signed Idrsb b
Load byte unsigned ldrb Ibu
' Load halfword signed ldrsh lh
Load halfword unsigned Idrh lhu
' Load word Idr W
Data transfer Store byte strb sb
' Store halfword strh sh
Store word str SW
' Read, write special registers mrs, msr move
Atomic Exchange swp, swpb Il;sc

FIGURE 2.32 ARM register-register and data transfer instructions equivalent to MIPS core. Dashes mean the
operation is not available in that architecture or not synthesized in a few instructions. If there are several choices of
instructions equivalent to the MIPS core, they are separated by commas. ARM includes shifts as part of every data
operation instruction, so the shifts with superscript 1 are just a variation of a move instruction, such as Isrl. Note that
ARM has no divide instruction. Copyright © 2009 Elsevier, Inc. All rights reserved.
Chapter 2 — Instructions:
Language of the Computer

—5

4 N

S hddrewumgmose | hamwe | wes

Register operand X
Immediate operand
Register + offset (displacement or based) X

Register + register (indexed)

Register + scaled register (scaled)

Register + offset and update register

Register + register and update register

Autoincrement, autodecrement

X | X | X | X | X | X | X| X | X

PC-relative data

FIGURE 2.33 Summary of data addressing modes. ARM has separate register indirect and register + offset
addressing modes, rather than just putting O in the offset of the latter mode. To get greater addressing range, ARM shifts
the offset left 1 or 2 bits if the data size is halfword or word. Copyright © 2009 Elsevier, Inc. All rights reserved.

Chapter 2 — Instructions:
Language of the Computer

- —6

-

31 28 27 20 19 16 15 12 1 43 0
SO | R
Register-register 31 26 25 21 20 16 15 11 10 6 5 0
31 28 27 20 19 16 15 12 1 0
v [0 LGN e | v [o
Data transfer 31 26 25 21 20 16 15 0
MIPS - Rs1® Re Const'®
31 28 27 24 23 0
o o | o | Gt
Branch 31 26 25 21 20 16 15 0
MIPS Rs1® s2° Const'®
31 28 27 24 23 0
Jump/Call 31 26 25 0

| [Opcode [Register [Constant |

FIGURE 2.34 Instruction formats, ARM, and MIPS. The differences result from whether the architecture has 16 or 32
registers. Copyright © 2009 Elsevier, Inc. All rights reserved.

Chapter 2 — Instructions:
Language of the Computer
—7

/

e e T e

Load immediate Rd = Imm addi, $0,
Not Rd = ~(Rs1) mvn nor, $0,
Move Rd = Rs1 mov or, $0,
Rotate right Rd=Rsi>> i ror

Rdo, . i1 =RS314. . .31
And not Rd = Rsl1 & ~(Rs2) bic
Reverse subtract Rd = Rs2 - Rs1 rsb, rsc
Support for multiword CarryOut, Rd = Rd + Rs1 + adcs —
integer add OldCarryQut
Support for multiword CarryOut, Rd = Rd — Rs1 + sbhcs —
integer sub OldCarryOut

FIGURE 2.35 ARM arithmetic/logical instructions not found in MIPS. Copyright © 2009 Elsevier, Inc. All rights
reserved.

Chapter 2 — Instructions:
Language of the Computer
— 38

Alternative Architectures

° Design alternative:
° provide more powerful operations
° goal is to reduce number of instructions executed

° danger is a slower cycle time and/or a higher CPI

—“The path toward operation complexity is thus fraught with peril.
To avoid these problems, designers have moved toward simpler
instructions”

® Let’s look (briefly) at IA-32

2004 © Morgan Kaufman Publishers
ELEC 5200-001/6200-001 Lecture 3 Fall 2013, Jan 25 . . .

- /

-

IA-32 (a.k.a. x806)

1978: The Intel 8086 is announced (16 bit architecture)

1980: The 8087 floating point coprocessor is added

1982: The 80286 increases address space to 24 bits, +instructions

1985: The 80386 extends to 32 bits, new addressing modes

1989-1995:The 80486, Pentium, Pentium Pro add a few instructions (mostly designed for higher
performance)

1997: 57 new “MMX” instructions are added, Pentium II

1999: The Pentium III added another 70 instructions (SSE — streaming SIMD extensions)

2001: Another 144 instructions (SSE2)

2003: AMD extends the architecture to increase address space to 64 bits, widens all
registers to 64 bits and makes other changes (AMD64)

2004: Intel capitulates and embraces AMD64 (calls it EM64T) and adds more media extensions
2006: Intel adds 54 instructions (SSE4) and supports virtual machines

2007: AMD adds 170 instructions (SSE5)

2008: Intel adds Advanced Vector Extension to expand SSE register width from 128 to 256 bits and

adds 128 new instructions.

“This bistory illustrates the impact qf tbe“go]den handa&ﬁrs”gf compatibi]it/v: “adding new features as someone might
add dothing to a packed bag”and “an architecture that is d{ﬁficu]t to exp]ain and impossib]e to love”

2004 © Morgan Kaufman Publishers
ELEC 5200-001/6200-001 Lecture 3 Fall 2013, Jan 25 . . .

/

-

1000

900
/
800
#

700
600
500
400

300 /
200
100

0I]lIIIIIIIIIIIIIIIIIIIIIIIIIII

‘7/ b‘ Q) "I/ b& © O O ‘7/ © D

Number of Instructions

Year

FIGURE 2.43 Growth of x86 instruction set over time. While there is clear technical value to some of these
extensions, this rapid change also increases the diffi culty for other companies to try to build compatible processors.
Copyright © 2009 Elsevier, Inc. All rights reserved.

Chapter 2 — Instructions:
Language of the Computer
— 11

/

IA-32 Overview

* Complexity:
® Instructions from 1 to 17 bytes long
® one operand must act as both a source and destination
® one operand can come from memory

® complex addressing modes

e.g., “base or scaled index with 8 or 32 bit displacement”
L Saving grace:
® the most frequently used instructions are not too difficult to build

° compilers avoid the portions of the architecture that are slow

“what the x86 lacks in St)/]e is made up in quantity,
making it beautzfu] ﬁom the right perspective”

2004 © Morgan Kaufman Publishers
ELEC 5200-001/6200-001 Lecture 3 Fall 2013, Jan 25 . . .

Name
31 0

EAX
ECX
EDX
EBX
ESP
EBP
ESI
EDI

Cs

SS

DS

ES

FS

GS
EIP
EFLAGS

Use

GPRO
GPR 1
GPR2
GPR3)
— General—Purpose Reglsters
GPR 4

GPR5
GPR6

GPR7

—

Code segment pointer

Stack segment pointer (top of stack)
Data segment pointer 0

Data segment pointer 1

Data segment pointer 2

Data segment pointer 3

Instruction pointer (PC)

Condition codes

FIGURE 2.36 The 80386 register set. Starting with the 80386, the top eight registers were extended to 32 bits and could
also be used as general-purpose registers. Copyright © 2009 Elsevier, Inc. All rights reserved.

Chapter 2 — Instructions:
Language of the Computer
— 13

-

e T T

Control Conditional and unconditional branches

inz, jz Jump if condition to EIP + 8-bit offset; JNE (for JNZ7), JE (for J7) are
alternative names

Jjmp Unconditional jump—8-bit or 16-bit offset

call Subroutine call—16-bit offset; return address pushed onto stack

ret Pops return address from stack and jumps to it

loop Loop branch—decrement ECX; jump to EIP + 8-bit displacement if ECX # 0

Data transfer Move data between registers or between register and memory

move Move between two registers or between register and memory

push, pop Push source operand on stack; pop operand from stack top to a register

les Load ES and one of the GPRs from memory

Arithmetic, logical Arithmetic and logical operations using the data registers and memory

add, sub Add source to destination; subtract source from destination; register-memory
format

cmp Compare source and destination; register-memory format

sh1, shr, rcr Shift left; shift logical right; rotate right with carry condition code as fill

chw Convert byte in eight rightmost bits of EAX to 16-bit word in right of EAX

test Logical AND of source and destination sets condition codes

inc, dec Increment destination, decrement destination

or, xor Logical OR; exclusive OR; register-memory format

String Move between string operands; length given by a repeat prefix

movs Copies from string source to destination by incrementing ESI and EDI; may be
repeated

lods Loads a byte, word, or doubleword of a string into the EAX register

FIGURE 2.40 Some typical operations on the x86. Many operations use register-memory for mat, where either the
source or the destination may be memory and the other may be a register or immediate operand. Copyright © 2009
Elsevier, Inc. All rights reserved.

Chapter 2 — Instructions:
Language of the Computer
— 14

Source/destination operand type Second source operand

Register Register
Register Immediate
Register Memory
Memory Register
Memory Immediate

FIGURE 2.37 Instruction types for the arithmetic, logical, and data transfer instructions. The x86 allows the
combinations shown. The only restriction is the absence of a memory- memory mode. Immediates may be 8, 16, or 32
bits in length; a register is any one of the 14 major registers in Figure 2.36 (not EIP or EFLAGS). Copyright © 2009
Elsevier, Inc. All rights reserved.

Chapter 2 — Instructions:
Language of the Computer
— 15

e

Register
Description restrictions MIPS equivalent

™

Register indirect

Address is in a register.

Not ESP or EBP

Tw $s0,0(%s1)

Based mode with 8- or 32-bit | Address is contents of base register plus Not ESP Tw $s0,100($s1)# <= 16-bit
displacement displacement. #displacement
Base plus scaled index The address is Base: any GPR | mu $t0,$s2,4
Base + (25°%€ x Index) Index: not ESP | add $t0,$t0,$s1

where Scale has the value 0, 1, 2, or 3. Tw $s0,0(3$t0)
Base plus scaled index with The address is Base: any GPR | mu1 $t0,$s2,4
8- or 32-bit displacement Base + (25°@€ x Index) + displacement Index: not ESP | add $t0,$t0, $s1

where Scale has the value 0, 1, 2, or 3. Tw $s0,100($t0)#f016-bit

##displacement

FIGURE 2.38 x86 32-bit addressing modes with register restrictions and the equivalent MIPS code. The Base plus
Scaled Index addressing mode, not found in ARM or MIPS, is included to avoid the multiplies by 4 (scale factor of 2) to
turn an index in a register into a byte address (see Figures 2.25 and 2.27). A scale factor of 1 is used for 16-bit data, and
a scale factor of 3 for 64-bit data. A scale factor of 0 means the address is not scaled. If the displacement is longer than
16 bits in the second or fourth modes, then the MIPS equivalent mode would need two more instructions: a lui to load the
upper 16 bits of the displacement and an add to sum the upper address with the base register $s1. (Intel gives two dif
ferent names to what is called Based addressing mode—Based and Indexed—but they are essentially identical and we
combine them here.) Copyright © 2009 Elsevier, Inc. All rights reserved.

Chapter 2 — Instructions:

Language of the Computer

— 16

-

je name ifequal(conditioncode) {EIP=name};
EIP-128 <=name < EIP+128
Jjmp name EIP=name
call name SP=SP-4; M[SP1=EIP+5; EIP=name;
movw EBX,[EDI+45] EBX=MLEDI+45]
push ESI SP=SP-4; M[SP]=ESI
pop EDI EDI=M[LSP]; SP=SP+4
add EAX, #6765 EAX=EAX+6765
test EDX,#42 Set condition code (flags) with EDX and 42
movs | MCEDIJ=M[ESI];
EDI=EDI+4; ESI=EST+4

FIGURE 2.39 Some typical x86 instructions and their functions. A list of frequent operations appears in Figure 2.40.
The CALL saves the EIP of the next instruction on the stack. (EIP is the Intel PC.) Copyright © 2009 Elsevier, Inc. All
rights reserved.

Chapter 2 — Instructions:
Language of the Computer
— 17

a. JE EIP + displacement

4 - 8
Jp | Condi- Displacement
tion
b. CALL
8 32
CALL Offset
c. MOV EBX, [EDI + 45]
6 11 8 8
r/m ;
MOV |d|w Postbyte Displacement
d. PUSH ESI
5 3
PUSH | Reg

e. ADD EAX, #6765
& 3 1

32

ADD |Reg|w

Immediate

f. TEST EDX, #42
7 1 8

32

TEST w Postbyte

Immediate

FIGURE 2.41 Typical x86 instruction formats. Figure 2.42 shows the encoding of the postbyte. Many instructions
contain the 1-bit field w, which says whether the operation is a byte or a double word. The d field in MOV is used in
instructions that may move to or from memory and shows the direction of the move. The ADD instruction requires 32 bits
for the immediate field, because in 32-bit mode, the immediates are either 8 bits or 32 bits. The immediate field in the
TEST is 32 bits long because there is no 8-bit immediate for test in 32-bit mode. Overall, instructions may vary from 1 to
17 bytes in length. The long length comes from extra 1-byte prefixes, having both a 4-byte immediate and a 4-byte
displacement address, using an opcode of 2 bytes, and using the scaled index mode specifier, which adds another byte.

Copyright © 2009 Elsevier, Inc. All rights reserved.

Chapter 2 — Instructions:
Language of the Computer
— 18

reg|w=0| w=1 |ym| mod=0 | mea=i | mod=2 __|mod=3
16b | 32b 16b 32b 16b 32b 16b 32b

0 AL AX EAX 0 addr=BX+S| | =EAX same same same same same
1 CL CX ECX 1 addr=BX+Dl | =ECX addr as addr as addr as addr as as
2 DL DX EDX 2 | addr=BP+S| | =EDX mod=0 mod=0 mod=0 mod=0 reg
3 BL BX EBX 3 | addr=BP+S| | =EBX + disp8 + disp8 + disp16 + disp32 field
4 AH SP ESP 4 addr=Sl| =(sib) Sl+disp8 (sib)+disp8 | Sl+disp8 (sib)+disp32 “

5 CH BP EBP 5 | addr=DI =disp32 |Dl+disp8 | EBP+disp8 |Dl+displ6 |EBP+disp32

6 DH Sl ESI 6 |addr=displ16 |=ESI BP+disp8 | ESl+disp8 BP+displ16 | ESl+disp32 “

7 BH DI EDI 7 | addr=BX =EDI BX+disp8 | EDI+disp8 BX+displ6 | EDI+disp32

FIGURE 2.42 The encoding of the first address specifier of the x86: mod, reg, r/m. The first four columns show the
encoding of the 3-bit reg field, which depends on the w bit from the opcode and whether the machine is in 16-bit mode
(8086) or 32-bit mode (80386). The remaining columns explain the mod and r/m fields. The meaning of the 3-bit r/m field
depends on the value in the 2-bit mod fi eld and the address size. Basically, the registers used in the address calculation
are listed in the sixth and seventh columns, under mod = 0, with mod = 1 adding an 8-bit displacement and mod = 2
adding a 16-bit or 32-bit displacement, depending on the address mode. The exceptions are 1) r/m = 6 when mod = 1 or
mod = 2 in 16-bit mode selects BP plus the displacement; 2) r/m =5 when mod = 1 or mod = 2 in 32-bit mode selects
EBP plus displacement; and 3) r/m = 4 in 32-bit mode when mod does not equal 3, where (sib) means use the scaled
index mode shown in Figure 2.38. When mod = 3, the r/m field indicates a register, using the same encoding as the reg
field combined with the w bit. Copyright © 2009 Elsevier, Inc. All rights reserved.

Chapter 2 — Instructions:
Language of the Computer
— 19

Some IA-32 Instructions

e PUSH 5-bit opcode, 3-bit register operand

OJE

-

4-bit opcode, 4-bit condition, 8-bit jump offset

ELEC 5200-001/6200-001 Lecture 3

Fall 2013, Jan 25 . ..

/

Some IA-32 Instructions

®* MOV 6-bit opcode, 8-bit register/mode*, 8-bit offset
6-b |dw| 8-b | 8-b

\ bit indicates byte or double word operation

bit indicates move to or from memory

* XOR 8-bit opcode, 8-bit reg/mode*, 8-bit base, 8-b index
8b | 8b | 8b | 8b

*8-bit register/mode: See Figure 2.42, page 174.

-

ELEC 5200-001/6200-001 Lecture 3 Fall 2013, Jan 25 . ..

e
Some IA-32 Instructions

* ADD 4-bit opcode, 3-bit register, 32-bit immediate

® TEST 7-bit opcode, 8-bit reg/mode, 32-bit immediate

N

ELEC 5200-001/6200-001 Lecture 3 Fall 2013, Jan 25 . ..

4 ™
Additional References

* 1A-32, IA-64 (CISC)

A. S. Tanenbaum, Structured Computer Organization, Fifth Edition, Upper Saddle
River, New Jersey: Pearson Prentice-Hall, 2006, Chapter 5.

e ARM (RISC)

D. Seal, ARM Architecture Reference Manual, Second Edition, Addison-Wesley
Professional, 2000.

® SPARC (Scalable Processor Architecture)

® PowerPC

V. C. Hamacher, Z. G. Vranesic and S. G. Zaky, Computer Organization, Fourth
Edition, New York: McGraw-Hill, 1996.

ELEC 5200-001/6200-001 Lecture 3 Fall 2013, Jan 25 . ..

- /

Instruction Complexity

o
»

>

Program size in machine instructions (P)

»
»

Increasing instruction complexity

@ ELEC 5200-001/6200-001 Lecture 3

Av. execution time per instruction (T)

Fall 2013, Jan 25 . ..

/

-

Summary

® Instruction complexity is only one variable

® Jower instruction count vs. higher CPI / lower clock rate — we will

see performance measures later
® Design Principles:
* simplicity favors regularity
® smaller is faster
® good design demands compromise
® make the common case fast
® Instruction set architecture

® a very important abstraction indeed!

ELEC 5200-001/6200-001 Lecture 3

2004 © Morgan Kaufman Publishers

Fall 2013, Jan 25 . ..

/

	Other Instruction Set Architectures
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Alternative Architectures
	IA–32 (a.k.a. x86)
	Slide Number 11
	IA-32 Overview
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Some IA-32 Instructions
	Some IA-32 Instructions
	Some IA-32 Instructions
	Additional References
	Instruction Complexity
	Summary

