
ARM
x86

Other Instruction Set Architectures

Chapter 2 — Instructions:
Language of the Computer

— 2

FIGURE 2.44 The MIPS instruction set covered so far, with the real MIPS instructions on the left and the
pseudoinstructions on the right. Appendix B (Section B.10) describes the full MIPS architecture. Figure 2.1 shows
more details of the MIPS architecture revealed in this chapter. The information given here is also found in Columns 1 and
2 of the MIPS Reference Data Card at the front of the book. Copyright © 2009 Elsevier, Inc. All rights reserved.

Chapter 2 — Instructions:
Language of the Computer

— 3

FIGURE 2.45 MIPS instruction classes, examples, correspondence to high-level program language constructs,
and percent age of MIPS instructions executed by category for the average SPEC2006 benchmarks. Figure 3.26 in
Chapter 3 shows average percent age of the individual MIPS instructions executed. Copyright © 2009 Elsevier, Inc. All
rights reserved.

Chapter 2 — Instructions:
Language of the Computer

— 4

FIGURE 2.31 Similarities in ARM and MIPS instruction sets. Copyright © 2009 Elsevier, Inc. All rights reserved.

Chapter 2 — Instructions:
Language of the Computer

— 5

FIGURE 2.32 ARM register-register and data transfer instructions equivalent to MIPS core. Dashes mean the
operation is not available in that architecture or not synthesized in a few instructions. If there are several choices of
instructions equivalent to the MIPS core, they are separated by commas. ARM includes shifts as part of every data
operation instruction, so the shifts with superscript 1 are just a variation of a move instruction, such as lsr1. Note that
ARM has no divide instruction. Copyright © 2009 Elsevier, Inc. All rights reserved.

Chapter 2 — Instructions:
Language of the Computer

— 6

FIGURE 2.33 Summary of data addressing modes. ARM has separate register indirect and register + offset
addressing modes, rather than just putting 0 in the offset of the latter mode. To get greater addressing range, ARM shifts
the offset left 1 or 2 bits if the data size is halfword or word. Copyright © 2009 Elsevier, Inc. All rights reserved.

Chapter 2 — Instructions:
Language of the Computer

— 7

FIGURE 2.34 Instruction formats, ARM, and MIPS. The differences result from whether the architecture has 16 or 32
registers. Copyright © 2009 Elsevier, Inc. All rights reserved.

Chapter 2 — Instructions:
Language of the Computer

— 8

FIGURE 2.35 ARM arithmetic/logical instructions not found in MIPS. Copyright © 2009 Elsevier, Inc. All rights
reserved.

Alternative Architectures

Fall 2013, Jan 25 . . . ELEC 5200-001/6200-001 Lecture 3

 Design alternative:

 provide more powerful operations

 goal is to reduce number of instructions executed

 danger is a slower cycle time and/or a higher CPI

 Let’s look (briefly) at IA-32

–“The path toward operation complexity is thus fraught with peril.
To avoid these problems, designers have moved toward simpler
instructions”

2004 © Morgan Kaufman Publishers

IA–32 (a.k.a. x86)

Fall 2013, Jan 25 . . . ELEC 5200-001/6200-001 Lecture 3

 1978: The Intel 8086 is announced (16 bit architecture)
 1980: The 8087 floating point coprocessor is added
 1982: The 80286 increases address space to 24 bits, +instructions
 1985: The 80386 extends to 32 bits, new addressing modes
 1989-1995: The 80486, Pentium, Pentium Pro add a few instructions (mostly designed for higher

performance)
 1997: 57 new “MMX” instructions are added, Pentium II
 1999: The Pentium III added another 70 instructions (SSE – streaming SIMD extensions)
 2001: Another 144 instructions (SSE2)
 2003: AMD extends the architecture to increase address space to 64 bits, widens all

registers to 64 bits and makes other changes (AMD64)
 2004: Intel capitulates and embraces AMD64 (calls it EM64T) and adds more media extensions
 2006: Intel adds 54 instructions (SSE4) and supports virtual machines
 2007: AMD adds 170 instructions (SSE5)
 2008: Intel adds Advanced Vector Extension to expand SSE register width from 128 to 256 bits and

adds 128 new instructions.
“This history illustrates the impact of the “golden handcuffs” of compatibility: “adding new features as someone might
add clothing to a packed bag” and “an architecture that is difficult to explain and impossible to love”

2004 © Morgan Kaufman Publishers

Chapter 2 — Instructions:
Language of the Computer

— 11

FIGURE 2.43 Growth of x86 instruction set over time. While there is clear technical value to some of these
extensions, this rapid change also increases the diffi culty for other companies to try to build compatible processors.
Copyright © 2009 Elsevier, Inc. All rights reserved.

IA-32 Overview

Fall 2013, Jan 25 . . . ELEC 5200-001/6200-001 Lecture 3

 Complexity:
 Instructions from 1 to 17 bytes long
 one operand must act as both a source and destination
 one operand can come from memory
 complex addressing modes

 e.g., “base or scaled index with 8 or 32 bit displacement”

 Saving grace:
 the most frequently used instructions are not too difficult to build
 compilers avoid the portions of the architecture that are slow

“what the x86 lacks in style is made up in quantity,
making it beautiful from the right perspective”

2004 © Morgan Kaufman Publishers

Chapter 2 — Instructions:
Language of the Computer

— 13

FIGURE 2.36 The 80386 register set. Starting with the 80386, the top eight registers were extended to 32 bits and could
also be used as general-purpose registers. Copyright © 2009 Elsevier, Inc. All rights reserved.

General-Purpose Registers

Chapter 2 — Instructions:
Language of the Computer

— 14

FIGURE 2.40 Some typical operations on the x86. Many operations use register-memory for mat, where either the
source or the destination may be memory and the other may be a register or immediate operand. Copyright © 2009
Elsevier, Inc. All rights reserved.

Chapter 2 — Instructions:
Language of the Computer

— 15

FIGURE 2.37 Instruction types for the arithmetic, logical, and data transfer instructions. The x86 allows the
combinations shown. The only restriction is the absence of a memory- memory mode. Immediates may be 8, 16, or 32
bits in length; a register is any one of the 14 major registers in Figure 2.36 (not EIP or EFLAGS). Copyright © 2009
Elsevier, Inc. All rights reserved.

Chapter 2 — Instructions:
Language of the Computer

— 16

FIGURE 2.38 x86 32-bit addressing modes with register restrictions and the equivalent MIPS code. The Base plus
Scaled Index addressing mode, not found in ARM or MIPS, is included to avoid the multiplies by 4 (scale factor of 2) to
turn an index in a register into a byte address (see Figures 2.25 and 2.27). A scale factor of 1 is used for 16-bit data, and
a scale factor of 3 for 64-bit data. A scale factor of 0 means the address is not scaled. If the displacement is longer than
16 bits in the second or fourth modes, then the MIPS equivalent mode would need two more instructions: a lui to load the
upper 16 bits of the displacement and an add to sum the upper address with the base register $s1. (Intel gives two dif
ferent names to what is called Based addressing mode—Based and Indexed—but they are essentially identical and we
combine them here.) Copyright © 2009 Elsevier, Inc. All rights reserved.

Chapter 2 — Instructions:
Language of the Computer

— 17

FIGURE 2.39 Some typical x86 instructions and their functions. A list of frequent operations appears in Figure 2.40.
The CALL saves the EIP of the next instruction on the stack. (EIP is the Intel PC.) Copyright © 2009 Elsevier, Inc. All
rights reserved.

Chapter 2 — Instructions:
Language of the Computer

— 18

FIGURE 2.41 Typical x86 instruction formats. Figure 2.42 shows the encoding of the postbyte. Many instructions
contain the 1-bit field w, which says whether the operation is a byte or a double word. The d field in MOV is used in
instructions that may move to or from memory and shows the direction of the move. The ADD instruction requires 32 bits
for the immediate field, because in 32-bit mode, the immediates are either 8 bits or 32 bits. The immediate field in the
TEST is 32 bits long because there is no 8-bit immediate for test in 32-bit mode. Overall, instructions may vary from 1 to
17 bytes in length. The long length comes from extra 1-byte prefixes, having both a 4-byte immediate and a 4-byte
displacement address, using an opcode of 2 bytes, and using the scaled index mode specifier, which adds another byte.
Copyright © 2009 Elsevier, Inc. All rights reserved.

Chapter 2 — Instructions:
Language of the Computer

— 19

FIGURE 2.42 The encoding of the first address specifier of the x86: mod, reg, r/m. The first four columns show the
encoding of the 3-bit reg field, which depends on the w bit from the opcode and whether the machine is in 16-bit mode
(8086) or 32-bit mode (80386). The remaining columns explain the mod and r/m fields. The meaning of the 3-bit r/m field
depends on the value in the 2-bit mod fi eld and the address size. Basically, the registers used in the address calculation
are listed in the sixth and seventh columns, under mod = 0, with mod = 1 adding an 8-bit displacement and mod = 2
adding a 16-bit or 32-bit displacement, depending on the address mode. The exceptions are 1) r/m = 6 when mod = 1 or
mod = 2 in 16-bit mode selects BP plus the displacement; 2) r/m = 5 when mod = 1 or mod = 2 in 32-bit mode selects
EBP plus displacement; and 3) r/m = 4 in 32-bit mode when mod does not equal 3, where (sib) means use the scaled
index mode shown in Figure 2.38. When mod = 3, the r/m field indicates a register, using the same encoding as the reg
field combined with the w bit. Copyright © 2009 Elsevier, Inc. All rights reserved.

Some IA-32 Instructions

Fall 2013, Jan 25 . . . ELEC 5200-001/6200-001 Lecture 3

 PUSH 5-bit opcode, 3-bit register operand

 JE 4-bit opcode, 4-bit condition, 8-bit jump offset

 5-b | 3-b

 4-b | 4-b | 8-b

Some IA-32 Instructions

Fall 2013, Jan 25 . . . ELEC 5200-001/6200-001 Lecture 3

 MOV 6-bit opcode, 8-bit register/mode*, 8-bit offset

 XOR 8-bit opcode, 8-bit reg/mode*, 8-bit base, 8-b index

 6-b |d|w| 8-b | 8-b

bit indicates move to or from memory

bit indicates byte or double word operation

 8-b | 8-b | 8-b | 8-b

*8-bit register/mode: See Figure 2.42, page 174.

Some IA-32 Instructions

Fall 2013, Jan 25 . . . ELEC 5200-001/6200-001 Lecture 3

 ADD 4-bit opcode, 3-bit register, 32-bit immediate

 TEST 7-bit opcode, 8-bit reg/mode, 32-bit immediate

 4-b | 3-b |w| 32-b

 7-b |w| 8-b | 32-b

Additional References

Fall 2013, Jan 25 . . . ELEC 5200-001/6200-001 Lecture 3

 IA-32, IA-64 (CISC)
 A. S. Tanenbaum, Structured Computer Organization, Fifth Edition, Upper Saddle

River, New Jersey: Pearson Prentice-Hall, 2006, Chapter 5.

 ARM (RISC)
 D. Seal, ARM Architecture Reference Manual, Second Edition, Addison-Wesley

Professional, 2000.

 SPARC (Scalable Processor Architecture)
 PowerPC

 V. C. Hamacher, Z. G. Vranesic and S. G. Zaky, Computer Organization, Fourth
Edition, New York: McGraw-Hill, 1996.

Instruction Complexity

Fall 2013, Jan 25 . . . ELEC 5200-001/6200-001 Lecture 3 24

Increasing instruction complexity

P
ro

gr
am

 s
iz

e
in

 m
ac

hi
ne

 in
st

ru
ct

io
ns

 (P
)

Av
. e

xe
cu

tio
n

tim
e

pe
r i

ns
tru

ct
io

n
(T

)

P T

P×T

Summary

Fall 2013, Jan 25 . . . ELEC 5200-001/6200-001 Lecture 3

 Instruction complexity is only one variable
 lower instruction count vs. higher CPI / lower clock rate – we will

see performance measures later

 Design Principles:
 simplicity favors regularity
 smaller is faster
 good design demands compromise
 make the common case fast

 Instruction set architecture
 a very important abstraction indeed!

2004 © Morgan Kaufman Publishers

	Other Instruction Set Architectures
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Alternative Architectures
	IA–32 (a.k.a. x86)
	Slide Number 11
	IA-32 Overview
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Some IA-32 Instructions
	Some IA-32 Instructions
	Some IA-32 Instructions
	Additional References
	Instruction Complexity
	Summary

