
Fall 2013, Jan 25 . . . ELEC 5200-001/6200-001 Lecture 3 1

ELEC 5200-001/6200-001
Computer Architecture and Design

Fall 2013
Instruction Set Architecture

(Chapter 2)
Victor P. Nelson, Professor & Asst. Chair

Vishwani D. Agrawal, James J. Danaher Professor
Department of Electrical and Computer Engineering

Auburn University, Auburn, AL 36849

Fall 2013, Jan 25 . . . ELEC 5200-001/6200-001 Lecture 3 2

Designing a Computer

Control

Datapath Memory
Central Processing

Unit (CPU)
or “processor”

Input

Output

FIVE PIECES OF HARDWARE

Fall 2013, Jan 25 . . . ELEC 5200-001/6200-001 Lecture 3 3

Start by Defining ISA
What is instruction set architecture (ISA)?
ISA
– Defines registers
– Defines data transfer modes (instructions) between

registers, memory and I/O
– There should be sufficient instructions to efficiently

translate any program for machine processing
Next, define instruction set format – binary
representation used by the hardware
– Variable-length vs. fixed-length instructions

Fall 2013, Jan 25 . . . ELEC 5200-001/6200-001 Lecture 3 4

Types of ISA
Complex instruction set computer (CISC)
– Many instructions (several hundreds)
– An instruction takes many cycles to execute
– Example: Intel Pentium

Reduced instruction set computer (RISC)
– Small set of instructions (typically 32)
– Simple instructions, each executes in one

clock cycle – REALLY? Well, almost.
– Effective use of pipelining
– Example: ARM

On Two Types of ISA

Brad Smith, “ARM and Intel Battle over the
Mobile Chip’s Future,” Computer, vol. 41,
no. 5, pp. 15-18, May 2008.
Compare 3Ps:

Performance
Power consumption
Price

Fall 2013, Jan 25 . . . ELEC 5200-001/6200-001 Lecture 3 5

Fall 2013, Jan 25 . . . ELEC 5200-001/6200-001 Lecture 3 6

Pipelining of RISC Instructions

Fetch
Instruction

Decode
Opcode

Fetch
Operands

Execute
Operation

Store
Result

Although an instruction takes five clock cycles,
one instruction can be completed every cycle.

Fall 2013, Jan 25 . . . ELEC 5200-001/6200-001 Lecture 3 7

Growth of Processors
Language of the Machine
We’ll be working with the
MIPS instruction set
architecture
– similar to other

architectures
developed since the
1980's

– Almost 100 million
MIPS processors
manufactured in 2002

– used by NEC, Nintendo,
Cisco, Silicon
Graphics, Sony, …

2004 © Morgan Kaufman Publishers

Fall 2013, Jan 25 . . . ELEC 5200-001/6200-001 Lecture 3 8

MIPS Instruction Set (RISC)
Instructions execute simple functions.
Maintain regularity of format – each
instruction is one word, contains opcode and
arguments.
Minimize memory accesses – whenever
possible use registers as arguments.
Three types of instructions:

Register (R)-type – only registers as arguments.
Immediate (I)-type – arguments are registers and
numbers (constants or memory addresses).
Jump (J)-type – argument is an address.

Fall 2013, Jan 25 . . . ELEC 5200-001/6200-001 Lecture 3 9

MIPS Arithmetic Instructions
All instructions have 3 operands
Operand order is fixed (destination first)

Example:

 C code: a = b + c;

 MIPS ‘code’: add a, b, c

“The natural number of operands for an operation like addition is
three… requiring every instruction to have exactly three
operands conforms to the philosophy of keeping the hardware
simple”

2004 © Morgan Kaufman Publishers

Fall 2013, Jan 25 . . . ELEC 5200-001/6200-001 Lecture 3 10

Arithmetic Instr. (Continued)
Design Principle: simplicity favors regularity.
Of course this complicates some things...

 C code: a = b + c + d;

 MIPS code: add a, b, c
 add a, a, d

Operands must be registers (why?) Remember von
Neumann bottleneck.
32 registers provided
Each register contains 32 bits 2004 © Morgan Kaufman Publishers

Fall 2013, Jan 25 . . . ELEC 5200-001/6200-001 Lecture 3 11

Registers vs. Memory

Processor I/O

Control

Datapath

Memory

Input

Output

Arithmetic instructions operands must be registers
32 registers provided

Compiler associates variables with registers.
What about programs with lots of variables? Must use
memory.

2004 © Morgan Kaufman Publishers

Fall 2013, Jan 25 . . . ELEC 5200-001/6200-001 Lecture 3 12

Memory Organization
Viewed as a large, single-dimension array, with an
address.
A memory address is an index into the array.
"Byte addressing" means that the index points to a byte
of memory.

2004 © Morgan Kaufman Publishers

32 bit word
32 bit word
32 bit word
32 bit word

.

.

.

8 bits of data 8 bits of data 8 bits of data 8 bits of data
8 bits of data 8 bits of data 8 bits of data 8 bits of data
8 bits of data 8 bits of data

8 bits of data
8 bits of data

8 bits of data

8 bits of data 8 bits of data
8 bits of data

8 bits of data
8 bits of data

8 bits of data
8 bits of data

Byte 0 byte 1 byte 2 byte 3

byte 4 byte 10

“Little endian” vs “Big endian”

Fall 2013, Jan 25 . . . ELEC 5200-001/6200-001 Lecture 3 13

100

101

102

103

Store 32-bit number
0x347A4302

02

43

7A

34

100

101

102

103

34

7A

43

02

LSB at lowest address LSB at highest address

103 102 101 100
34 7A 43 02

100 101 102 103
34 7A 43 02

Fall 2013, Jan 25 . . . ELEC 5200-001/6200-001 Lecture 3 14

Memory Organization
Bytes are nice, but most data items use larger "words"
For MIPS, a word contains 32 bits or 4 bytes.

word addresses

232 bytes with addresses from 0 to 232 – 1
230 words with addresses 0, 4, 8, ... 232 – 4
Words are aligned
 i.e., what are the least 2 significant bits of a word address?

...

Registers hold 32 bits of data

Use 32 bit address

2004 © Morgan Kaufman Publishers

0
4
8

12
.

32 bits of data
32 bits of data

32 bits of data
32 bits of data
32 bits of data

Fall 2013, Jan 25 . . . ELEC 5200-001/6200-001 Lecture 3 15

Instructions
Load and store instructions
Example:

C code: A[12] = h + A[8];

MIPS code: lw $t0, 32($s3) #addr of A in reg s3
 add $t0, $s2, $t0 #h in reg s2
 sw $t0, 48($s3)

Can refer to registers by name (e.g., $s2, $t2) or number ($18, $10)
Store word has destination last
Remember arithmetic operands are registers, not memory!

 Can’t write: add 48($s3), $s2, 32($s3)

2004 © Morgan Kaufman Publishers

Fall 2013, Jan 25 . . . ELEC 5200-001/6200-001 Lecture 3 16

Policy of Register Usage (Conventions)

Name Register number Usage
$zero 0 the constant value 0
$v0-$v1 2-3 values for results and expression evaluation
$a0-$a3 4-7 arguments
$t0-$t7 8-15 temporaries
$s0-$s7 16-23 saved
$t8-$t9 24-25 more temporaries
$gp 28 global pointer
$sp 29 stack pointer
$fp 30 frame pointer
$ra 31 return address

Register 1 ($at) reserved for assembler, 26-27 for operating system
2004 © Morgan Kaufman Publishers

Fall 2013, Jan 25 . . . ELEC 5200-001/6200-001 Lecture 3 17

Our First Example
Can we figure out the code of subroutine?

Initially, k is in reg 5; base address of v is in reg 4;
return addr is in reg 31

swap(int v[], int k);
{ int temp;
 temp = v[k]
 v[k] = v[k+1];
 v[k+1] = temp;
}

swap:
 sll $2, $5, 2
 add $2, $4, $2
 lw $15, 0($2)
 lw $16, 4($2)
 sw $16, 0($2)
 sw $15, 4($2)
 jr $31

2004 © Morgan Kaufman Publishers

Fall 2013, Jan 25 . . . ELEC 5200-001/6200-001 Lecture 3 18

What Happens?

When the program reaches “call swap” statement:
– Jump to swap routine

Registers 4 and 5 contain the arguments (register convention)
Register 31 contains the return address (register convention)

– Swap two words in memory
– Jump back to return address to continue rest of the

program

.

.
call swap
.
.
.

return address

Fall 2013, Jan 25 . . . ELEC 5200-001/6200-001 Lecture 3 19

Memory and Registers

Word 0
Word 1
Word 2

v[0] (Word n)

0
4
8

12
 .

4n
 .
 .
 .

4n+4k
.

v[1] (Word n+1)

Register 0

Register 1

Register 2

Register 3

Register 4

Register 31

Register 5

v[k] (Word n+k)

4n

k

Memory
byte addr.

Ret. addr. v[k+1] (Word n+k+1)

.

.

Fall 2013, Jan 25 . . . ELEC 5200-001/6200-001 Lecture 3 20

Our First Example
Now figure out the code:

swap(int v[], int k);
{ int temp;
 temp = v[k]
 v[k] = v[k+1];
 v[k+1] = temp;
}

swap:
 sll $2, $5, 2
 add $2, $4, $2
 lw $15, 0($2)
 lw $16, 4($2)
 sw $16, 0($2)
 sw $15, 4($2)
 jr $31

2004 © Morgan Kaufman Publishers

Fall 2013, Jan 25 . . . ELEC 5200-001/6200-001 Lecture 3 21

So Far We’ve Learned
MIPS
 — loading words but addressing bytes
 — arithmetic on registers only

Instruction Meaning

add $s1, $s2, $s3 $s1 = $s2 + $s3
sub $s1, $s2, $s3 $s1 = $s2 – $s3
lw $s1, 100($s2) $s1 = Memory[$s2+100]
sw $s1, 100($s2) Memory[$s2+100] = $s1

2004 © Morgan Kaufman Publishers

Fall 2013, Jan 25 . . . ELEC 5200-001/6200-001 Lecture 3 22

Instructions, like registers and words of data, are also 32
bits long
– Example: add $t1, $s1, $s2
– registers are numbered, $t1=8, $s1=17, $s2=18

Instruction Format:

 000000 10001 10010 01000 00000 100000

 opcode rs rt rd shamt funct

Can you guess what the field names stand for?

Machine Language

2004 © Morgan Kaufman Publishers

Fall 2013, Jan 25 . . . ELEC 5200-001/6200-001 Lecture 3 23

Violating Regularity for a Good Cause

Grand
Central
Station

Times
Square

Fall 2013, Jan 25 . . . ELEC 5200-001/6200-001 Lecture 3 24

Consider the load-word and store-word instructions,
– What would the regularity principle have us do?
– New principle: Good design demands a compromise

Introduce a new type of instruction format
– I-type for data transfer instructions
– other format was R-type for register

Example: lw $t0, 32($s2)

 35 18 9 32

 opcode rs rt 16 bit number

Where's the compromise?

Machine Language

2004 © Morgan Kaufman Publishers

Fall 2013, Jan 25 . . . ELEC 5200-001/6200-001 Lecture 3 25

Instructions are bits
Programs are stored in memory

to be read or written just like data

Fetch and Execute Cycles

Instructions are fetched and put into a special register
Opcode bits in the register "control" the subsequent actions
Fetch the “next” instruction and continue

Processor Memory
memory for data, programs,
 compilers, editors, etc.

Stored Program Concept

2004 © Morgan Kaufman Publishers

Fall 2013, Jan 25 . . . ELEC 5200-001/6200-001 Lecture 3 26

Decision making instructions
– alter the control flow,
– i.e., change the "next" instruction to be executed

MIPS conditional branch instructions:

 bne $t0, $t1, Label
 beq $t0, $t1, Label

Example: if (i==j) h = i + j;

 bne $s0, $s1, Label
 add $s3, $s0, $s1
 Label:

Control

2004 © Morgan Kaufman Publishers

Fall 2013, Jan 25 . . . ELEC 5200-001/6200-001 Lecture 3 27

MIPS unconditional branch instructions:
 j label
Example:
 if (i!=j) beq $s4, $s5, Lab1
 h=i+j; add $s3, $s4, $s5
 else j Lab2
 h=i-j; Lab1: sub $s3, $s4, $s5
 Lab2: ...

Can you build a simple for loop?

Control

2004 © Morgan Kaufman Publishers

Fall 2013, Jan 25 . . . ELEC 5200-001/6200-001 Lecture 3 28

So Far We’ve Learned
Instruction Meaning
add $s1,$s2,$s3 $s1 = $s2 + $s3
sub $s1,$s2,$s3 $s1 = $s2 – $s3
lw $s1,100($s2) $s1 = Memory[$s2+100]
sw $s1,100($s2) Memory[$s2+100] = $s1
bne $s4,$s5,Label Next instr. is at Label if
 $s4 ≠ $s5
beq $s4,$s5,Label Next instr. is at Label if
 $s4 = $s5
j Label Next instr. is at Label
Formats:

 op rs rt rd shamt funct

 op rs rt 16 bit address

 op 26 bit address

R

I

J
2004 © Morgan Kaufman Publishers

Fall 2013, Jan 25 . . . ELEC 5200-001/6200-001 Lecture 3 29

Three Ways to Jump: j, jr, jal

j instr # jump to machine instruction instr
 (unconditional jump)

jr $ra # jump to address in register ra
 (used by callee to go back to caller)

jal addr # set $ra = PC+4 and go to addr
 (jump and link; used to jump to a

 procedure)

Fall 2013, Jan 25 . . . ELEC 5200-001/6200-001 Lecture 3 30

We have: beq, bne, what about Branch-if-less-than?
New instruction:
 if $s1 < $s2 then
 $t0 = 1
slt $t0, $s1, $s2 else
 $t0 = 0
Can use this instruction to build new “pseudoinstruction”

 blt $s1, $s2, Label

Note that the assembler needs a register to do this,
 — there are policy of use conventions for registers

Control Flow

2004 © Morgan Kaufman Publishers

Fall 2013, Jan 25 . . . ELEC 5200-001/6200-001 Lecture 3 31

Pseudoinstructions
blt $s1, $s2, reladdr
Assembler converts to:
 slt $1, $s1, $s2
 bne $1, $zero, reladdr

Other pseudoinstructions: bgt, ble, bge, li, move
Not implemented in hardware
Assembler expands pseudoinstructions into
machine instructions
Register 1, called $at, is reserved for converting
pseudoinstructions into machine code.

Fall 2013, Jan 25 . . . ELEC 5200-001/6200-001 Lecture 3 32

Small constants are used quite frequently (50% of operands)
 e.g., A = A + 5;
 B = B + 1;
 C = C – 18;
Solutions? Why not?
– put 'typical constants' in memory and load them.
– create hard-wired registers (like $zero) for constants like one.

MIPS Instructions:
 addi $29, $29, 4
 slti $8, $18, 10
 andi $29, $29, 6
 ori $29, $29, 4

Design Principle: Make the common case fast. Which format?

Constants

2004 © Morgan Kaufman Publishers

Fall 2013, Jan 25 . . . ELEC 5200-001/6200-001 Lecture 3 33

We'd like to be able to load a 32 bit constant into a register
Must use two instructions, new "load upper immediate" instruction

 lui $t0, 1010101010101010

Then must get the lower order bits right, i.e.,
 ori $t0, $t0, 1010101010101010

1010101010101010 0000000000000000

0000000000000000 1010101010101010

1010101010101010 1010101010101010

ori

1010101010101010 0000000000000000

filled with zeros

How About Larger Constants?

2004 © Morgan Kaufman Publishers

Fall 2013, Jan 25 . . . ELEC 5200-001/6200-001 Lecture 3 34

Assembly provides convenient symbolic representation
much easier than writing down numbers
e.g., destination first

Machine language is the underlying reality
e.g., destination is no longer first

Assembly can provide 'pseudoinstructions'
e.g., “move $t0, $t1” exists only in Assembly
implemented using “add $t0, $t1, $zero”

When considering performance you should count real
instructions and clock cycles

Assembly Language vs.
Machine Language

2004 © Morgan Kaufman Publishers

Fall 2013, Jan 25 . . . ELEC 5200-001/6200-001 Lecture 3 35

simple instructions, all 32 bits wide
very structured, no unnecessary baggage
only three instruction formats

rely on compiler to achieve performance

 op rs rt rd shamt funct

 op rs rt 16 bit address

 op 26 bit address

R

I

J

Overview of MIPS

2004 © Morgan Kaufman Publishers

Fall 2013, Jan 25 . . . ELEC 5200-001/6200-001 Lecture 3 36

Instructions:
bne $t4, $t5, Label Next instruction is at Label

 if $t4 ≠ $t5

beq $t4, $t5, Label Next instruction is at Label
 if $t4 = $t5

j Label Next instruction is at Label
Formats:

 op rs rt 16 bit rel. address

 op 26 bit absolute address

I

J

Addresses in Branches and Jumps

2004 © Morgan Kaufman Publishers

Fall 2013, Jan 25 . . . ELEC 5200-001/6200-001 Lecture 3 37

Instructions:
bne $t4,$t5,Label Next instruction is at Label if $t4 ≠ $t5
beq $t4,$t5,Label Next instruction is at Label if $t4 = $t5

Formats: – 215 to 215 – 1 ~ ±32 Kwords

Relative addressing 226 = 64 Mwords
– with respect to PC (program counter)
– most branches are local (principle of locality)

Jump instruction just uses high order bits of PC
– address boundaries of 256 MBytes (maximum jump 64 Mwords)

Addresses in Branches

2004 © Morgan Kaufman Publishers

 op rs rt 16 bit address

 op 26 bit address

Fall 2013, Jan 25 . . . ELEC 5200-001/6200-001 Lecture 3 38

Example: Loop in C (p. 74)
 while (save[i] == k)
 i += 1;

Given a value for k, set i to the index of
element in array save [] that does not equal
k.

Fall 2013, Jan 25 . . . ELEC 5200-001/6200-001 Lecture 3 39

MIPS Code for While Loop
Compiler assigns variables to registers:

 $s3 (reg 19) ← i initially 0
 $s5 (reg 21) ← k
 $s6 (reg 22) ← memory address where save [] begins

Then generates the following assembly code:

Loop: sll $t1, $s3, 2 # Temp reg $t1 = 4 * i
 add $t1, $t1, $s6 # $t1 = address of save[i]
 lw $t0, 0($t1) # Temp reg $t0 = save[i]
 bne $t0, $s5, Exit # go to Exit if save[i] ≠ k
 addi $s3, $s3, 1 # i = i + 1
 j Loop # go to Loop
Exit:

Fall 2013, Jan 25 . . . ELEC 5200-001/6200-001 Lecture 3 40

Machine Code and Mem. Adresses

0 0 19 9 2 0

0 9 22 9 0 32

35 9 8 0

5 8 21 Exit = +2

8 19 19 1

2 Loop = 20000 (memory word address)

.

 sll

 add

 lw

 bne

 addi

 j

80000

80004

80008

80012

80016

80020

80024

Memory Machine code
Byte addr. Bits 31-26| 25-21 | 20-16 | 15-11 | 10 – 6 | 5 – 0 |

Note: $t0 ≡ Reg 8, $t1 ≡ Reg 9, $s3 ≡ Reg 19, $s5 ≡ Reg 21, $s6 ≡ Reg 22
 temp temp i k save

Fall 2013, Jan 25 . . . ELEC 5200-001/6200-001 Lecture 3 41

Finding Branch Address Exit
Exit = +2 is a 16 bit integer in bne instruction

 000101 01000 10101 0000000000000010 = 2
$PC = 80016 is the byte address of the next instruction

 00000000000000010011100010010000 = 80016
Multiply bne argument by 4 (convert to byte address)

 0000000000001000 = 8
$PC ← $PC + 8

 00000000000000010011100010011000 = 80024
 Thus, Exit is memory byte address 80024.

Fall 2013, Jan 25 . . . ELEC 5200-001/6200-001 Lecture 3 42

Finding Jump Address Loop
J 20000

 000010 00000000000100111000100000 = 20000
$PC = 80024, when jump is being executed

 00000000000000010011100010011000 = 80024
Multiply J argument by 4 (convert to byte address)

 0000000000010011100010000000 = 80000
Insert four leading bits from $PC

 00000000000000010011100010000000 = 80000
 Thus, Loop is memory byte address 80000.

Fall 2013, Jan 25 . . . ELEC 5200-001/6200-001 Lecture 3 43

Summary: MIPS Registers and
Memory

$s0-$s7, $t0-$t9, $zero, Fast locations for data. In MIPS, data must be in registers to perform
32 registers $a0-$a3, $v0-$v1, $gp, arithmetic. MIPS register $zero always equals 0. Register $at is

$fp, $sp, $ra, $at reserved for the assembler to handle large constants.
Memory[0], Accessed only by data transfer instructions. MIPS uses byte

230 memoryMemory[4], ..., addresses, so sequential words differ by 4. Memory holds data
words Memory[4294967292] structures, such as arrays, and spilled registers, such as those

saved on procedure calls.

Fall 2013, Jan 25 . . . ELEC 5200-001/6200-001 Lecture 3 44

Summary: MIPS Instructions
MIPS assembly language

Category Instruction Example Meaning Comments
add add $s1, $s2, $s3 $s1 = $s2 + $s3 Three operands; data in registers

Arithmetic subtract sub $s1, $s2, $s3 $s1 = $s2 - $s3 Three operands; data in registers

add immediate addi $s1, $s2, 100 $s1 = $s2 + 100 Used to add constants
load w ord lw $s1, 100($s2) $s1 = Memory[$s2 + 100]Word from memory to register
store w ord sw $s1, 100($s2) Memory[$s2 + 100] = $s1 Word from register to memory

Data transfer load byte lb $s1, 100($s2) $s1 = Memory[$s2 + 100]Byte from memory to register
store byte sb $s1, 100($s2) Memory[$s2 + 100] = $s1 Byte from register to memory
load upper
immediate

lui $s1, 100 $s1 = 100 * 216 Loads constant in upper 16 bits

branch on equal beq $s1, $s2, 25 if ($s1 == $s2) go to
PC + 4 + 100

Equal test; PC-relative branch

Conditional

branch on not equal bne $s1, $s2, 25 if ($s1 != $s2) go to
PC + 4 + 100

Not equal test; PC-relative

branch set on less than slt $s1, $s2, $s3 if ($s2 < $s3) $s1 = 1;
else $s1 = 0

Compare less than; for beq, bne

set less than
immediate

slti $s1, $s2, 100 if ($s2 < 100) $s1 = 1;
else $s1 = 0

Compare less than constant

jump j 2500 go to 10000 Jump to target address
Uncondi- jump register jr $ra go to $ra For sw itch, procedure return
tional jump jump and link jal 2500 $ra = PC + 4; go to 10000 For procedure call

Fall 2013, Jan 25 . . . ELEC 5200-001/6200-001 Lecture 3 45

Byte Halfword Word

Registers

Memory

Memory

Word

Memory

Word

Register

Register

1. Immediate addressing

2. Register addressing

3. Base addressing

4. PC-relative addressing

5. Pseudodirect addressing

op rs rt

op rs rt

op rs rt

op

op

rs rt

Address

Address

Address

rd . . . funct

Immediate

PC

PC

+

+

2004 © Morgan Kaufman Publishers

Addressing Modes Example

 addi

 add

 lw, sw

 beq, bne

 j

	ELEC 5200-001/6200-001�Computer Architecture and Design�Fall 2013�Instruction Set Architecture�(Chapter 2)
	Designing a Computer
	Start by Defining ISA
	Types of ISA
	On Two Types of ISA
	Pipelining of RISC Instructions
	Growth of Processors
	MIPS Instruction Set (RISC)
	MIPS Arithmetic Instructions
	Arithmetic Instr. (Continued)
	Registers vs. Memory
	Memory Organization
	“Little endian” vs “Big endian”
	Memory Organization
	Instructions
	Policy of Register Usage (Conventions)
	Our First Example
	What Happens?
	Memory and Registers
	Our First Example
	So Far We’ve Learned
	Machine Language
	Violating Regularity for a Good Cause
	Machine Language
	Stored Program Concept
	Control
	Control
	So Far We’ve Learned
	Three Ways to Jump: j, jr, jal
	Control Flow
	Pseudoinstructions
	Constants
	How About Larger Constants?
	Assembly Language vs. Machine Language
	Overview of MIPS
	Addresses in Branches and Jumps
	Addresses in Branches
	Example: Loop in C (p. 74)
	MIPS Code for While Loop
	Machine Code and Mem. Adresses
	Finding Branch Address Exit
	Finding Jump Address Loop
	Summary: MIPS Registers and Memory
	Summary: MIPS Instructions
	Slide Number 45

