## ELEC 5200-001/6200-001 Computer Architecture and Design Fall 2013 Performance of a Computer (Chapter 4)

Vishwani D. Agrawal & Victor P. Nelson epartment of Electrical and Computer Engineering Auburn University, Auburn, AL 36849

## What is Performance?

- Response time: the time between the start and completion of a task.
- Throughput: the total amount of work done in a given time.
- Some performance measures:
  - MIPS (million instructions per second).
  - MFLOPS (million floating point operations per second), also GFLOPS, TFLOPS (10<sup>12</sup>), etc.
  - SPEC (System Performance Evaluation Corporation) benchmarks.
  - LINPACK benchmarks, floating point computing, used for supercomputers.
  - Synthetic benchmarks.

## Small and Large Numbers

|                          | Small |   | Large            |       |   |  |
|--------------------------|-------|---|------------------|-------|---|--|
| <b>10</b> -3             | milli | m | 10 <sup>3</sup>  | kilo  | k |  |
| 10-6                     | micro | μ | 10 <sup>6</sup>  | mega  | M |  |
| 10 <sup>-9</sup>         | nano  | n | 10 <sup>9</sup>  | giga  | G |  |
| 10 <sup>-12</sup>        | pico  | р | 10 <sup>12</sup> | tera  | Т |  |
| <b>10</b> <sup>-15</sup> | femto | f | 10 <sup>15</sup> | peta  | Р |  |
| 10 <sup>-18</sup>        | atto  |   | 10 <sup>18</sup> | exa   |   |  |
| 10-21                    | zepto |   | 10 <sup>21</sup> | zetta |   |  |
| 10 <sup>-24</sup>        | yocto |   | 10 <sup>24</sup> | yotta |   |  |

## **Computer Memory Size**

|                        | Number            | bits | bytes |    |
|------------------------|-------------------|------|-------|----|
| 2 <sup>10</sup>        | 1,024             | K    | Kb    | KB |
| 2 <sup>20</sup>        | 1,048,576         | Μ    | Mb    | MB |
| 2 <sup>30</sup>        | 1,073,741,824     | G    | Gb    | GB |
| <b>2</b> <sup>40</sup> | 1,099,511,627,776 | Т    | Tb    | TB |

**Units for Measuring Performance** Time in seconds (s), microseconds (µs), nanoseconds (ns), or picoseconds (ps). Clock cycle Period of the hardware clock Example: one clock cycle means 1 nanosecond for a 1GHz clock frequency (or 1GHz clock rate) CPU time = (CPU clock cycles)/(clock rate) Cycles per instruction (CPI): average number of clock cycles used to execute a computer instruction.

## **Components of Performance**

| Components of<br>Performance | Units                                                |
|------------------------------|------------------------------------------------------|
| CPU time for a program       | Time (seconds, etc.)                                 |
| Instruction count            | Instructions executed by the program                 |
| CPI                          | Average number of<br>clock cycles per<br>instruction |
| Clock cycle time             | Time period of clock<br>(seconds, etc.)              |

#### Time, While You Wait, or Pay For

CPU time is the time taken by CPU to execute the program. It has two components:

- User CPU time is the time to execute the instructions of the program.
- System CPU time is the time used by the operating system to run the program.

Elapsed time (wall clock time) is the time between the start and end of a program.

#### Example: Unix "time" Command

| 90.7u         | 12.9s           | 2:39         | 65%                 |
|---------------|-----------------|--------------|---------------------|
| User CPU time | System CPU time | Elapsed time | CPU time as percent |
| in seconds    | in seconds      | In min:sec   | of elapsed time     |

## Computing CPU Time

| CPU time | = | Instruction count × CPI × Clock cycle time |
|----------|---|--------------------------------------------|
|          |   | Instruction count × CPI                    |
|          |   | Clock rate                                 |
|          |   | Instructions Clock cycles 1 second         |
|          | = | Program Instruction Clock rate             |

#### Comparing Computers C1 and C2

Run the same program on C1 and C2. Suppose both computers execute the same number (N) of instructions: C1: CPI = 2.0, clock cycle time = 1 ns **CPU** time(C1) =  $N \times 2.0 \times 1 = 2.0N$  ns • C2: CPI = 1.2, clock cycle time = 2 nsCPU time(C2) =  $N \times 1.2 \times 2 = 2.4N$  ns CPU time(C2)/CPU time(C1) = 2.4N/2.0N = 1.2, therefore, C1 is 1.2 times faster than C2. Result can vary with the choice of program.

### Comparing Program Codes I & II

#### Code size for a program:

- Code I has 5 million instructions
- Code II has 6 million instructions
- Code I is more efficient. Is it?

Suppose a computer has three types of instructions: A, B and C.

- CPU cycles (code I) = 10 million
- CPU cycles (code II) = 9 million
- Code II is more efficient.
  - CPI(I) = 10/5 = 2
  - CPI(II) = 9/6 = 1.5

Code II is more efficient.

Caution: Code size is a misleading indicator of performance.

| Instr. Type | CPI |  |  |
|-------------|-----|--|--|
| А           | 1   |  |  |
| В           | 2   |  |  |
| С           | 3   |  |  |

| Code | Instruction count in million |                 |   |       |  |  |
|------|------------------------------|-----------------|---|-------|--|--|
|      | Type<br>A                    | ype Type<br>A B |   | Total |  |  |
| I    | 2                            | 1               | 2 | 5     |  |  |
| II   | 4                            | 1               | 1 | 6     |  |  |

Rating of a Computer MIPS: million instructions per second Instruction count of a program **MIPS** Execution time  $\times 10^6$ MIPS rating of a computer is relative to a program. Standard programs for performance rating: Synthetic benchmarks SPEC benchmarks (System Performance Evaluation) Corporation)

Synthetic Benchmark Programs
Artificial programs that emulate a large set of typical "real" programs.
Whetstone benchmark – Algol and Fortran.
Dhrystone benchmark – Ada and C.

Disadvantages:

No clear agreement on what a typical instruction mix should be.

– Benchmarks do not produce meaningful result.

 Purpose of rating is defeated when compilers are written to optimize the performance rating.



## Ada

Lady Augusta Ada Byron, Countess of Lovelace (1815-1852), daughter of Lord Byron (the poet who spent some time in a Swiss jail – in Chillon, not too far from Lausanne...). She was the assistant and patron of Charles Babbage; she wrote programs for his "Analytical Engine."

An original print from its time. http://www.cs.kuleuven.ac.be/~dirk/ada-belgium/pictures.html

#### **Misleading Compilers**

Consider a computer with a clock rate of 1 GHz.
 Two compilers produce the following instruction mixes for a program:

| Code from  | Ir        | nstructio<br>(billio | on coui<br>ons) | nt    | CPU<br>clock       | CPI  | CPU<br>time* | MIPS** |
|------------|-----------|----------------------|-----------------|-------|--------------------|------|--------------|--------|
|            | Type<br>A | Type<br>B            | Type<br>C       | Total | cycles             |      | (seconds)    |        |
| Compiler 1 | 5         | 1                    | 1               | 7     | 10×10 <sup>9</sup> | 1.43 | 10           | 700    |
| Compiler 2 | 10        | 1                    | 1               | 12    | 15×10 <sup>9</sup> | 1.25 | 15           | 800    |

Instruction types – A: 1-cycle, B: 2-cycle, C: 3-cycle

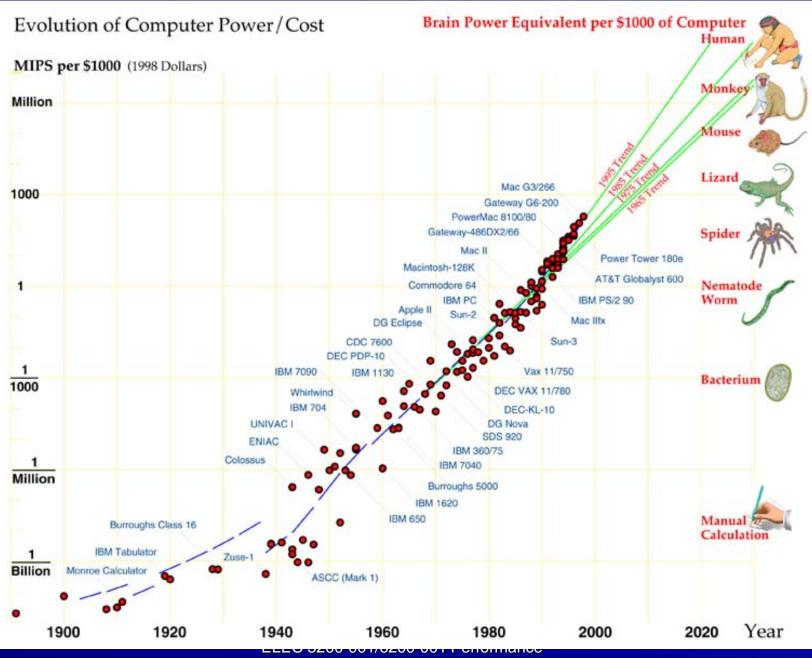
\* CPU time = CPU clock cycles/clock rate \*\* MIPS = (Total instruction count/CPU time)  $\times 10^{-6}$ 

# Peak and Relative MIPS Ratings Peak MIPS

Choose an instruction mix to minimize CPI
 The rating can be too high and unrealistic for general programs

Relative MIPS: Use a reference computer system

Relative MIPS = 
$$\frac{\text{Time(ref)}}{\text{Time}} \times \text{MIPS(ref)}$$


Historically, VAX-11/780, believed to have a 1 MIPS performance, was used as reference.

## Wĕbopēdia on MIPS

- Acronym for *million instructions per second*. An old measure of a computer's speed and power, MIPS measures roughly the number of machine instructions that a computer can execute in one second.
- In fact, some people jokingly claim that MIPS really stands for *Meaningless Indicator of Performance*.
- Despite these problems, a MIPS rating can give you a general idea of a computer's speed. The IBM PC/XT computer, for example, is rated at ¼ MIPS, while Pentium-based PCs run at over 100 MIPS.

#### A 1994 MIPS Rating Chart

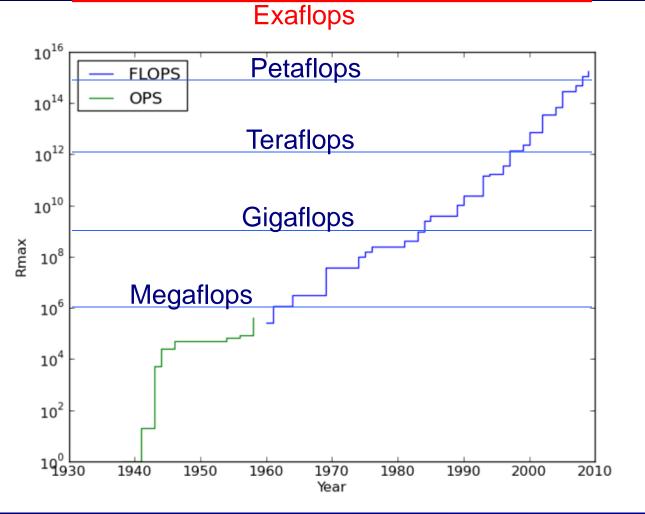
| Computer                 | MIPS  | Price  | \$/MIPS |
|--------------------------|-------|--------|---------|
| 1975 IBM mainframe       | 10    | \$10M  | 1M      |
| 1976 Cray-1              | 160   | \$20M  | 125K    |
| 1979 DEC VAX             | 1     | \$200K | 200K    |
| 1981 IBM PC              | 0.25  | \$3K   | 12K     |
| 1984 Sun 2               | 1     | \$10K  | 10K     |
| 1994 Pentium PC          | 66    | \$3K   | 46      |
| 1995 Sony PCX video game | 500   | \$500  | 1       |
| 1995 Microunity set-top  | 1,000 | \$500  | 0.5     |



Fall 2013 . . .

Lecture

## MFLOPS (megaFLOPS)


Number of floating-point operations in a program

MFLOPS =

Execution time  $\times 10^6$ 

- Only floating point operations are counted:
  - Float, real, double; add, subtract, multiply, divide
- MFLOPS rating is relevant in scientific computing. For example, programs like a compiler will measure almost 0 MFLOPS.
- Sometimes misleading due to different implementations. For example, a computer that does not have a floating-point divide, will register many FLOPS for a division.

## Supercomputer Performance



ELEC 5200-001/6200-001 Performance Lecture

Fall 2013 . . .

http://en.wikipedia.org/wiki/Supercomputer

## Top Supercomputers, June 2012 www.top500.org

| Rank | Name          | Location         | Cores    | Clock<br>GHz | Max.<br>Pflops | Power<br>MW | Eff.<br>Pflops/<br>MJoule |
|------|---------------|------------------|----------|--------------|----------------|-------------|---------------------------|
| 1    | Titan/Cray    | Oak<br>Ridge     | 560,640  | 2.2          | 27.11          | 8.21        | 3.30                      |
| 2    | Sequoia       | <b>IBM USA</b>   | 1,572864 | 1.6          | 16.30          | 7.89        | 2.07                      |
| 3    | K<br>computer | Fujitsu<br>Japan | 795,024  | 2.0          | 10.50          | 12.66       | 0.83                      |
| 4    | Mira          | <b>IBM USA</b>   | 786,432  | 1.6          | 8.16           | 3.95        | 2.07                      |
| 5    | SuperMUC      | IBM<br>Germany   | 147,456  | 2.7          | 2.90           | 3.52        | 0.82                      |

N. Leavitt, "Big Iron Moves Toward Exascale Computing," *Computer*, vol. 45, no. 11, pp. 14-17, Nov. 2012.

#### The Future

Erik P. DeBenedictis of Sandia National Laboratories theorizes that a zettaflops (10<sup>21</sup>) (one sextillion FLOPS) computer is required to accomplish full weather modeling, which could cover a two week time span accurately. Such systems might be built around 2030.

http://en.wikipedia.org/wiki/Supercomputer

#### Performance

Performance is measured for a given program or a set of programs:

Av. execution time =  $(1/n) \sum_{i=1}^{n} E_{xecution time}$  (program i)

or

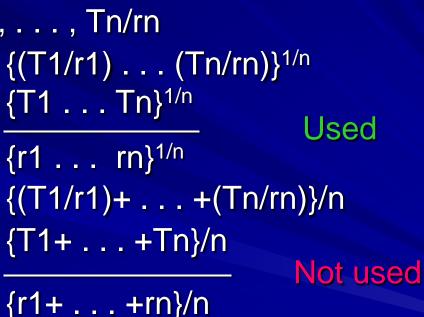
Av. execution time =  $\left[\prod_{i=1}^{n} Execution time (program i)\right]^{1/n}$ 

Performance is inverse of execution time: Performance = 1/(Execution time)

> ELEC 5200-001/6200-001 Performance Lecture

Fall 2013 . . .

## Geometric vs. Arithmetic Mean


Reference computer times of n programs: r1, ..., rn
 Times of n programs on the computer under evaluation: T1, ..., Tn

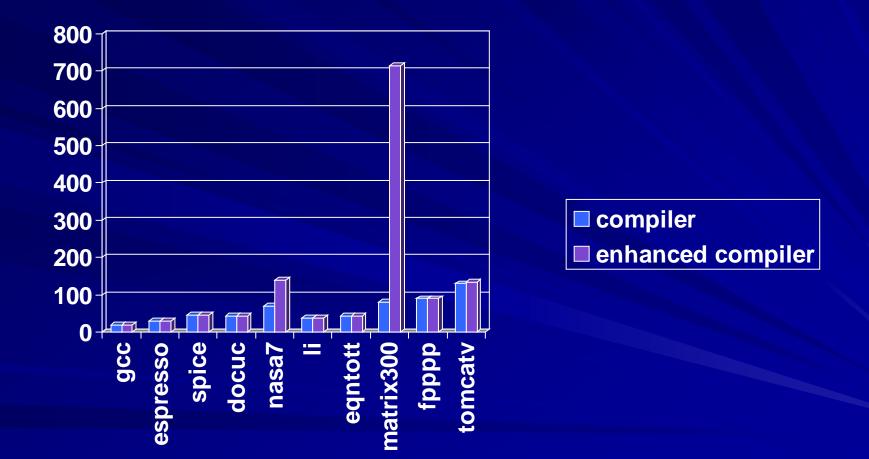
Normalized times: T1/r1, ..., Tn/rn

≠

Geometric mean =

```
Arithmetic mean =
```




J. E. Smith, "Characterizing Computer Performance with a Single Number," *Comm. ACM*, vol. 31, no. 10, pp. 1202-1206, Oct. 1988.

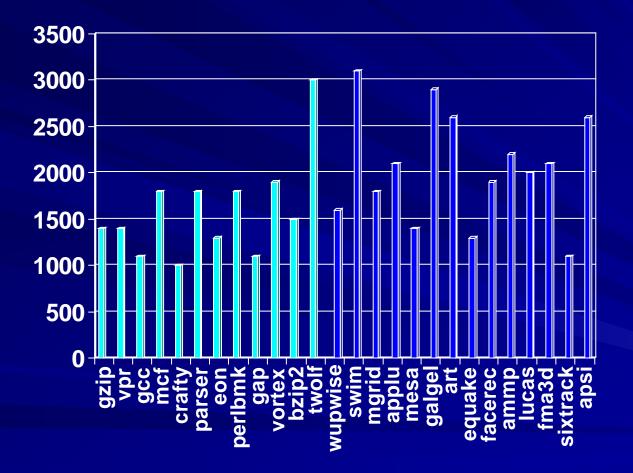
## **SPEC Benchmarks**

System Performance Evaluation Corporation (SPEC)

- SPEC89
  - 10 programs
  - SPEC performance ratio relative to VAX-11/780
  - One program, matrix300, dropped because compilers could be engineered to improve its performance.
  - <u>www.spec.org</u>

#### SPEC89 Performance Ratio for IBM Powerstation 550

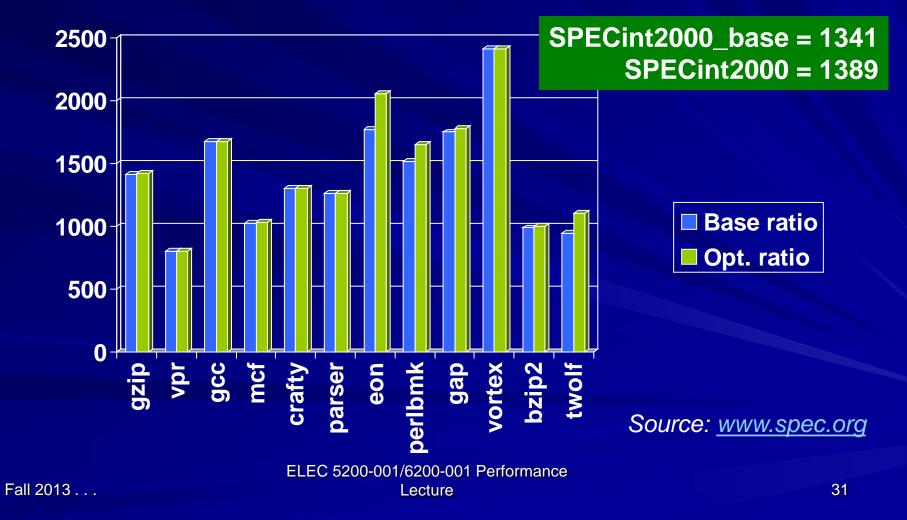



#### **SPEC95 Benchmarks**

- Eight integer and ten floating point programs, SPECint95 and SPECfp95.
- Each program run time is normalized with respect to the run time of Sun SPARCstation 10/40 – the ratio is called SPEC ratio.
- SPECint95 and SPECfp95 summary measurements are the geometric means of SPEC ratios.

#### SPEC CPU2000 Benchmarks

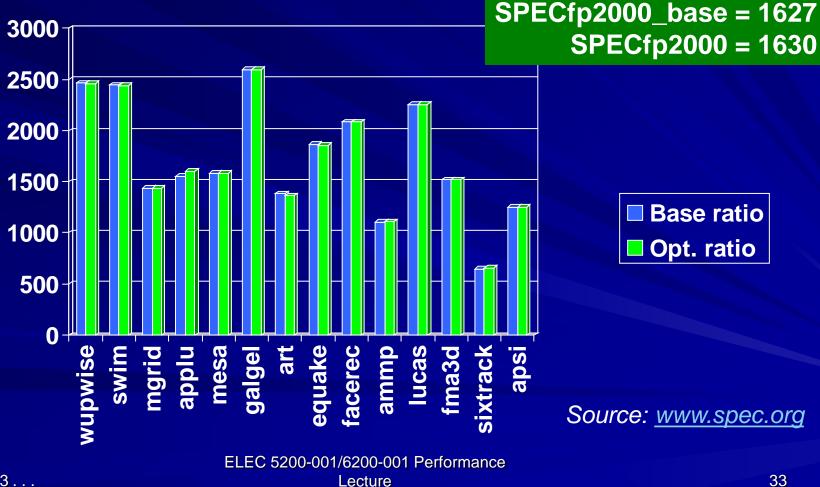
- Twelve integer and 14 floating point programs, CINT2000 and CFP2000.
- Each program run time is normalized to obtain a SPEC ratio with respect to the run time on Sun Ultra 5\_10 with a 300MHz processor.
- CINT2000 and CFP2000 summary measurements are the geometric means of SPEC ratios.


#### Reference CPU: Sun Ultra 5\_10 300MHz Processor

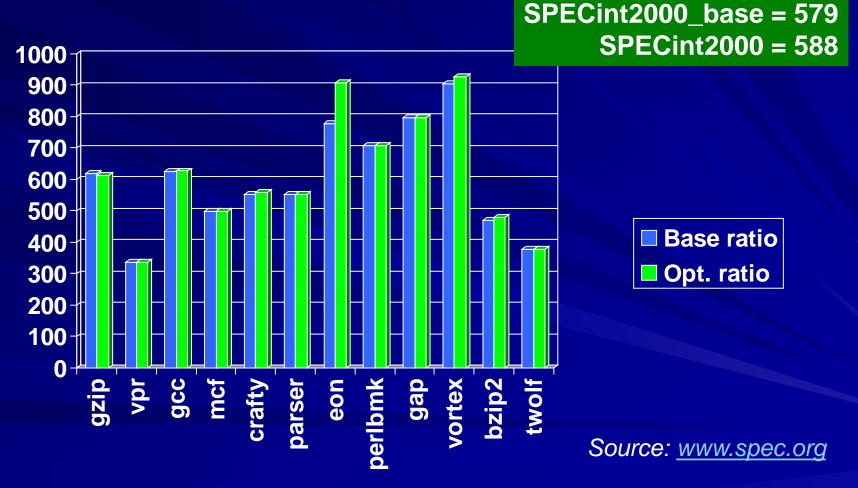




Fall 2013 . . .

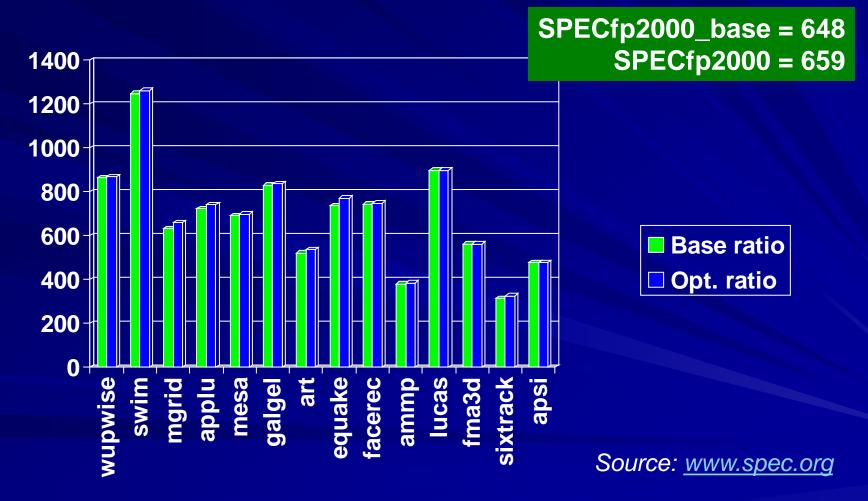

## CINT2000: 3.4GHz Pentium 4, HT Technology (D850MD Motherboard)




#### **Two Benchmark Results**

Baseline: A uniform configuration not optimized for specific program: Same compiler with same settings and flags used for all benchmarks Other restrictions Peak: Run is optimized for obtaining the peak performance for each benchmark program.

#### CFP2000: 3.6GHz Pentium 4, HT Technology (D925XCV/AA-400 Motherboard)




## CINT2000: 1.7GHz Pentium 4 (D850MD Motherboard)



Fall 2013 . . .

## CFP2000: 1.7GHz Pentium 4 (D850MD Motherboard)



#### Additional SPEC Benchmarks

SPECweb99: measures the performance of a computer in a networked environment.

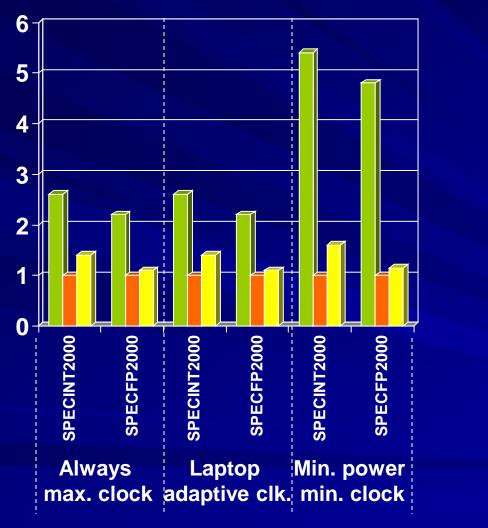
Energy efficiency mode: Besides the execution time, energy efficiency of SPEC benchmark programs is also measured. Energy efficiency of a benchmark program is given by:

Energy efficiency =

1/(Execution time)

Power in watts Program units/joule

# Energy Efficiency


Efficiency averaged on *n* benchmark programs:

Efficiency =  $\left(\prod_{i=1}^{n} \text{Efficiency}_{i}\right)^{1/n}$ 

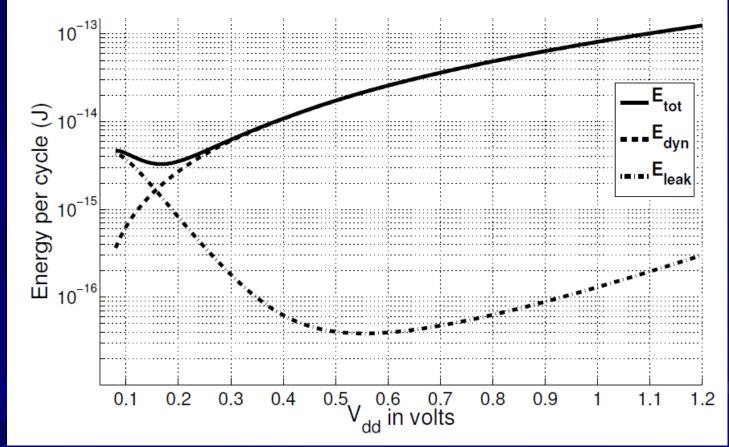
where Efficiency<sub>i</sub> is the efficiency for program *i*.
Relative efficiency:

Relative efficiency =  $\frac{\text{Efficiency of a computer}}{\text{Eff. of reference computer}}$ 

#### SPEC2000 Relative Energy Efficiency



 Pentium M @1.6/0.6GHz Energyefficient procesor
 Pentium 4-M @2.4GHz (Reference)

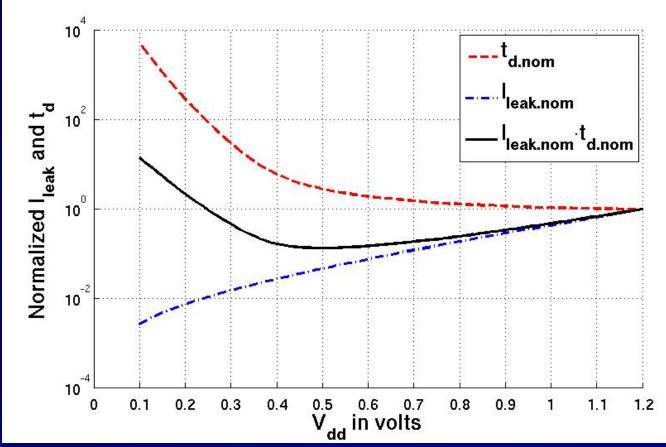

Pentium III-M @1.2GHz

Energy and Time Perspectives Clock cycle is the unit of computing work. Cycle rate, f cycles per second f is the rate of doing computing work Hardware speed, similar to mph for a car Cycle efficiency, η cycles per joule η is the computing work per energy unit Hardware efficiency, similar to mpg for a car Results from recent work: A. Shinde, "Managing Performance and Efficiency of a Processor," MEE Project Report, Auburn Univ., Dec. 2012. A. Shinde and V. D. Agarwal, "Managing Performance and Efficiency of a Processor," Proc. 45th IEEE Southeastern Symposium on System Theory, Baylor Univ., TX, March 2013.

Fall 2013 . .

Lecture

# Energy/Cycle for an 8-bit Adder in 90nm CMOS Technology (PTM)

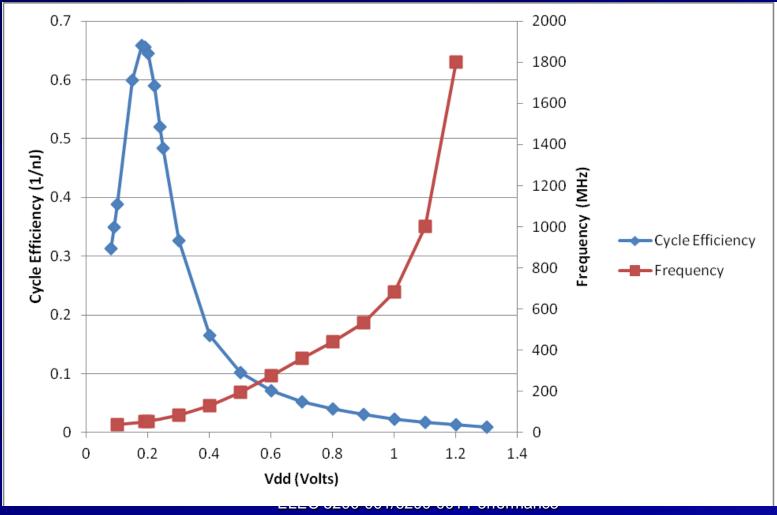



K. Kim, "Ultra Low Power CMOS Design" *PhD Dissertation*, Auburn University, Dept. of ECE, Auburn, Alabama, May 2011. ELEC 5200-001/6200-001 Performance

Fall 2013 . . .

Lecture

#### Delay of an 8-bit Adder in 90nm CMOS Technology (PTM)




K. Kim, "Ultra Low Power CMOS Design" *PhD Dissertation*, Auburn University, Dept. of ECE, Auburn, Alabama, May 2011.

## Pentium M Processor

- Published data: H. Hanson, K. Rajamani, S. Keckler, F. Rawson, S. Ghiasi, J. Rubio, "Thermal Response to DVFS: Analysis with an Intel Pentium M," *Proc. International Symp. Low Power Electronics and Design*, 2007, pp. 219-224.
- VDD = 1.2V
- Maximum clock rate = 1.8GHz
- Critical path delay, td = 1/1.8GHz = 555.56ps
- Power consumption = 120W
- Energy per cycle, EPC = 120/(1.8GHz) = 66.67nJ

# Cycle Efficiency and Frequency for Pentium M



Fall 2013 . . .

Lecture

# Example of Power Management For a program that executes in 1.8 billion clock cycles.

| Voltage<br>VDD | Frequency<br>f<br>MHz                         | Cycle Efficiency,<br>η  | Execution<br>Time<br>second | Total<br>Energy<br>Consumed | Power<br>f/η |
|----------------|-----------------------------------------------|-------------------------|-----------------------------|-----------------------------|--------------|
| 1.2 V          | 1800<br>megacycles/s                          | 15<br>megacycles/joule  | 1.0                         | 120 Joules                  | 120W         |
| 0.6 V          | 277<br>megacycles/s                           | 70<br>megacycles/joule  | 6.5                         | 25 Joules                   | 39.6W        |
| 200 mV         | 54.5<br>megacycles/s                          | 660<br>megacycles/joule | 33                          | 2.72 Joules                 | 0.083W       |
| Fall 2013      | ELEC 5200-001/6200-001 Performance<br>Lecture |                         |                             |                             | 44           |

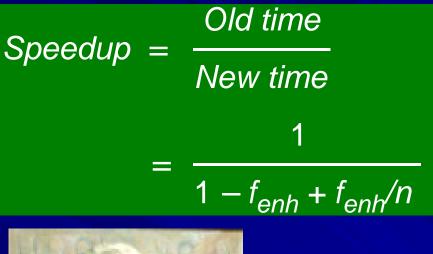
#### Ways of Improving Performance

Increase clock rate.

Improve processor organization for lower CPI
 Pipelining

Instruction-level parallelism (ILP): MIMD (Scalar)

Data-parallelism: SIMD (Vector)

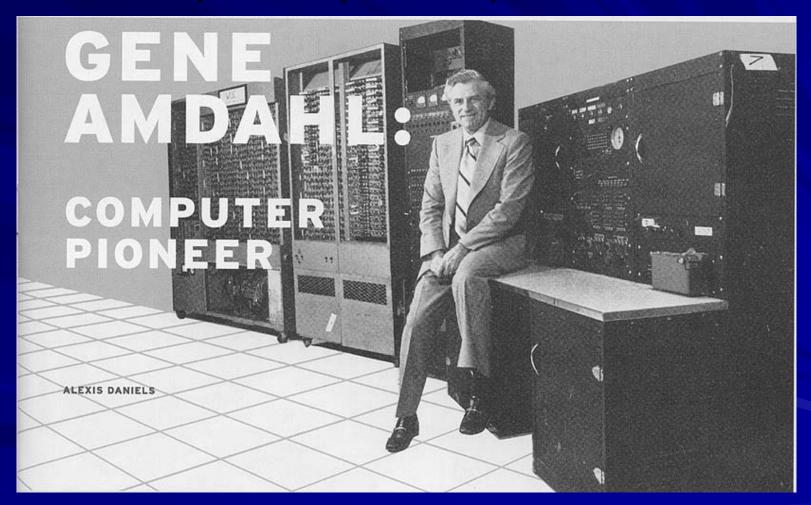

multiprocessing

Compiler enhancements that lower the instruction count or generate instructions with lower average CPI (e.g., by using simpler instructions).

Limits of Performance Execution time of a program on a computer is 100 s: 80 s for multiply operations 20 s for other operations Improve multiply n times: Execution time =  $\left(\frac{80}{n} + 20\right)$  seconds Limit: Even if  $n = \infty$ , execution time cannot be reduced below 20 s.

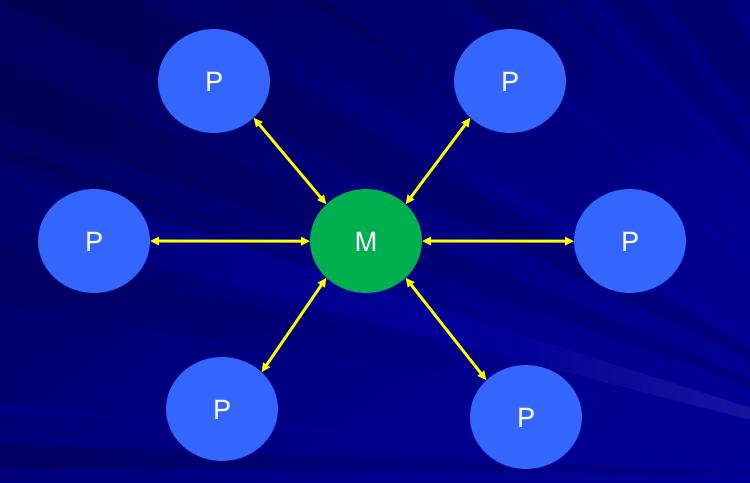
# Amdahl's Law

- The execution time of a system, in general, has two fractions a fraction f<sub>enh</sub> that can be speeded up by factor *n*, and the remaining fraction 1 f<sub>enh</sub> that cannot be improved. Thus, the possible speedup is:
- G. M. Amdahl, "Validity of the Single Processor Approach to Achieving Large-Scale
   Computing Capabilities," *Proc. AFIPS Spring Joint Computer Conf.*, Atlantic City, NJ, April
   1967, pp. 483-485.






Gene Myron Amdahl born 1922


http://en.wikipedia.org/wiki/Gene\_Amdahl

## Wisconsin Integrally Synchronized Computer (WISC), 1950-51



Fall 2013 . . .

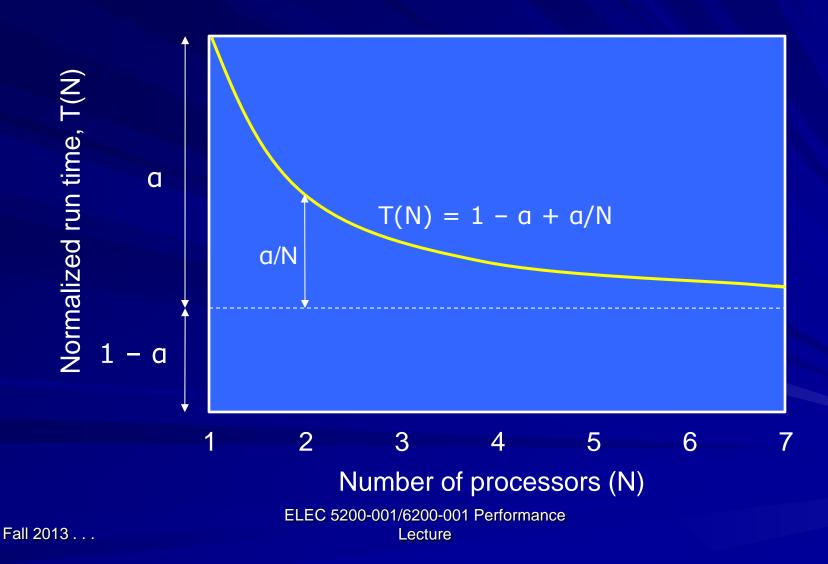
## Parallel Processors: Shared Memory



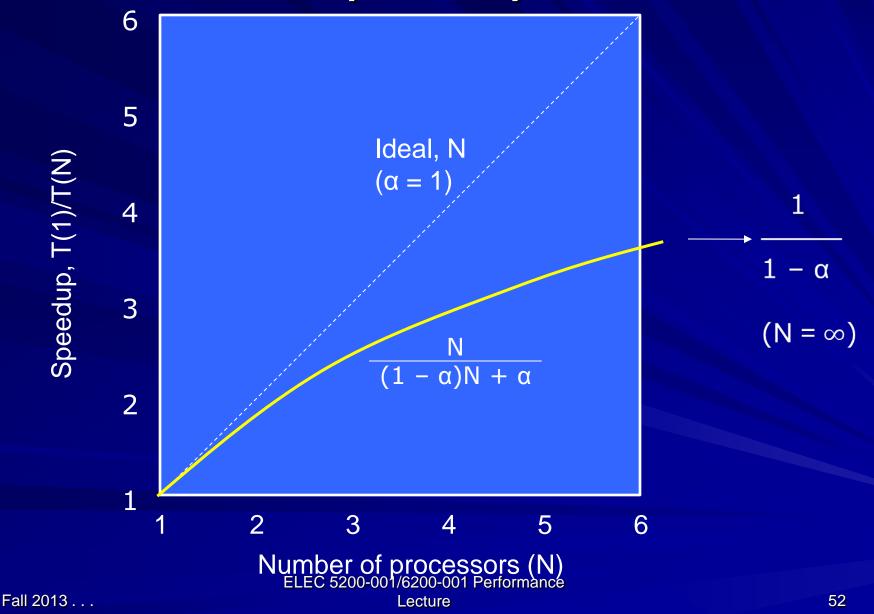
Fall 2013 . . .

# Parallel Processors Shared Memory, Infinite Bandwidth

#### N processors


Single processor: non-memory execution time = a

- Memory access time = 1 a
- N processor run time, T(N) = 1 a + a/N


T(1)
$$T(1) = \frac{T(1)}{T(N)} = \frac{1}{1-a+a/N} = \frac{1}{(1-a)N+a}$$

Maximum speedup = 1/(1 - a), when N =  $\infty$ 

## Run Time



#### Speedup

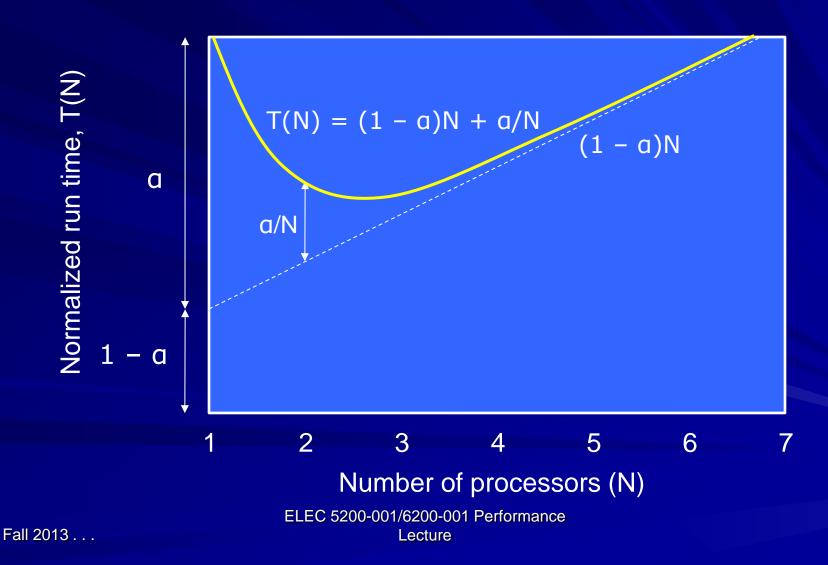




10% memory accesses, i.e., a = 0.9
Maximum speedup=1/(1 − a) =1.0/0.1 = 10, when N = ∞
What is the speedup with 10 processors?

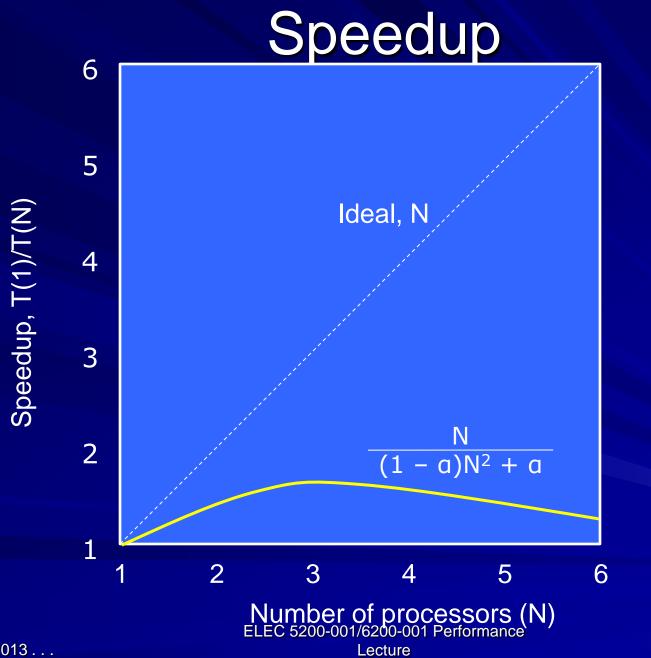
# Parallel Processors Shared Memory, Finite Bandwidth

#### N processors


Single processor: non-memory execution time = a

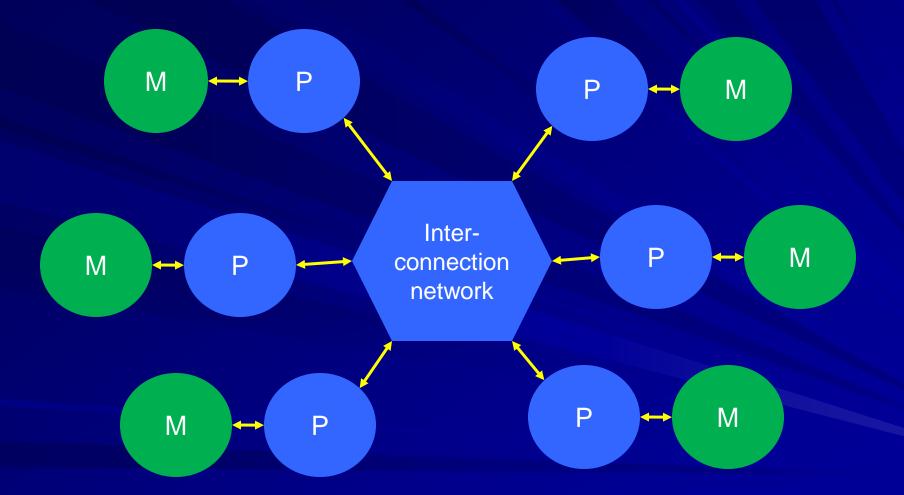
- Memory access time = (1 a)N
- N processor run time, T(N) = (1 a)N + a/N

$$I \qquad N$$


$$Speedup = \frac{1}{(1-a)N + a/N} = \frac{1}{(1-a)N^2 + a}$$

## Run Time




## Minimum Run Time

Minimize N processor run time, T(N) = (1 - a)N + a/N $\square 1 - a - a/N^2 = 0, N = [a/(1 - a)]^{\frac{1}{2}}$ Min. T(N) =  $2[a(1 - a)]^{\frac{1}{2}}$ , because  $\frac{\partial^2 T(N)}{\partial N^2} > 0$ . Maximum speedup =  $1/T(N) = 0.5[a(1 - a)]^{-1/2}$ Example: a = 0.9Maximum speedup = 1.67, when N = 3



Fall 2013 . . .

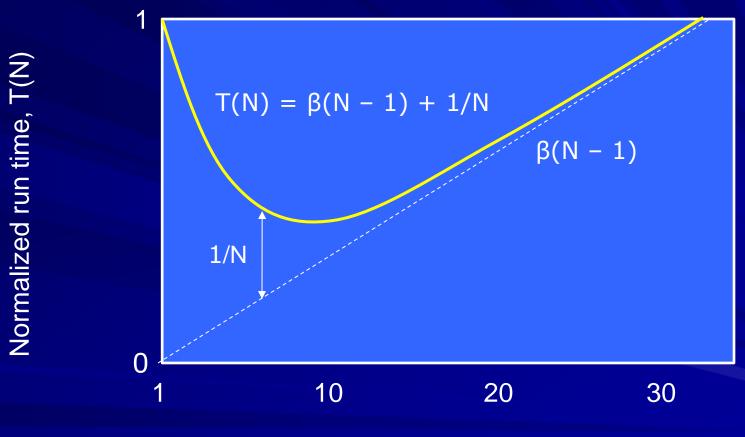
#### Parallel Processors: Distributed Memory



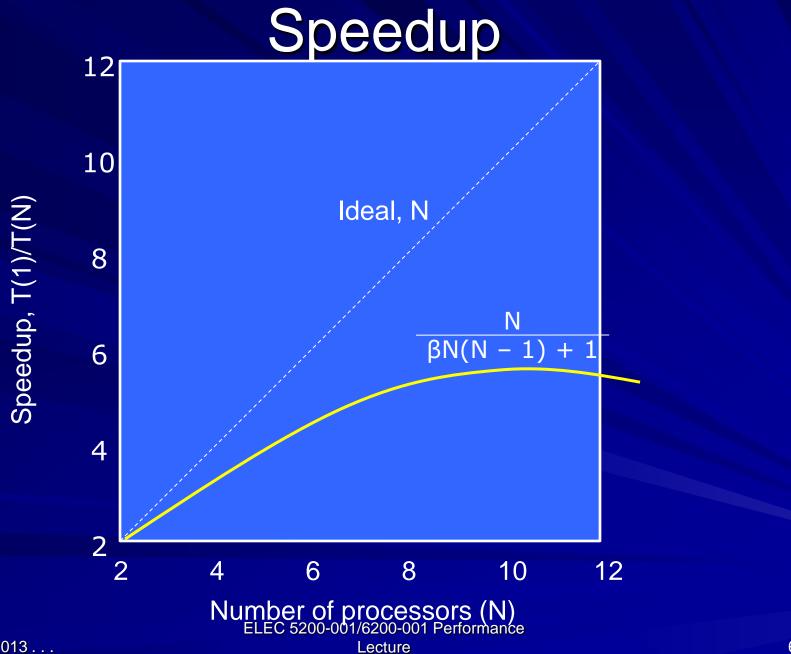
Fall 2013 . . .

# Parallel Processors Distributed Memory

#### N processors


Single processor: non-memory execution time = a

- Memory access time = 1 a, same as single processor
- Communication overhead =  $\beta(N 1)$
- N processor run time,  $T(N) = \beta(N 1) + 1/N$


$$\square Speedup = \frac{1}{\beta(N-1) + 1/N} = \frac{N}{\beta N(N-1) + 1}$$

Minimum Run Time Minimize N processor run time,  $T(N) = \beta(N - 1) + 1/N$  $\blacksquare \partial T(N) / \partial N = 0$  $\square \beta - 1/N^2 = 0, N = \beta^{-1/2}$ ■ Min. T(N) =  $2\beta^{\frac{1}{2}} - \beta$ , because  $\partial^2 T(N)/\partial N^2 > 0$ . Maximum speedup =  $1/T(N) = 1/(2\beta^{\frac{1}{2}} - \beta)$ Example:  $\beta = 0.01$ , Maximum speedup: ■N = 10 T(N) = 0.19Speedup = 5.26

## Run Time



Number of processors (N)



# **Further Reading**

- G. M. Amdahl, "Validity of the Single Processor Approach to Achieving Large-Scale Computing Capabilities," *Proc. AFIPS Spring Joint Computer Conf.*, Atlantic City, NJ, Apr. 1967, pp. 483-485.
- J. L. Gustafson, "Reevaluating Amdahl's Law," Comm. ACM, vol. 31, no. 5, pp. 532-533, May 1988.
- M. D. Hill and M. R. Marty, "Amdahl's Law in the Multicore Era," Computer, vol. 41, no. 7, pp. 33-38, July 2008.
- D. H. Woo and H.-H. S. Lee, "Extending Amdahl's Law for Energy-Efficient Computing in the Many-Core Era," *Computer*, vol. 41, no. 12, pp. 24-31, Dec. 2008.
- S. M. Pieper, J. M. Paul and M. J. Schulte, "A New Era of Performance Evaluation," *Computer*, vol. 40, no. 9, pp. 23-30, Sep. 2007.
- S. Gal-On and M. Levy, "Measuring Multicore Performance," Computer, vol. 41, no. 11, pp. 99-102, November 2008.

 S. Williams, A. Waterman and D. Patterson, "Roofline: An Insightful Visual Performance Model for Multicore Architectures," *Comm. ACM*, vol. 52, no. 4, pp. 65-76, Apr. 2009. ELEC 5200-001/6200-001 Performance Fall 2013...