Memory Systems

Patterson & Hennessey Chapter 5

Memory Hierarchy

 $Memory \ Content: \ M_C \subseteq M_M \subseteq \ M_D \subseteq \ M_A$

Memory Parameters:

- Access Time: increase with distance from CPU
- Cost/Bit: decrease with distance from CPU
- Capacity: increase with distance from CPU

Other Factors:

- Energy consumption
- Reliability
- Size/density

Memory Technology

- Static RAM (SRAM)
 - 0.5 ns 2.5 ns, \$2000 \$5000 per GB
- Dynamic RAM (DRAM)
 - 50ns 70ns, \$20 \$75 per GB
- Magnetic disk
 - 5ms 20ms, \$0.20 \$2 per GB
- Ideal memory
 - Access time of SRAM
 - Capacity and cost/GB of disk

Memory Hierarchy

Size of the memory at each level

Locality of Reference

- Programs access a small proportion of their address space at any time
- If an item is referenced:
 - temporal locality: it will tend to be referenced again soon
 - spatial locality: nearby items will tend to be referenced soon Why does code have locality?
- Our initial focus: two levels (upper, lower)
 - block: minimum unit of data transferred
 - hit: data requested is in the upper level
 - miss: data requested is not in the upper level

Taking Advantage of Locality

- Memory hierarchy
- Store everything on disk
- Copy recently accessed (and nearby) items from disk to smaller DRAM memory
 - Main memory
- Copy more recently accessed (and nearby) items from DRAM to smaller/faster SRAM memory
 - Cache memory attached to CPU

Memory Hierarchy Levels

- Block (aka line): unit of copying
 - May be multiple words
- If accessed data is present in upper level
 - Hit: access satisfied by upper level
 - Hit ratio: hits/accesses
- If accessed data is absent
 - Miss: block copied from lower level
 - Time taken: miss penalty
 - Miss ratio: misses/accesses
 - = 1 hit ratio
 - Then accessed data supplied from upper level

Memory Performance

- <u>Access Time</u> (latency) from initiation of memory read to valid data returned to CPU
 - Cache: T_A typically = CPU cycle time
 - Main: T_A typically = multiple CPU cycles
 - ullet Disk: T_A typically several orders of magnitude greater than CPU cycle time (software controlled)
- <u>Bandwidth</u> (throughput) = number of bytes transferred per second

$$BW = (bytes/transfer) \times (transfers/second)$$

Ex. Synchronous Dynamic RAM "burst transfers"

Memory Access Modes

- Random Access locations accessed in any order with access time independent of location
 - SRAM
 - ROM/EPROM/EEPROM/Flash technologies
 - DRAM (some special modes available)
 - Cache
- Serial Access locations must be accessed in a predetermined sequence (ex. tape)
 - Disk position read element over a track, and then serial access within the track
 - CDROM data recorded in a "spiral"

Memory Write Strategies

- Writing a new value of an item in a hierarchical memory which has copies in multiple memory levels
- "Write-through" strategy
 - Update all levels of memory on each write
 - All levels "consistent" or "coherent" at all times
- "Write-back" strategy
 - Update closest (fastest) copy during write operation
 - Copy the value to other levels at "convenient time"
 - Memory state temporarily inconsistent

Types of Computer Memories

From the cover of:

A. S. Tanenbaum, *Structured Computer Organization, Fifth Edition*, Upper Saddle River, New Jersey: Pearson Prentice Hall, 2006.

Memory device organization

Memory "organization" = 2ⁿ x d (from system designer's perspective)

- Size.
 - Address width.

$$n = r + c$$

- Aspect ratio.
 - Data width d.

Hardware Issues

Make reading multiple words easier by using banks of memory

It can get a lot more complicated.

Six-Transistor SRAM Cell

Typical generic SRAM

- •Often have a single R/W' signal instead of OE' and WE'.
- •Multi-byte Data bus devices usually have byte-select signals.

Generic SRAM timing

512K x 16 SRAM (on uCdragon board)

Dynamic RAM (DRAM) Cell

Generic DRAM device

RAS: Row Address Strobe

CAS: Column Address Strobe

Adrs: Multiplexed Row/Column

address

CE: Chip-enable (if present)

Micron 256Mbit DDR SDRAM

- MT46V64M4 16 Meg x 4 x 4 banks
- MT46V32M8 8 Meg x 8 x 4 banks
- MT46V16M16 4 Meg x 16 x 4 banks

Tcycle = 7.5ns

- Internal, pipelined double-data-rate (DDR)
- 4 internal banks for concurrent operation
- Programmable burst lengths: 2, 4, 8
- Auto refresh 64ms, 8192 cycles