
Chapter 3
Arithmetic for Computers
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Arithmetic for Computers
 Operations on integers
 Addition and subtraction
 Multiplication and division
 Dealing with overflow

 Floating-point real numbers
 Representation and operations 

§3.1 Introduction
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Taxonomy of Computer Information 
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Information

Instructions AddressesData

Numeric Non-numeric

Fixed-point Floating-point Character
(ASCII)

Boolean

Unsigned
(ordinal)

Signed

Sign-magnitude 2’s complement

Single-
precision

Other

Double-
precision
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Number Format Considerations
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 Type of numbers (integer, fraction, real, complex)
 Range of values
 between smallest and largest values
 wider in floating-point formats

 Precision of values (max. accuracy)
 usually related to number of bits allocated

n bits => represent 2n values/levels
 Value/weight of least-significant bit

 Cost of hardware to store & process numbers (some formats 
more difficult to add, multiply/divide, etc.)
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Unsigned Integers
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 Positional number system:
an-1an-2  ….  a2a1a0 = 

an-1x2n-1 + an-2x2n-2 + …  + a2x22 + a1x21 + a0x20

 Range = [(2n -1) … 0]

 Carry out of MSB has weight 2n

 Fixed-point fraction:
0.a-1a-2  ….  a-n = a-1x2-1 + a-2x2-2 + …  + a-nx2-n
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Signed Integers
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 Sign-magnitude format (n-bit values):
A = San-2  ….  a2a1a0      (S = sign bit)

 Range = [-(2n-1-1) … +(2n-1-1)]
 Addition/subtraction difficult (multiply easy)
 Redundant representations of 0

 2’s complement format (n-bit values):
-A  represented by 2n – A

 Range = [-(2n-1) … +(2n-1-1)]
 Addition/subtraction easier (multiply harder)
 Single representation of 0
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MIPS
 MIPS architecture uses 32-bit numbers. What is the range of 

integers (positive and negative) that can be represented?
Positive integers: 0 to 2,147,483,647
Negative integers: - 1 to - 2,147,483,648

 What are the binary representations of the extreme positive and 
negative integers?
0111 1111 1111 1111 1111 1111 1111 1111 = 231 - 1= 2,147,483,647
1000 0000 0000 0000 0000 0000 0000 0000 = - 231 = - 2,147,483,648

 What is the binary representation of zero?
0000 0000 0000 0000 0000 0000 0000 0000



Computing the 2’s Complement
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To compute the 2’s complement of A:

 Let A = an-1an-2  ….  a2a1a0 

 2n - A  = 2n -1 + 1 – A  = (2n -1) - A + 1

1    1    …   1  1  1
- an-1 an-2  ….    a2 a1 a0    + 1

-------------------------------------
a’n-1a’n-2  ….  a’2a’1a’0  + 1  (one’s complement + 1)
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2’s Complement Arithmetic
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 Let (2n-1-1)  ≥ A ≥ 0 and (2n-1-1)  ≥ B ≥ 0

 Case 1:  A + B
 (2n-2)  ≥ (A + B) ≥ 0 
 Since result < 2n, there is no carry out of the MSB

 Valid result if (A + B) < 2n-1

 MSB (sign bit) = 0

 Overflow if (A + B) ≥ 2n-1   

 MSB (sign bit) = 1 if result ≥ 2n-1 

 Carry into MSB
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2’s Complement Arithmetic
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 Case 2: A - B 
 Compute by adding: A + (-B)
 2’s complement:       A + (2n - B)
 -2n-1 < result < 2n-1   (no overflow possible)
 If A ≥ B:    2n + (A - B) ≥ 2n

 Weight of adder carry output = 2n

 Discard carry (2n), keeping (A-B), which is ≥ 0 

 If A < B:    2n + (A - B) < 2n

 Adder carry output = 0
 Result is 2n - (B - A)  = 

2’s complement representation of -(B-A)
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2’s Complement Arithmetic
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 Case 3:  -A - B
 Compute by adding: (-A) + (-B) 
 2’s complement:  (2n - A) + (2n - B) = 2n + 2n - (A + B)
 Discard carry (2n), making result 2n - (A + B)

= 2’s complement representation of -(A + B)
 0 ≥ result  ≥ -2n

 Overflow if  -(A + B) < -2n-1  

 MSB (sign bit) = 0 if 2n - (A + B) < 2n-1

 no carry into MSB

11



ELEC 5200/6200 - From P-H 
slides

Integer Subtraction
 Add negation of second operand
 Example: 7 – 6 = 7 + (–6)

+7: 0000 0000 … 0000 0111
–6: 1111 1111 … 1111 1010
+1: 0000 0000 … 0000 0001

 Overflow if result out of range
 Subtracting two +ve or two –ve operands, no overflow
 Subtracting +ve from –ve operand
 Overflow if result sign is 0

 Subtracting –ve from +ve operand
 Overflow if result sign is 1
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Relational Operators
Compute A-B & test ALU “flags” to compare A vs. B 

ZF = result zero OF = 2’s complement overflow
SF = sign bit of result      CF = adder carry output

Signed Unsigned

A = B ZF = 1 ZF = 1

A <> B ZF = 0 ZF = 0

A ≥ B (SF ⊕ OF) = 0 CF = 1 (no borrow)

A > B (SF ⊕ OF) + ZF = 0 CF ⋅ ZF’ = 1 

A ≤ B (SF ⊕ OF) + ZF = 1 CF ⋅ ZF’ = 0

A < B (SF ⊕ OF) = 1 CF = 0 (borrow)
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MIPS Overflow Detection
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 An exception (interrupt) occurs when overflow detected for 
add,addi,sub
 Control jumps to predefined address for exception
 Interrupted address is saved for possible resumption

 Details based on software system / language
 example:  flight control vs. homework assignment

 Don't always want to detect overflow
— new MIPS instructions:  addu, addiu, subu

note:   addiu still sign-extends!
note:   sltu,  sltiu for unsigned comparisons
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Dealing with Overflow
 Some languages (e.g., C) ignore overflow
 Use MIPS addu, addui, subu instructions

 Other languages (e.g., Ada, Fortran) require raising an 
exception
 Use MIPS add, addi, sub instructions
 On overflow, invoke exception handler
 Save PC in exception program counter (EPC) register
 Jump to predefined handler address
 mfc0 (move from coprocessor reg) instruction can retrieve EPC value, 

to return after corrective action
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Designing the Arithmetic & Logic Unit 
(ALU)
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 Provide arithmetic and logical functions as needed by the 
instruction set

 Consider tradeoffs of area vs. performance
(Material from Appendix B)

32

32

32

operation

result

a

b

ALU
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Different Implementations
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 Not easy to decide the “best” way to build something
 Don't want too many inputs to a single gate (fan in)
 Don’t want to have to go through too many gates (delay)
 For our purposes, ease of comprehension is important

 Let's look at a 1-bit ALU for addition:

 How could we build a 1-bit ALU for add, and, and or?

 How could we build a 32-bit ALU?

cout = a b + a cin + b cin
sum = a xor b xor cin

Sum

CarryIn

CarryOut

a

b
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Building a 32 bit ALU
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b

0

2

Result

Operation

a

1

CarryIn

CarryOut

Result31
a31

b31

Result0

CarryIn

a0

b0

Result1
a1

b1

Result2
a2

b2

Operation

ALU0

CarryIn

CarryOut

ALU1

CarryIn

CarryOut

ALU2

CarryIn

CarryOut

ALU31

CarryIn
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What about subtraction  (a – b)  ?
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 Two's complement approach:  just negate b and add.

0

2

Result

Operation

a

1

CarryIn

CarryOut

0

1

Binvert

b

19



Adding a NOR function
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 Can also choose to invert a.   How do we get “a NOR b” ?

Binvert

a

b

CarryIn

CarryOut

Operation

1

0

2+

Result

1

0

Ainvert

1

0
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Tailoring the ALU to the MIPS
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 Need to support the set-on-less-than instruction (slt)

 remember:  slt is an arithmetic instruction

 produces a 1 if rs < rt and 0 otherwise

 use subtraction:  (a-b) < 0 implies a < b

 Need to support test for equality (beq $t5, $t6, $t7)

 use subtraction:  (a-b) = 0 implies a = b
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Supporting slt
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Use this ALU for most significant bit
all other bits

Binvert

a

b

CarryIn

Operation

1

0

2+

Result

1

0

3Less

Overflow
detection

Set

Overflow

Ainvert

1

0

Binvert

a

b

CarryIn

CarryOut

Operation

1

0

2+

Result

1

0

Ainvert

1

0

3Less
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Supporting slt
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a0

Operation

CarryIn
ALU0
Less

CarryOut

b0

CarryIn

a1 CarryIn
ALU1
Less

CarryOut

b1

Result0

Result1

a2 CarryIn
ALU2
Less

CarryOut

b2

a31 CarryIn
ALU31
Less

b31

Result2

Result31

...
...

...

Binvert
Ainvert

0

0

0 Overflow
Set

CarryIn
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Test for equality

ELEC 5200/6200 - From P-H slides

 Notice control lines:

0000 = and
0001 = or
0010 = add
0110 = subtract
0111 = slt
1100 = NOR

•Note:  zero is a 1 when the result is zero!

a0

Operation

CarryIn
ALU0
Less

CarryOut

b0

a1 CarryIn
ALU1
Less

CarryOut

b1

Result0

Result1

a2 CarryIn
ALU2
Less

CarryOut

b2

a31 CarryIn
ALU31
Less

b31

Result2

Result31

...
...

...

Bnegate
Ainvert

0

0

0 Overflow
Set

CarryIn
...

...
Zero
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Conclusion
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 We can build an ALU to support the MIPS instruction set
 key idea:  use multiplexor to select the output we want
 we can efficiently perform subtraction using two’s complement
 we can replicate a 1-bit ALU to produce a 32-bit ALU

 Important points about hardware
 all of the gates are always working
 the speed of a gate is affected by the number of inputs to the gate
 the speed of a circuit is affected by the number of gates in series

(on the “critical path” or the “deepest level of logic”)
 Our primary focus:  comprehension,  however,
 Clever changes to organization can improve performance

(similar to using better algorithms in software)
 We saw this in multiplication, let’s look at addition now
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Problem:  ripple carry adder is slow
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 Is a 32-bit ALU as fast as a 1-bit ALU?
 Is there more than one way to do addition?
 two extremes:  ripple carry and sum-of-products

Can you see the ripple?  How could you get rid of it?

c1 = b0c0 + a0c0 + a0b0
c2 = b1c1 + a1c1 + a1b1 c2 = 
c3 = b2c2 + a2c2 + a2b2 c3 = 
c4 = b3c3 + a3c3 + a3b3 c4 = 

Not feasible!  Why?
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One-bit Full-Adder Circuit
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ai

bi

XOR

AND

XOR

AND
OR

ci

sumi

Ci+1

FAi
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32-bit Ripple-Carry Adder
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FA0
FA1

FA2

FA31

c0
a0
b0 a1

b1 a2
b2

a31
b31

sum0

sum1

sum2

sum31
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How Fast is Ripple-Carry Adder?
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 Longest delay path (critical path) runs from cin to sum31.
 Suppose delay of full-adder is 100ps.
 Critical path delay = 3,200ps
 Clock rate cannot be higher than 1012/3,200 = 312MHz.
 Must use more efficient ways to handle carry.
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Fast Adders
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 In general, any output of a 32-bit adder can be evaluated as a 
logic expression in terms of all 65 inputs.

 Levels of logic in the circuit can be reduced to log2N for N-bit 
adder. Ripple-carry has N levels.

 More gates are needed, about log2N times that of ripple-carry 
design.

 Fastest design is known as carry lookahead adder.
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N-bit Adder Design Options

Type of adder Time complexity
(delay)

Space complexity
(size)

Ripple-carry O(N) O(N)

Carry-lookahead O(log2N) O(N log2N)

Carry-skip O(√N) O(N)

Carry-select O(√N) O(N)
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Reference: J. L. Hennessy and D. A. Patterson, Computer Architecture:
A Quantitative Approach, Second Edition, San Francisco, California,
1990.
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Carry-lookahead adder
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 An approach in-between our two extremes
 Motivation: 
 If we didn't know the value of carry-in, what could we do?
 When would we always generate a carry?  gi = aibi
 When would we propagate the carry?    pi = ai + bi

 Did we get rid of the ripple?
c1 = g0 + p0c0 
c2 = g1 + p1c1 c2 = g1 + p1 g0 + p1p0c0 
c3 = g2 + p2c2 c3 = …
c4 = g3 + p3c3 c4 = …

Feasible!  Why?
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Use principle to build bigger adders

 Can’t build a 16 bit adder this way... (too big)
 Could use ripple carry of 4-bit CLA adders
 Better:  use the CLA principle again! 
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a4 CarryIn

ALU1
   P1
  G1

b4
a5
b5
a6
b6
a7
b7

a0 CarryIn

ALU0
   P0
  G0

b0

Carry-lookahead unit

a1
b1
a2
b2
a3
b3

CarryIn

Result0–3

pi
gi

ci + 1

pi + 1
gi + 1

C1

Result4–7

a8 CarryIn

ALU2
   P2
  G2

b8
a9
b9

a10
b10
a11
b11

ci + 2

pi + 2
gi + 2

C2

Result8–11

a12 CarryIn

ALU3
   P3
  G3

b12
a13
b13
a14
b14
a15
b15

ci + 3

pi + 3
gi + 3

C3

Result12–15

ci + 4
C4

CarryOut
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Carry-Select Adder

ELEC 5200/6200 - From P-H slides

16-bit
ripple
carry
adder

a0-a15

b0-b15

cin

sum0-sum15

16-bit
ripple
carry
adder

a16-a31

b16-b31

0

16-bit
ripple
carry
adder

a16-a31

b16-b31

1

M
ul

tip
le

xe
r

sum16-sum31

0

1
This is known as
carry-select adder
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ALU Summary
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 We can build an ALU to support MIPS addition
 Our focus is on comprehension, not performance
 Real processors use more sophisticated techniques for arithmetic
 Where performance is not critical, hardware description languages allow 

designers to completely automate the creation of hardware!
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Multiplication
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 More complicated than addition
 accomplished via shifting and addition

 More time and more area
 Let's look at 3 versions based on a gradeschool algorithm

0010 (multiplicand)

__x_1011 (multiplier)

 Negative numbers:  convert and multiply
 there are better techniques, we won’t look at them
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Multiplication
 Start with long-multiplication approach

1000
× 1001

1000
0000 
0000  
1000   
1001000

Length of product is 
the sum of operand 

lengths

multiplicand

multiplier

product

§3.3 M
ultiplication
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Multiplication Hardware

Initially 0
Control

Datapath38
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Optimized Multiplier
 Perform steps in parallel: add/shift

 One cycle per partial-product addition
 That’s ok, if frequency of multiplications is low
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Example: 0010two× 0011two

Iteration Step Multiplicand Product
0 Initial values 0010 0000 0011
1 LSB=1 => Prod=Prod+Mcand 0010 0010 0011

Right shift product 0010 0001 0001
2 LSB=1 => Prod=Prod+Mcand 0010 0011 0001

Right shift product 0010 0001 1000
3 LSB=0 => no operation 0010 0001 1000

Right shift product 0010 0000 1100
4 LSB=0 => no operation 0010 0000 1100

Right shift product 0010 0000 0110

0010two× 0011two = 0110two, i.e., 2ten×3ten = 6ten
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Faster Multiplier
 Uses multiple adders
 Cost/performance tradeoff

 Can be pipelined
 Several multiplication performed in parallel
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MIPS Multiplication
 Two 32-bit registers for product
 HI: most-significant 32 bits
 LO: least-significant 32-bits

 Instructions
 mult rs, rt  /  multu rs, rt
 64-bit product in HI/LO

 mfhi rd  /  mflo rd
 Move from HI/LO to rd
 Can test HI value to see if product overflows 32 bits

 mul rd, rs, rt
 Least-significant 32 bits of product –> rd
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Multiplying Signed Numbers with
Boothe’s Algorithm
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 Consider A x B where A and B are signed integers (2’s 
complemented format)

 Decompose B into the sum B1 + B2 + … + Bn
A x B  = A x (B1 + B2 + … + Bn)

= (A x B1) + (A x B2) + … (A x Bn) 
 Let each Bi be a single string of 1’s embedded in 0’s:     

…0011…1100…
 Example:

0110010011100 =       0110000000000
+  0000010000000
+  0000000011100

43



Boothe’s Algorithm
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 Scanning from right to left, bit number u is the first 1 bit of 
the string and bit v is the first 0 left of the string:

v         u
Bi  =    0 … 0 1 … 1 0 … 0

=    0 … 0 1 … 1 1 … 1     (2v – 1)
- 0 … 0 0 … 0 1 … 1     (2u – 1) 

= (2v – 1) - (2u – 1)  
=  2v – 2u
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Boothe’s Algorithm
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 Decomposing B: 
A x B   =  A x (B1 + B2 + … )

= A x [(2v1 – 2u1) + (2v2 – 2u2) + …]
= (A x 2v1) – (A x 2u1) + (A x 2v2) – (A x 2u2) …

 A x B can be computed by adding and subtracted shifted 
values of A:
 Scan bits right to left, shifting A once per bit 
 When the bit string changes from 0 to 1, subtract shifted A 

from the current product  P – (A x 2u) 
 When the bit string changes from 1 to 0, add shifted A to the 

current product P + (A x 2v) 
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Booth Algorithm: Example 1
 7 × 3 = 21

0111 multiplicand = 7
×0011(0) multiplier = 3

11111001 bit-pair 10, add -7 in two’s com.
bit-pair 11, do nothing

000111 bit-pair 01, add 7
bit-pair 00, do nothing

00010101 = 21
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Booth Algorithm: Example 2
 7 × (-3) = -21

0111 multiplicand = 7
×1101(0) multiplier = -3

11111001 bit-pair 10, add -7 in two’s com.
0000111 bit-pair 01, add 7
111001 bit-pair 10, add -7 in two’s com.

bit-pair 11, do nothing
11101011 - 21
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Booth Algorithm: Example 3
 -7 × 3 = -21

1001 multiplicand = -7 in two’s com.
×0011(0) multiplier = 3

00000111 bit-pair 10, add 7
bit-pair 11, do nothing

111001 bit-pair 01, add -7
bit-pair 00, do nothing

11101011 - 21



ELEC 5200/6200 - From P-H slides49

Booth Algorithm: Example 4
 -7 × (-3) = 21

1001 multiplicand = -7 in two’s com.
×1101(0) multiplier = -3 in two’s com.

00000111 bit-pair 10, add 7
1111001 bit-pair 01, add -7 in two’s com.
000111 bit-pair 10, add 7

bit-pair 11, do nothing
00010101 21
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Booth Advantage
00010100    20

×00011110 30
00000000
00010100
00010100
00010100
00010100
00000000
00000000

00000000________
000001001011000   600

00010100    20
×000111100 30

111111111101100

00000010100

__________________
0000001001011000   600

Serial multiplication Booth algorithm

Four partial product additions Two partial product additions
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Adding Partial Products

y3 y2 y1 y0 Multiplicand
x3 x2 x1 x0 Multiplier
________________________
x0y3 x0y2 x0y1 x0y0

carry← x1y3 x1y2 x1y1 x1y0 Partial
carry← x2y3 x2y2 x2y1 x2y0 Products

carry← x3y3 x3y2 x3y1 x3y0
__________________________________________________
p7 p6 p5 p4 p3 p2 p1 p0

Requires three 4-bit adders. Slow.
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Array Multiplier: Carry Forward

y3 y2 y1 y0 Multiplicand
x3 x2 x1 x0 Multiplier

________________________
x0y3 x0y2 x0y1 x0y0

x1y3 x1y2 x1y1 x1y0 Partial
x2y3 x2y2 x2y1 x2y0 Products

x3y3 x3y2 x3y1 x3y0
__________________________________________________
p7 p6 p5 p4 p3 p2 p1 p0

Note: Carry is added to the next partial product. Adding the carry
from the final stage needs an extra stage. These additions are

faster but we need four stages.
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Basic Building Blocks
 Two-input AND
 Full-adder

Full
adder

yi     x0

p0i = x0yi

0th partial product
(k+1)th partial

product

kth
partial
product

yi      xk

carry bits
from (k-1)th

product

carry bits
to (k+1)th

product
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Array Multiplier
y3 y2 y1 y0

x0

x1

x2

x3

FA

xiyj
ppk

ppk+1
co

0

0

0

ci

0

0 0 0 0

p7 p6 p5 p4 p3 p2 p1 p0
FA FA FA FA

Critical path
0
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Types of Array Multipliers
 Baugh-Wooley Algorithm: Signed product by two’s 

complement addition or subtraction according to the MSB’s.
 Booth multiplier algorithm
 Tree multipliers
 Reference: N. H. E. Weste and D. Harris, CMOS VLSI Design, A 

Circuits and Systems Perspective, Third Edition, Boston: Addison-
Wesley, 2005.
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Division
 Check for 0 divisor
 Long division approach

 If divisor ≤ dividend bits
 1 bit in quotient, subtract

 Otherwise
 0 bit in quotient, bring down next dividend bit

 Restoring division
 Do the subtract, and if remainder goes < 0, add 

divisor back

 Signed division
 Divide using absolute values
 Adjust sign of quotient and remainder as 

required

1001
1000 1001010

-1000
10
101 
1010
-1000

10

n-bit operands yield n-bit
quotient and remainder

quotient

dividend

remainder

divisor

§3.4 D
ivision
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Division Hardware

Initially dividend

Initially divisor 
in left half
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Optimized Divider

 One cycle per partial-remainder subtraction
 Looks a lot like a multiplier!
 Same hardware can be used for both
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Deriving a Better Algorithm (1)
$R=0, $M=Divisor, $Q=Dividend, count=n  

Shift 1-bit left  $R, $Q 

$R ← $R - $M 

$R < 0?$Q0=1 $Q0=0
$R←$R+$M

count = count - 1

count = 0?
Done

$Q=Quotient
$R= Remainder

Start

Yes

Yes

No

No

$R and $M have
one extra sign bit
beyond 32 bits.

Restore $R
(remainder)

$R (33 b)|$Q (32 b)

Cycle contains
2 additions
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Deriving a Better Algorithm (2)
$R=0, $M=Divisor, $Q=Dividend, count=n  

Shift 1-bit left  $R, $Q 

$R ← $R - $M 

$R < 0?$Q0=1 $Q0=0

count = count - 1

count = 0?
Done

$Q=Quotient
$R= Remainder

Start

Yes

Yes

No

No

Restore $R
(remainder)

$R (33 b)|$Q (32 b)

$R←$R+$M$R < 0?
YesNo
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Deriving a Better Algorithm (3)
$R=0, $M=Divisor, $Q=Dividend, count=n  

Shift 1-bit left  $R, $Q 

$R ← $R - $M 

$R < 0?$Q0=1 $Q0=0

count = count - 1

count = 0?

Done
$Q=Quotient

$R= Remainder

Start

Yes

Yes

No

No

Restore $R
(remainder)

$R (33 b)|$Q (32 b)

$R←$R+$M
Yes

No
$R < 0?$R < 0?

$R←$R+$M

No

Yes
Restore $R
(remainder)
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Deriving a Better Algorithm (4)
$R=0, $M=Divisor, $Q=Dividend, count=n  

Shift 1-bit left  $R, $Q 

$R ← $R - $M 

$R < 0?$Q0=1 $Q0=0

count = count - 1

count = 0?

Done
$Q=Quotient

$R= Remainder

Start

Yes

Yes

No

No

Restore $R
(remainder)

$R (33 b)|$Q (32 b)

$R←$R+$M
Yes

No
$R < 0?

$R < 0? $R←$R+$M
No

Yes

Restore $R
(remainder)

$R,$Q = a
$M×232 = b

(a + b)2 – b
= 2a + b2a – b 

Restore $R
(remainder)
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Deriving a Better Algorithm (4)
$R=0, $M=Divisor, $Q=Dividend, count=n  

Shift 1-bit left  $R, $Q 

$R ← $R - $M  

$R < 0?$Q0=1 $Q0=0

count = count - 1

count = 0?

Done
$Q=Quotient

$R= Remainder

Start

Yes

Yes

No

No

Restore $R
(remainder)

$R (33 b)|$Q (32 b)

$R←$R+$M
Yes

No
$R < 0?

$R < 0?

$R←$R+$M 

No Yes
$R,#Q = a
$M×232 = b

2a + b2a – b 

Shift 1-bit left  $R, $Q



ELEC 5200/6200 - From P-H slides64

Non-Restoring Division Algorithm
$R=0, $M=Divisor, $Q=Dividend, count=n  

Shift 1-bit left  $R, $Q 

$R ← $R - $M  

$R < 0?$Q0=1 $Q0=0

count = count - 1

count = 0?

Done
$Q=Quotient

$R= Remainder

Start

Yes

Yes

No

No

Restore $R
(remainder)

$R (33 b)|$Q (32 b)

$R←$R+$M
Yes

No
$R < 0?

$R < 0?

$R←$R+$M 

No Yes

Shift 1-bit left  $R, $Q

Cycle
contains

1 addition
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Non-Restoring Division
 Avoids the addition in the restore operation – does exactly 

one add or subtract per cycle.
 Non-restoring division algorithm:
 Step 1: Repeat 32 times
 if sign bit of $R is 0

Left shift $R,Q one-bit and subtract, $R ← $R - $M
else (sign bit of $R is 1)

Left shift $R,Q one-bit and add, $R ← $R + $M 
 if sign bit of resulting $R is 0

Set Q0 = 1
else (sign bit of resulting $R is 1)
Set Q0 = 0

 Step 2: (after 32 Step 1 iterations) if sign bit of $R is 1, add 
$R ← $R + $M 
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Non-Restoring Division: 8/3 = 2 (Rem=2)

Initialize $R     = 0 0 0 0 0 $Q = 1 0 0 0 $M = 0 0 0 1 1
Step 1, L-shift $R,Q  =  0 0 0 0 1 $Q = 0 0 0 ? $M = 0 0 0 1 1

Subtract - $M   = 1 1 1 0 1
$R      = 1 1 1 1 0 $Q = 0 0 0 0

Step 1, L-shift $R,Q  = 1 1 1 0 0 $Q = 0 0 0 ? $M = 0 0 0 1 1
Add +$M   = 0 0 0 1 1

$R      = 1 1 1 1 1 $Q = 0 0 0 0

Step 1, L-shift $R,Q  = 1 1 1 1 0 $Q = 0 0 0 ? $M = 0 0 0 1 1
Add +$M   = 0 0 0 1 1

$R      = 0 0 0 0 1 $Q = 0 0 0 1

Step 1, L-shift $R,Q  = 0 0 0 1 0 $Q = 0 0 1 ? $M = 0 0 0 1 1
Subtract -$M    = 1 1 1 0 1 

$R      = 1 1 1 1 1 $Q = 0 0 1 0 Final quotient

Step 2, Add $R ← $R + $M = 11111+00011 = 00010 (Final remainder)
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Faster Division
 Can’t use parallel hardware as in multiplier
 Subtraction is conditional on sign of remainder

 Faster dividers (e.g. SRT devision) generate multiple quotient 
bits per step
 Still require multiple steps
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MIPS Division
 Use HI/LO registers for result
 HI: 32-bit remainder
 LO: 32-bit quotient

 Instructions
 div rs, rt  /  divu rs, rt

 No overflow or divide-by-0 checking
 Software must perform checks if required

 Use mfhi, mflo to access result
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