Chapter 3 Arithmetic for Computers

Arithmetic for Computers

- Operations on integers
 - Addition and subtraction
 - Multiplication and division
 - Dealing with overflow
- Floating-point real numbers
 - Representation and operations

Number Format Considerations

- Type of numbers (integer, fraction, real, complex)
- Range of values
 - between smallest and largest values
 - wider in floating-point formats
- Precision of values (max. accuracy)
 - usually related to number of bits allocated n bits => represent 2ⁿ values/levels
 - Value/weight of least-significant bit
- Cost of hardware to store & process numbers (some formats more difficult to add, multiply/divide, etc.)

Unsigned Integers

• Positional number system:

 $a_{n-1}a_{n-2} \dots a_2a_1a_0 =$

$$a_{n-1}x^{2^{n-1}} + a_{n-2}x^{2^{n-2}} + \dots + a_2x^{2^2} + a_1x^{2^1} + a_0x^{2^0}$$

• Range =
$$[(2^n - 1) \dots 0]$$

- Carry out of MSB has weight 2ⁿ
- Fixed-point fraction:

$$0.a_{-1}a_{-2} \dots a_{-n} = a_{-1}x^{2^{-1}} + a_{-2}x^{2^{-2}} + \dots + a_{-n}x^{2^{-n}}$$

ELEC 5200/6200 - From P-H slides

Signed Integers

• Sign-magnitude format (n-bit values):

 $A = Sa_{n-2 \dots} a_2 a_1 a_0 \quad (S = sign bit)$

- Range = $[-(2^{n-1}-1) \dots + (2^{n-1}-1)]$
- Addition/subtraction difficult (multiply easy)
- Redundant representations of 0
- 2's complement format (n-bit values):

-A represented by $2^n - A$

- Range = $[-(2^{n-1}) \dots + (2^{n-1}-1)]$
- Addition/subtraction easier (multiply harder)
- Single representation of 0

MIPS

• MIPS architecture uses 32-bit numbers. What is the range of integers (positive and negative) that can be represented?

Positive integers: 0 to 2,147,483,647

Negative integers: - 1 to - 2,147,483,648

What are the binary representations of the extreme positive and negative integers?

Computing the 2's Complement

To compute the 2's complement of A:

• Let
$$A = a_{n-1}a_{n-2} \dots a_2a_1a_0$$

•
$$2^{n} - A = 2^{n} - 1 + 1 - A = (2^{n} - 1) - A + 1$$

1 1 ... 1 1 1
-
$$a_{n-1}a_{n-2} \dots a_2a_1a_0 + 1$$

- $a'_{n-1}a'_{n-2} \dots a'_2a'_1a'_0 + 1$ (one's complement + 1)

2's Complement Arithmetic

- Let $(2^{n-1}-1) \ge A \ge 0$ and $(2^{n-1}-1) \ge B \ge 0$
- Case 1: A + B
 - $(2^{n}-2) \ge (A + B) \ge 0$
 - Since result $< 2^n$, there is no carry out of the MSB
 - Valid result if $(A + B) < 2^{n-1}$
 - MSB (sign bit) = 0
 - Overflow if $(A + B) \ge 2^{n-1}$
 - MSB (sign bit) = 1 if result $\geq 2^{n-1}$
 - Carry into MSB

2's Complement Arithmetic

- Case 2: A B
 - Compute by adding: A + (-B)
 - 2's complement: $A + (2^n B)$
 - $-2^{n-1} < \text{result} < 2^{n-1}$ (no overflow possible)
 - If $A \ge B$: $2^n + (A B) \ge 2^n$
 - Weight of adder carry output = 2^n
 - Discard carry (2^{n}) , keeping (A-B), which is ≥ 0
 - If A < B: $2^n + (A B) < 2^n$
 - Adder carry output = 0
 - Result is $2^n (B A) =$

2's complement representation of -(B-A)

2's Complement Arithmetic

- Case 3: -A B
 - Compute by adding: (-A) + (-B)
 - 2's complement: $(2^{n} A) + (2^{n} B) = 2^{n} + 2^{n} (A + B)$
 - Discard carry (2ⁿ), making result 2ⁿ (A + B)
 = 2's complement representation of -(A + B)
 - $0 \ge \text{result} \ge -2^n$
 - Overflow if $-(A + B) < -2^{n-1}$
 - MSB (sign bit) = 0 if $2^{n} (A + B) < 2^{n-1}$
 - no carry into MSB

Integer Subtraction

- Add negation of second operand
- Example: 7 6 = 7 + (-6)

+7:	0000 0000 0000 0111
<u>-6:</u>	1111 1111 1111 1010
+1:	0000 0000 0000 0001

- Overflow if result out of range
 - Subtracting two +ve or two -ve operands, no overflow
 - Subtracting +ve from -ve operand
 - Overflow if result sign is 0
 - Subtracting -ve from +ve operand
 - Overflow if result sign is 1

Relational Operators

Compute A-B & test ALU "flags" to compare A vs. B

ZF = result zero OF = 2's complement overflow

SF = sign bit of result CF = adder carry output

	Signed	Unsigned
A = B	ZF = 1	ZF = 1
A <> B	ZF = 0	ZF = 0
A≥B	(SF ⊕ OF) = 0	CF = 1 (no borrow)
A > B	(SF ⊕ OF) + ZF = 0	$CF \cdot ZF' = 1$
A≤B	(SF ⊕ OF) + ZF = 1	$CF \cdot ZF' = 0$
A < B	(SF ⊕ OF) = 1	CF = 0 (borrow)

MIPS Overflow Detection

- An exception (interrupt) occurs when overflow detected for add, addi, sub
 - Control jumps to predefined address for exception
 - Interrupted address is saved for possible resumption
- Details based on software system / language
 - example: flight control vs. homework assignment
- Don't always want to detect overflow

 new MIPS instructions: addu, addiu, subu

note: addiu still sign-extends!
note: sltu, sltiu for unsigned comparisons

Dealing with Overflow

- Some languages (e.g., C) ignore overflow
 - Use MIPS addu, addui, subu instructions
- Other languages (e.g., Ada, Fortran) require raising an exception
 - Use MIPS add, addi , sub instructions
 - On overflow, invoke exception handler
 - Save PC in exception program counter (EPC) register
 - Jump to predefined handler address
 - **mf c0** (move from coprocessor reg) instruction can retrieve EPC value, to return after corrective action

Designing the Arithmetic & Logic Unit (ALU)

- Provide arithmetic and logical functions as needed by the instruction set
- Consider tradeoffs of area vs. performance

(Material from Appendix B) operation

Different Implementations

- Not easy to decide the "best" way to build something
 - Don't want too many inputs to a single gate (fan in)
 - Don't want to have to go through too many gates (delay)
 - For our purposes, ease of comprehension is important
- Let's look at a 1-bit ALU for addition:

- How could we build a 1-bit ALU for add, and, and or?
- How could we build a 32-bit ALU?

Building a 32 bit ALU

What about subtraction (a = b) ?

• Two's complement approach: just negate b and add.

Adding a NOR function

• Can also choose to invert a. How do we get "a NOR b"?

Tailoring the ALU to the MIPS

- Need to support the set-on-less-than instruction (slt)
 - remember: slt is an arithmetic instruction
 - produces a 1 if rs < rt and 0 otherwise
 - use subtraction: (a-b) < 0 implies a < b
- Need to support test for equality (beq \$t5, \$t6, \$t7)
 - use subtraction: (a-b) = 0 implies a = b

Supporting slt

Use this ALU for most significant bit

Supporting slt

Test for equality

• Notice control lines:

0000 = and 0001 = or 0010 = add 0110 = subtract

0111 = slt

•Note: zero is a 1 when the result is zero?

Conclusion

• We can build an ALU to support the MIPS instruction set

- key idea: use multiplexor to select the output we want
- we can efficiently perform subtraction using two's complement
- we can replicate a 1-bit ALU to produce a 32-bit ALU
- Important points about hardware
 - all of the gates are always working
 - the speed of a gate is affected by the number of inputs to the gate
 - the speed of a circuit is affected by the number of gates in series (on the "critical path" or the "deepest level of logic")
- Our primary focus: comprehension, however,
 - Clever changes to organization can improve performance (similar to using better algorithms in software)
 - We saw this in multiplication, let's look at addition now ELEC 5200/6200 From P-H slides

Problem: ripple carry adder is slow

- Is a 32-bit ALU as fast as a 1-bit ALU?
- Is there more than one way to do addition?
 - two extremes: ripple carry and sum-of-products

Can you see the ripple? How could you get rid of it?

$$c_{1} = b_{0}c_{0} + a_{0}c_{0} + a_{0}b_{0}$$

$$c_{2} = b_{1}c_{1} + a_{1}c_{1} + a_{1}b_{1} \qquad c_{2} =$$

$$c_{3} = b_{2}c_{2} + a_{2}c_{2} + a_{2}b_{2} \qquad c_{3} =$$

$$c_{4} = b_{3}c_{3} + a_{3}c_{3} + a_{3}b_{3} \qquad c_{4} =$$
Not feasible! Why?

One-bit Full-Adder Circuit

32-bit Ripple-Carry Adder

How Fast is Ripple-Carry Adder?

- Longest delay path (critical path) runs from cin to sum31.
- Suppose delay of full-adder is 100ps.
- Critical path delay = 3,200ps
- Clock rate cannot be higher than $10^{12}/3,200 = 312$ MHz.
- Must use more efficient ways to handle carry.

Fast Adders

- In general, any output of a 32-bit adder can be evaluated as a logic expression in terms of all 65 inputs.
- Levels of logic in the circuit can be reduced to $\log_2 N$ for N-bit adder. Ripple-carry has N levels.
- More gates are needed, about $\log_2 N$ times that of ripple-carry design.
- Fastest design is known as carry lookahead adder.

N-bit Adder Design Options

Type of adder	Time complexity (delay)	Space complexity (size)
Ripple-carry	O(N)	O(N)
Carry-lookahead	O(log ₂ N)	O(N log ₂ N)
Carry-skip	O(√N)	O(N)
Carry-select	O(√N)	O(N)

Reference: J. L. Hennessy and D. A. Patterson, *Computer Architecture: A Quantitative Approach, Second Edition*, San Francisco, California, 1990.

Carry-lookahead adder

- An approach in-between our two extremes
- Motivation:
 - If we didn't know the value of carry-in, what could we do?
 - When would we always generate a carry? $g_i = a_i b_i$
 - When would we propagate the carry? $p_i = a_i + b_i$
- Did we get rid of the ripple?

$$c_1 = g_0 + p_0 c_0$$

- $c_2 = g_1 + p_1c_1 c_2 = g_1 + p_1 g_0 + p_1p_0c_0$
- $c_3 = g_2 + p_2 c_2 c_3 = \dots$
- $c_4 = g_3 + p_3 c_3 c_4 = \dots$ Feasible! Why?

Use principle to build bigger adders

- Can't build a 16 bit adder this way... (too big)
- Could use ripple carry of 4-bit CLA adders
- Better: use the CLA principle again!

ALU Summary

- We can build an ALU to support MIPS addition
- Our focus is on comprehension, not performance
- Real processors use more sophisticated techniques for arithmetic
- Where performance is not critical, hardware description languages allow designers to completely automate the creation of hardware!

```
module MIPSALU (ALUctl, A, B, ALUOut, Zero);
  input [3:0] ALUct1;
  input [31:0] A.B;
  output reg [31:0] ALUOut;
   output Zero;
   assign Zero = (ALUOut=0); //Zero is true if ALUOut is 0; goes anywhere
  always @(ALUctl, A, B) //reevaluate if these change
      case (ALUct1)
         0: ALUOut <= A & B;
        1: ALUOut <= A | B;
        2: ALUOut \leq A + B:
         6: ALUOut <= A - B:
        7: ALUOut <= A < B ? 1:0:
        12: ALUOut <= ~(A | B); // result is nor
        default: ALUOut <= 0; //default to 0, should not happen;
      endcase
endmodule
```

FIGURE B.4.3 A Verilog behavioral definition of a MIPS ALU. This could be synthesized using a module library containing basic arithmetic and logical operations.

Multiplication

- More complicated than addition
 - accomplished via shifting and addition
- More time and more area
- Let's look at 3 versions based on a gradeschool algorithm

 $\begin{array}{c} 0010 \quad (multiplicand) \\ \underline{x} 1011 \quad (multiplier) \end{array}$

- Negative numbers: convert and multiply
 - there are better techniques, we won't look at them

slides

Multiplication

• Start with long-multiplication approach

Multiplication Hardware

Optimized Multiplier

• Perform steps in parallel: add/shift

- One cycle per partial-product addition
- That's ok, if frequency of multiplications is low

Example: $0010_{two} \times 0011_{two}$

 $0010_{two} \times 0011_{two} = 0110_{two}$, i.e., $2_{ten} \times 3_{ten} = 6_{ten}$

Iteration	Step	Multiplicand	Product	
0	Initial values	0010	0000 001 <mark>1</mark>	
1	LSB=1 => Prod=Prod+Mcand	0010	0010 001 <mark>1</mark>	
	Right shift product	0010	0001 000 <mark>1</mark>	
2	LSB=1 => Prod=Prod+Mcand	0010	0011 0001	
	Right shift product	0010	0001 100 <mark>0</mark>	
3	LSB=0 => no operation	0010	0001 1000	
	Right shift product	0010	0000 110 <mark>0</mark>	
4	LSB=0 => no operation	0010	0000 1100	
	Right shift product	0010	0000 0110	

Faster Multiplier

- Uses multiple adders
 - Cost/performance tradeoff

Can be pipelined

Several multiplication performed in parallel

MIPS Multiplication

- Two 32-bit registers for product
 - HI: most-significant 32 bits
 - LO: least-significant 32-bits
- Instructions
 - mult rs, rt / multu rs, rt
 - 64-bit product in HI/LO
 - mfhi rd / mflo rd
 - Move from HI/LO to rd
 - Can test HI value to see if product overflows 32 bits
 - mul rd, rs, rt
 - Least-significant 32 bits of product —> rd

Multiplying Signed Numbers with Boothe's Algorithm

- Consider A x B where A and B are signed integers (2's complemented format)
- Decompose B into the sum $B1 + B2 + \dots + Bn$ A x B = A x (B1 + B2 + \dots + Bn) = (A x B1) + (A x B2) + \dots (A x Bn)
- Let each Bi be a single string of 1's embedded in 0's: ...0011...1100...
- Example:
 - 0110010011100 = 011000000000
 - + 0000010000000
 - + 000000011100

Boothe's Algorithm

• Scanning from right to left, bit number *u* is the first 1 bit of the string and bit *v* is the first 0 left of the string:

U

Bi =
$$0 \dots 0 1 \dots 1 0 \dots 0$$

V

$$= 0 \dots 0 1 \dots 1 1 \dots 1 (2^{v} - 1)$$

- 0 \ldots 0 0 \ldots 0 1 \ldots 1 (2^u - 1)

$$= (2^{v} - 1) - (2^{u} - 1)$$
$$= 2^{v} - 2^{u}$$

Boothe's Algorithm

• Decomposing B:

- A x B can be computed by adding and subtracted shifted values of A:
 - Scan bits right to left, shifting A once per bit
 - When the bit string changes from 0 to 1, subtract shifted A from the current product $P (A \times 2^u)$
 - When the bit string changes from 1 to 0, add shifted A to the current product $P + (A \times 2^v)$

• 7 × 3 =	21
0111	multiplicand $= 7$
×0011(() multiplier = 3
11111001	bit-pair 10, add -7 in two's com
	bit-pair 11, do nothing
000111	bit-pair 01, add 7
	_bit-pair 00, do nothing
00010101	= 21

• 7 × (-3)	= -21		
0111		multiplicand	= 7
<u>×1101</u> (<u>()</u>	multiplier	= -3
11111001	bit-pa	air 10, add -7 ii	n two's com.
0000111	bit-pa	air 01, add 7	
111001	bit-pa	air 10, add -7 in	n two's com.
	bit-pa	air 11, do nothi	ing
11101011	- 21		C

 $-7 \times 3 = -21$ multiplicand = -7 in two's com. 1001 multiplier $\times 0011(0)$ = 300000111 bit-pair 10, add 7 bit-pair 11, do nothing bit-pair 01, add -7 111001 bit-pair 00, do nothing 11101011 - 21

• -7 × (-3)	= 21
1001	multiplicand $= -7$ in two's com.
×1101(0	\rightarrow multiplier = -3 in two's com.
00000111	bit-pair 10, add 7
1111001	bit-pair 01, add -7 in two's com.
000111	bit-pair 10, add 7
	bit-pair 11, do nothing
00010101	21

Booth Advantage

Serial multiplication

Four partial product additions

Booth algorithm

0000001001011000 600

Two partial product additions

Adding Partial Products

				y3 x3	y2 x2	y1 x1	у0 х0	Multiplicanc Multiplier
		carry	-x1v3	x0y3 x1y2	x0y2 x1y1	x0y1 x1y0	x0y0	Partial
carry←	<i>carry</i> ⊹ - x3y3	– x2y3 x3y2	x2y2 x3y1	x2y1 x3y0	x2y0			Products
р7	р6	р5	р4	р3	p2	р1	p0	

Requires three 4-bit adders. Slow.

Array Multiplier: Carry Forward

Note: Carry is added to the next partial product. Adding the carry from the final stage needs an extra stage. These additions are faster but we need four stages.

Basic Building Blocks

Types of Array Multipliers

- Baugh-Wooley Algorithm: Signed product by two's complement addition or subtraction according to the MSB's.
- Booth multiplier algorithm
- Tree multipliers
- Reference: N. H. E. Weste and D. Harris, *CMOSVLSI Design, A Circuits and Systems Perspective, Third Edition*, Boston: Addison-Wesley, 2005.

Division

n-bit operands yield *n*-bit quotient and remainder

- Check for 0 divisor
- Long division approach
 - If divisor \leq dividend bits
 - 1 bit in quotient, subtract
 - Otherwise
 - 0 bit in quotient, bring down next dividend bit
- Restoring division
 - Do the subtract, and if remainder goes < 0, add divisor back
- Signed division
 - Divide using absolute values
 - Adjust sign of quotient and remainder as required

Optimized Divider

- One cycle per partial-remainder subtraction
- Looks a lot like a multiplier!
 - Same hardware can be used for both

Deriving a Better Algorithm (4) \$R=0, \$M=Divisor, \$Q=Dividend, count=n Start R, Q = a $M \times 2^{32} = b$ Rearrange flowchart \$R < 0? \$R←\$R+\$M **Restore \$R** (remainder) Ndł Shift 1-bit left \$R, \$Q \$R (33 b) | \$Q (32 b) (a + b)2 - b\$R ← \$R - \$M 2a – b = 2a + bYes No \$Q0=1 \$R < 0? \$Q0=0 **Restore \$R** count = count - 1 (remainder) No No Yes \$R < 0? count = 0?Yes Done **Restore \$R** \$R←\$R+\$M \$Q=Quotient (remainder) ELEC 5200/6200 - From P-H slides Remainde

Deriving a Better Algorithm (4)

Non-Restoring Division

- Avoids the addition in the restore operation does exactly one add or subtract per cycle.
- Non-restoring division algorithm:
 - Step 1: Repeat 32 times
 - if sign bit of \$R is 0

Left shift \$R,Q one-bit and subtract, \$R ← \$R - \$M else (sign bit of \$R is 1)

Left shift \$R,Q one-bit and add, $R \leftarrow R + M$

if sign bit of resulting \$R is 0
 Set Q0 = 1

else (sign bit of resulting \$R is 1) Set Q0 = 0

 Step 2: (after 32 Step 1 iterations) if sign bit of \$R is 1, add \$R ← \$R + \$M

Non-Restoring Division: 8/3 = 2 (Rem=2)

Faster Division

- Can't use parallel hardware as in multiplier
 - Subtraction is conditional on sign of remainder
- Faster dividers (e.g. SRT devision) generate multiple quotient bits per step
 - Still require multiple steps

MIPS Division

- Use HI/LO registers for result
 - HI: 32-bit remainder
 - LO: 32-bit quotient
- Instructions
 - div rs, rt / divu rs, rt
 - No overflow or divide-by-0 checking
 - Software must perform checks if required
 - Use **mfhi**, **mflo** to access result