Chapter 3 Arithmetic for Computers

1 ELEC 5200/6200 - From P-H slides

Arithmetic for Computers

- Operations on integers
	- Addition and subtraction
	- Multiplication and division
	- Dealing with overflow
- Floating-point real numbers
	- Representation and operations

Number Format Considerations

- Type of numbers (integer, fraction, real, complex)
- Range of values
	- between smallest and largest values
	- wider in floating-point formats
- Precision of values (max. accuracy)
	- usually related to number of bits allocated n bits \Rightarrow represent 2^n values/levels
	- Value/weight of least-significant bit
- Cost of hardware to store & process numbers (some formats more difficult to add, multiply/divide, etc.)

Unsigned Integers

Positional number system:

 $a_{n-1}a_{n-2}$ …. $a_2a_1a_0 =$

$$
a_{n-1}x2^{n-1} + a_{n-2}x2^{n-2} + \dots + a_2x2^2 + a_1x2^1 + a_0x2^0
$$

• Range =
$$
[(2^n - 1) \dots 0]
$$

- Carry out of MSB has weight 2ⁿ
- Fixed-point fraction:

$$
0.a_{-1}a_{-2} \dots a_{-n} = a_{-1}x^{2-1} + a_{-2}x^{2-2} + \dots + a_{-n}x^{2-n}
$$

ELEC 5200/6200 - From P-H slides

Signed Integers

Sign-magnitude format (n-bit values):

 $A = Sa_{n-2}$ $a_2a_1a_0$ $(S = sign bit)$

- Range = $[-(2^{n-1}-1) \dots +(2^{n-1}-1)]$
- Addition/subtraction difficult (multiply easy)
- Redundant representations of 0
- 2's complement format (n-bit values):

-A represented by $2^n - A$

- Range = $[-(2^{n-1}) \dots +(2^{n-1}-1)]$
- Addition/subtraction easier (multiply harder)
- Single representation of 0

MIPS

 MIPS architecture uses 32-bit numbers. What is the range of integers (positive and negative) that can be represented?

Positive integers: 0 to 2,147,483,647

Negative integers: - 1 to - 2,147,483,648

 What are the binary representations of the extreme positive and negative integers? 0111 1111 1111 1111 1111 1111 1111 1111 = 231 - 1= 2,147,483,647

1000 0000 0000 0000 0000 0000 0000 0000 = - 231 = - 2,147,483,648

 What is the binary representation of zero? 0000 0000 0000 0000 0000 0000 0000 0000

Computing the 2's Complement

To compute the 2's complement of A:

• Let
$$
A = a_{n-1}a_{n-2}
$$
 ... $a_2a_1a_0$

•
$$
2^n - A = 2^n - 1 + 1 - A = (2^n - 1) - A + 1
$$

1 1 ... 1 1 1
\n-
$$
a_{n-1} a_{n-2} ... a_2 a_1 a_0 + 1
$$

\n
\n...
\n $a'_{n-1} a'_{n-2} ... a'_{2} a'_{1} a'_{0} + 1$ (one's complement + 1)

2's Complement Arithmetic

- Let $(2^{n-1}-1) \ge A \ge 0$ and $(2^{n-1}-1) \ge B \ge 0$
- Case 1: $A + B$
	- $(2^n-2) \ge (A + B) \ge 0$
		- Since result $\leq 2^n$, there is no carry out of the MSB
	- Valid result if $(A + B) < 2^{n-1}$
		- MSB (sign bit) $= 0$
	- Overflow if $(A + B) \ge 2^{n-1}$
		- MSB (sign bit) = 1 if result $\geq 2^{n-1}$
		- Carry into MSB

2's Complement Arithmetic

- \bullet Case 2: A B
	- Compute by adding: $A + (-B)$
	- 2's complement: $A + (2^n B)$
	- -2^{n-1} < result < 2^{n-1} (no overflow possible)
	- If $A \geq B$: $2^{n} + (A B) \geq 2^{n}$
		- Weight of adder carry output $= 2^n$
		- Discard carry (2^n) , keeping $(A-B)$, which is ≥ 0
	- If $A \leq B$: $2^{n} + (A B) \leq 2^{n}$
		- Adder carry output $= 0$
		- Result is $2^n (B A) =$

2's complement representation of -(B-A)

2's Complement Arithmetic

- Case 3: -A B
	- Compute by adding: $(-A) + (-B)$
	- 2's complement: $(2^{n} A) + (2^{n} B) = 2^{n} + 2^{n} (A + B)$
	- Discard carry (2^n) , making result 2^n $(A + B)$ $= 2$'s complement representation of $-(A + B)$
	- \bullet 0 \ge result \ge -2ⁿ
	- Overflow if $-(A + B) \leq -2^{n-1}$
		- MSB (sign bit) = 0 if 2^{n} $(A + B)$ < 2^{n-1}
		- \bullet no carry into MSB

Integer Subtraction

- Add negation of second operand
- Example: $7 6 = 7 + (-6)$

- Overflow if result out of range
	- Subtracting two $+ve$ or two $-ve$ operands, no overflow
	- Subtracting +ve from -ve operand
		- Overflow if result sign is 0
	- Subtracting –ve from +ve operand
		- Overflow if result sign is 1

Relational Operators

Compute A-B & test ALU "flags" to compare A vs. B

 $ZF = result$ zero $OF = 2's$ complement overflow

 $SF = sign bit of result$ $CF = adder carry output$

13 ELEC 5200/6200 - From P-H slides

MIPS Overflow Detection

- An exception (interrupt) occurs when overflow detected for add,addi,sub
	- Control jumps to predefined address for exception
	- Interrupted address is saved for possible resumption
- Details based on software system / language
	- example: flight control vs. homework assignment
- Don't always want to detect overflow — new MIPS instructions: addu, addiu, subu

note: addiu *still sign-extends! note:* sltu*,* sltiu *for unsigned comparisons*

Dealing with Overflow

- Some languages (e.g., C) ignore overflow
	- Use MIPS addu, addui, subu instructions
- Other languages (e.g., Ada, Fortran) require raising an exception
	- Use MIPS add, addi, sub instructions
	- On overflow, invoke exception handler
		- Save PC in exception program counter (EPC) register
		- Jump to predefined handler address
		- mfc0 (move from coprocessor reg) instruction can retrieve EPC value, to return after corrective action

Designing the Arithmetic & Logic Unit (ALU)

- Provide arithmetic and logical functions as needed by the instruction set
- Consider tradeoffs of area vs. performance

(Material from Appendix B) **operation**

ELEC 5200/6200 - From P-H slides

Different Implementations

- Not easy to decide the "best" way to build something
	- Don't want too many inputs to a single gate (fan in)
	- Don't want to have to go through too many gates (delay)
	- For our purposes, ease of comprehension is important
- Let's look at a 1-bit ALU for addition:

- How couldwe build a 1-bit ALU for add, and, and or?
- How could we build a 32-bit ALU?

Building a 32 bit ALU

ELEC 5200/6200 - From P-H slides

What about subtraction (a = b) ?

Two's complement approach: just negate b and add.

Adding a NOR function

• Can also choose to invert a. How do we get "a NOR b"?

ELEC 5200/6200 - From P-H slides

Tailoring the ALU to the MIPS

- Need to support the set-on-less-than instruction (slt)
	- remember: slt is an arithmetic instruction
	- produces a 1 if $rs < rt$ and 0 otherwise
	- use subtraction: $(a-b)$ < 0 implies $a < b$
- Need to support test for equality (beq \$t5, \$t6, \$t7)
	- use subtraction: $(a-b) = 0$ implies $a = b$

Supporting slt

Use this ALU for most significant bit

ELEC 5200/6200 - From P-H slides

Supporting slt

ELEC 5200/6200 - From P-H slides

Test for equality

• Notice control lines:

 $0000 =$ and $0001 = or$ $0010 = add$ $0110 = subtract$

 $0111 = s1t$

1100 = NOR •*Note: zero is a 1 when the result is zero!*

Conclusion

We can build an ALU to support the MIPS instruction set

- key idea: use multiplexor to select the output we want
- we can efficiently perform subtraction using two's complement
- we can replicate a 1-bit ALU to produce a 32-bit ALU
- Important points about hardware
	- all of the gates are always working
	- the speed of a gate is affected by the number of inputs to the gate
	- the speed of a circuit is affected by the number of gates in series (on the "critical path" or the "deepest level of logic")
- Our primary focus: comprehension, however,
	- Clever changes to organization can improve performance (similar to using better algorithms in software)
	- We saw this in multiplication, let's look at addition now

Problem: ripple carry adder is slow

- Is a 32-bit ALU as fast as a 1-bit ALU?
- Is there more than one way to do addition?
	- two extremes: ripple carry and sum-of-products

Can you see the ripple? How could you get rid of it?

$$
c_1 = b_0 c_0 + a_0 c_0 + a_0 b_0
$$

\n
$$
c_2 = b_1 c_1 + a_1 c_1 + a_1 b_1
$$

\n
$$
c_3 = b_2 c_2 + a_2 c_2 + a_2 b_2
$$

\n
$$
c_4 = b_3 c_3 + a_3 c_3 + a_3 b_3
$$

\n
$$
c_5 = c_4
$$

\n
$$
c_5 = c_4
$$

\n
$$
c_5 = c_4
$$

\n
$$
c_6 = c_4
$$

\n
$$
c_5 = c_4
$$

\n
$$
c_6 = c_4
$$

\n
$$
c_7 = c_5
$$

One-bit Full-Adder Circuit

32-bit Ripple-Carry Adder

How Fast is Ripple-Carry Adder?

- Longest delay path (critical path) runs from cin to sum31.
- Suppose delay of full-adder is 100ps.
- Critical path delay $= 3,200 \text{ps}$
- Clock rate cannot be higher than $10^{12}/3,200 = 312 \text{MHz}$.
- Must use more efficient ways to handle carry.

Fast Adders

 In general, any output of a 32-bit adder can be evaluated as a logic expression in terms of all 65 inputs.

- Levels of logic in the circuit can be reduced to log_2N for N-bit adder. Ripple-carry has N levels.
- More gates are needed, about log_2N times that of ripple-carry design.
- Fastest design is known as carry lookahead adder.

N-bit Adder Design Options

Reference: J. L. Hennessy and D. A. Patterson, *Computer Architecture: A Quantitative Approach, Second Edition***, San Francisco, California, 1990.**

Carry-lookahead adder

- An approach in-between our two extremes
- Motivation:
	- If we didn't know the value of carry-in, what could we do?
	- When would we always generate a carry? $g_i = a_i b_i$
	- When would we propagate the carry? $p_i = a_i + b_i$
- Did we get rid of the ripple?

$$
c_1 = g_0 + p_0 c_0
$$

- $c_2 = g_1 + p_1 c_1$ $c_2 = g_1 + p_1 g_0 + p_1 p_0 c_0$
- $c_3 = g_2 + p_2c_2$ $c_3 = ...$
- $c_4 = g_3 + p_3c_3$ $c_4 = ...$ Feasible! Why?

Use principle to build bigger adders

Can't build a 16 bit adder this way... (too big)

- Could use ripple carry of 4-bit CLA adders
- Better: use the CLA principle again!

ELEC 5200/6200 - From P-H slides

34

ALU Summary

- We can build an ALU to support MIPS addition
- Our focus is on comprehension, not performance
- Real processors use more sophisticated techniques for arithmetic
- Where performance is not critical, hardware description languages allow designers to completely automate the creation of hardware!

```
module MIPSALU (ALUctl, A, B, ALUOut, Zero);
   input [3:0] ALUctl;
   input [31:0] A.B;
   output reg [31:0] ALUOut;
   output Zero;
   assign Zero = (ALUOut==0); //Zero is true if ALUOut is 0; goes anywhere
   always @(ALUct1, A, B) //reevaluate if these change
      case (ALUctl)
         0: ALUOut \leq A & B:
         1: ALUOut \leq A | B;
         2: ALUOut \leq A + B:
         6: ALUOut \leq A - B:
         7: ALUOut \leq A \leq B ? 1:0:
         12: ALUOut \leq -(\mathsf{A} | \mathsf{B}); // result is nor
         default: ALUOut <= 0; //default to 0, should not happen;
      endcase
endmodule
```
FIGURE B.4.3 A Verilog behavioral definition of a MIPS ALU. This could be synthesized using a module library containing basic arithmetic and logical operations.

ELEC 5200/6200 - From P-H slides

Multiplication

- More complicated than addition
	- accomplished via shifting and addition
- More time and more area
- Let's look at 3 versions based on a gradeschool algorithm

0010 (multiplicand) \textbf{X}_1011 (multiplier)

- Negative numbers: convert and multiply
	- there are better techniques, we won't look at them

Multiplication

Start with long-multiplication approach

slides

Multiplication Hardware

Optimized Multiplier

Perform steps in parallel: add/shift

- One cycle per partial-product addition
- **That's ok, if frequency of multiplications is low**

Example: $0010_{two} \times 0011_{two}$

 $0010_{two} \times 0011_{two} = 0110_{two}$, i.e., $2_{ten} \times 3_{ten} = 6_{ten}$

Faster Multiplier

- Uses multiple adders
	- Cost/performance tradeoff

■ Can be pipelined

■ Several multiplication performed in parallel

ELEC 5200/6200 - From P-H slides

MIPS Multiplication

- Two 32-bit registers for product
	- HI: most-significant 32 bits
	- LO: least-significant 32-bits
- Instructions
	- mult rs, rt / multu rs, rt
		- 64-bit product in HI/LO
	- mfhi rd / mflo rd
		- Move from HI/LO to rd
		- Can test HI value to see if product overflows 32 bits
	- mul rd, rs, rt
		- Least-significant 32 bits of product -> rd

Multiplying Signed Numbers with Boothe's Algorithm

- Consider A x B where A and B are signed integers (2's complemented format)
- Decompose B into the sum $B1 + B2 + ... + Bn$ $A \times B = A \times (B1 + B2 + ... + Bn)$ $= (A \times B1) + (A \times B2) + ... (A \times Bn)$
- Let each Bi be a single string of 1's embedded in 0's: …0011…1100…
- Example:
	- $0110010011100 = 011000000000$
		- + 0000010000000
		- + 0000000011100

Boothe's Algorithm

 Scanning from right to left, bit number *u* is the first 1 bit of the string and bit *v* is the first 0 left of the string:

$$
v \t u
$$

Bi = 0 ... 0 1 ... 1 0 ... 0

$$
= 0 ... 0 1 ... 1 1 ... 1 (2v - 1)
$$

- 0 ... 0 0 ... 0 1 ... 1 (2^u - 1)

$$
= (2v - 1) - (2u - 1)
$$

= 2^v - 2^u

Boothe's Algorithm

- Decomposing B: $A \times B = A \times (B1 + B2 + ...)$ $=$ A x $[(2^{v1} - 2^{u1}) + (2^{v2} - 2^{u2}) + ...]$ $= (A \times 2^{v1}) - (A \times 2^{u1}) + (A \times 2^{v2}) - (A \times 2^{u2}) ...$
- A x B can be computed by adding and subtracted shifted values of A:
	- Scan bits right to left, shifting A once per bit
	- When the bit string changes from 0 to 1, subtract shifted A from the current product $P - (A x 2^u)$
	- When the bit string changes from 1 to 0, add shifted A to the current product $P + (A x 2^v)$

 $-7 \times 3 = -21$

1001 multiplicand $=$ -7 in two's com. $\times 0011(0)$ multiplier = 3 00000111 bit-pair 10, add 7 bit-pair 11, do nothing 111001 bit-pair 01, add -7 bit-pair 00, do nothing 11101011 - 21

Booth Advantage
 Serial multiplication

Four partial product additions Two partial product additions

Booth algorithm

__________________ 0000001001011000 600

Adding Partial Products

Requires three 4*-bit adders. Slow.*

Array Multiplier: Carry Forward

Note: Carry is added to the next partial product. Adding the carry from the final stage needs an extra stage. These additions are faster but we need four stages.

Basic Building Blocks

53 ELEC 5200/6200 - From P-H slides

Types of Array Multipliers

- Baugh-Wooley Algorithm: Signed product by two's complement addition or subtraction according to the MSB's.
- Booth multiplier algorithm
- Tree multipliers
- Reference: N. H. E. Weste and D. Harris, *CMOS VLSI Design, A Circuits and Systems Perspective, Third Edition*, Boston: Addison-Wesley, 2005.

Division

n-bit operands yield *n*-bit quotient and remainder

- Check for 0 divisor
- Long division approach
	- If divisor ≤ dividend bits
		- 1 bit in quotient, subtract
	- **Otherwise**
		- 0 bit in quotient, bring down next dividend bit
- Restoring division
	- \bullet Do the subtract, and if remainder goes ≤ 0 , add divisor back
- Signed division
	- Divide using absolute values
	- Adjust sign of quotient and remainder as required

Optimized Divider

- One cycle per partial-remainder subtraction
- Looks a lot like a multiplier!
	- Same hardware can be used for both

62 ELEC 5200/6200 - From P-H slides Deriving a Better Algorithm (4) **\$R=0, \$M=Divisor, \$Q=Dividend, count=n** Re^{ath} No **SR** < 0? **\$R ← \$R - \$M** $$Q0=1$ \longleftrightarrow $$R < 0?$ \longleftrightarrow $$Q0=0$ **count = count - 1 count = 0? Done \$Q=Quotient Remainde**r **Start Yes Yes No No Restore \$R (remainder) \$R (33 b)|\$Q (32 b) \$R←\$R+\$M Yes No \$R < 0? \$R < 0? \$R←\$R+\$M No Yes Restore \$R (remainder)** $$R, $Q = a$ $$Mx2^{32} = b$ $(a + b)2 - b$ $2a - b$ $\overline{a + b}$ $\overline{a + b}$ $= 2a + b$ **Restore \$R (remainder)**

Deriving a Better Algorithm (4)

64 ELEC 5200/6200 - From P-H slides **(remainder)** Non-Restoring Division Algorithm **\$R=0, \$M=Divisor, \$Q=Dividend, count=n Shift 1-bit left \$R, \$Q \$R ← \$R - \$M \$Q0=1 \$R < 0? \$Q0=0 count = count - 1 count = 0? Done \$Q=Quotient \$R= Remainder Start Yes Yes No No Restore \$R \$R (33 b)|\$Q (32 b) \$R←\$R+\$M Yes No \$R < 0? \$R < 0? \$R←\$R+\$M No Yes Shift 1-bit left \$R, \$Q Cycle** contains 1 addition

Non-Restoring Division

- Avoids the addition in the restore operation does exactly one add or subtract per cycle.
- Non-restoring division algorithm:
	- **Step 1: Repeat 32 times**
		- **if sign bit of \$R is 0**

Left shift R, Q one-bit and subtract, $R \leftarrow R - SM$ **else (sign bit of \$R is 1)**

Left shift R, Q one-bit and add, $R \leftarrow SR + SM$

 if sign bit of resulting \$R is 0 Set $Q0 = 1$

else (sign bit of resulting \$R is 1) Set $Q0 = 0$

 Step 2: (after 32 Step 1 iterations) if sign bit of \$R is 1, add $$R \leftarrow $R + $M$$

Non-Restoring Division: 8/3 = 2 (Rem=2)

Faster Division

- Can't use parallel hardware as in multiplier
	- Subtraction is conditional on sign of remainder
- Faster dividers (e.g. SRT devision) generate multiple quotient bits per step
	- Still require multiple steps

MIPS Division

- Use HI/LO registers for result
	- HI: 32-bit remainder
	- LO: 32-bit quotient
- Instructions
	- div rs, rt / divu rs, rt
	- No overflow or divide-by-0 checking
		- Software must perform checks if required
	- Use **mfhi**, **mflo** to access result