Chapter 3

Arithmetic for Computers
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Arithmetic for Computers

® Operations on integers

e Addition and subtraction
° Multiplication and division

° Dealing with overflow

o Floating—point real numbers

° Representation and operations
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Taxonomy of Computer Information

Information

Instructions Data Addresses

— T

Numeric Non-numeric

— /N~

Fixed-point Floating-point Character Boolean Other

/ \ \\ (ASCII)

Single- Double-
precision precision

Unsigned  Signed
(ordinal)

Sign-magnitude 2's complement
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Number Format Considerations______

* Type of numbers (integer, fraction, real, complex)

* Range of values
® between smallest and largest values

* wider in floating-point formats
® Precision of values (max. accuracy)
® usually related to number of bits allocated
n bits => represent 2" values/levels
® Value/weight of least-significant bit

® Cost of hardware to store & process numbers (some formats

more difficult to add, multiply/divide, etc.)
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Unsigned Integers

Positional number system:

Ay 1y . g —
an_lx2n'1 + an_zxzn‘2 + ... T 32X22 + alle + aOXZO

Range = [(2" -1) ... O]
Carry out of MSB has Weight on

Fixed-point fraction:

— -1 -2 -n
Oaja, a, =a;x2" ta,x2°+ ... +a x2
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Signed Integers

® Sign-magnitude format (n-bit values):

A=S8a , aa, (S= signbit)

® Range = [-(2"!-1) ... +(2™'-1)]
* Addition/subtraction difficult (multiply easy)

® Redundant representations of O

® 2’s complement format (n-bit values):

-A represented by 2" — A
® Range = [-(2"") ... +(2"'-1)]
* Addition/subtraction easier (multiply harder)

° Single representation of O
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MIPS

® MIPS architecture uses 32-bit numbers. What is the range of
integers (positive and negative) that can be represented?

Positive integers: 0 to 2,147,483,647
Negative integers: - 1 to - 2,147,483,648

e What are the binary representations of the extreme positive and

negative integers?
Ottt 111 111t 111 11111t 1111 1111 = 231 1= 2,147,483,647
1000 0000 0000 0000 0000 0000 0000 0000 =-231  =._ 2,147,483,648

e What is the binary representation of zero?
0000 0000 0000 0000 0000 0000 0000 0000
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Computing the 2's Complement

To compute the 2°s complement of A:

® LetA=a ja,, a3

o NM-A=21+1-A=2"-1))-A+1

1 1 ... 111
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2's Complement Arithmetic
® Let(2!-1) ZA=20and (2™'-1) 2B =0

® Case 1: A+ B
®(2"-2) 2(A+B)=20
Since result < 2", there is no carry out of the MSB
® Valid result if (A + B) < 2»-!
MSB (sign bit) = 0
® Overflow if (A + B) = 2!
MSB (sign bit) = 1 if result = 2"
Carry into MSB
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2’s Complement Arithmetic

® Case 2:A-B
® Compute by adding: A + (-B)
® 2’s complement: A + (2" - B)
o 27! <result < 2™! (no overflow possible)
e [fA2B: 2"+ (A-B)=22"
Weight of adder carry output = 2"
Discard carry (27, keeping (A-B), which is > 0
e fA<B: 2"+ (A-B)<2"
Adder carry output = 0
Resultis 2" - (B-A) =

2’s complement representation of -(B-A)
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2’s Complement Arithmetic

® Case 3: -A-B
* Compute by adding: (-A) + (-B)
® 2’s complement: (2"-A) + (2"-B) =2"+ 2"- (A + B)
® Discard carry (2"), making result 2" - (A + B)
= 2’s complement representation of -(A + B)

e ) >2result =-2"
e Overflow if -(A + B) < -2n!

MSB (sign bit) = 0 if 2" - (A + B) < 2

no carry into MSB
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Integer Subtraction R

e Add negation of second operand

® Example: 7—6 =7 + (—6)
+7: 0000 0000 ... 0000 0111
—6: 1111 1111 ... 1111 1010
+1: 0000 0000 ... 0000 0001

e Overflow if result out of range

® Subtracting two t+ve or two —ve operands, no overflow

° Subtracting +ve from —ve operand
Overflow if result sign is 0
° Subtracting —ve from *+ve operand

Overflow if result sign is 1
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Relational Operators

Compute A-B & test ALU “ﬂags” to compare A vs. B
ZF = result zero OF = 2’ complement overflow

SF = sign bit of result  CF = adder carry output

Signed Unsigned
A=B ZF=1 ZF=1
A<>B ZF=0 ZF =0
A=B (SF®OF)=0 CF =1 (no borrow)
A>B (SF®OF)+ZF=0 |CF-ZF =1
A<B (SF®OF)+ZF=1 |CF-ZF' =0
A<B (SF®OF) =1 CF =0 (borrow)
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MIPS Overflow Detection

® An exception (interrupt) occurs when overflow detected for
add,addi ,sub

* Control jumps to predefined address for exception

° Interrupted address is saved for possible resumption

® Details based on software system / language

° example: ﬂight control vs. homework assignment

® Don't always want to detect overflow
— new MIPS instructions: addu, addiu, subu

note: addiu still sign-extends!
note: sltu, sltiu for unsigned comparisons

ELEC 5200/6200 - From P-H slides




Dealing with Overflow

® Some languages (e.g., C) ignore overtlow
e Use MIPS addu, addu i, subu instructions

® Other languages (e.g., Ada, Fortran) require raising an
exception
e Use MIPS add, add 1, sub instructions

® On overtlow, invoke exception handler

Save PC in exception program counter (EPC) register
Jump to predefined handler address

mFcO (move from coprocessor reg) instruction can retrieve EPC value,
to return after corrective action
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Designing the Arithmetic & Logic Unit
(ALU)

® Provide arithmetic and logical functions as needed by the

Instruction set
® (Consider tradeoffs of area vs. perforrnance

(Material from Appendix B)

operation

N

—

32

/ result

32
b

—f—

32
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Different Implementations

* Not easy to decide the “best” way to build something

® Don't want too many inputs to a single gate (fan in)
® Don’t want to have to go through too many gates (delay)

® For our purposes, ease of comprehension is important

e [et'slookata 1-bit ALU for addition:

Carryln

a —»

ab+ac;, +bc,
a xor b xor c;,

Cout
ar —> Sum Sum

* How couldrlywe build a 1-bit ALU for add, and, and or?

® How could we build a 32-bit ALU?

b —

ELEC 5200/6200 - From P-H slides




Building a 32 bit ALU

1
|
Carryin Operation

L

a0 — Carryln

ALUO

Operation
Carryln

» Result0

b0 —

CarryOut

|
a—o—> N
g\ vy v
_J al —| Carryln
*——> ALU1

1 bl —»
*—>, » Result CarryOut

v

» Resultl

Yy _v
a2 —»| Carryln

2
b — u . ALU2 » Result2

\ 4

CarryOut

! 1

CarryOut

A
a3l — Carryln

ALU31

l :

—— > Result31
b31 —»
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What about subtraction (a =b)2__

* Two's complement approach: just negate b and add.

Binvert Operation
Carryln
a T—» \ G\
o/
+—>/ / ! » Result
A 4
) >
b — 0 + 2
*—> \_/
1
A /
CarryOut
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Adding a NOR function

® Can also choose to invert a. How do we get “ANORD”?

Ainvert Operation

Binvert Carryln ’

y

> Result

Ny

Y
CarryOut
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Tailoring the ALU to the MIPSe—F%4

® Need to support the set-on-less-than instruction (slt)
® remember: sltis an arithmetic instruction
® produces a 1 if rs <rt and O otherwise
® use subtraction: (a-b) < 0 impliesa <b

® Need to support test for equality (beq $t5, $t6, $t7)

® use subtraction: (a-b) = 0 impliesa =b
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Supporting slit

Ainvert Operation
| Binvert Carryln |
T oh
. > /
) T
) o
| | + 2
'
N\

Overflow
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Less

Use this ALU for most significant bit

Ainvert Operation
| Binvert Carryln |
0 A

0

Result

00

CarryOut

all other bits




Supporting slit

Binvert Operation
Ainvert
Carryin
a0— Carryin
bO—> ALUO
Less
CarryOut
‘ Y
al— Carryln
bl1—> ALU1
00— Less
CarryOut
; ,
a2— Carryln >
b2—> ALU2
00— Less
CarryOut
P : l: Carryln
a3t— Carryln
b3t— ALU31 Set

00— Less

Result0

Resultl

Result2

Result31

Overflow
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Test for equality

Notice control lines:

0000
0001
0010
0110
0111

100

and

or

add
subtract
slt

*Note: zero is a 1 when the result is zero!

Bnegate Operation
Ainvert N
R
a0 —»=| Carryln Resulto
b0 —=  ALUO sy . -
Less T—
CarryOut
¥ l v l
al—= Carryln Resultl
bl—s  ALUL esulth g
00— Less
CarryOut
NN
a2 —= Carryln
b2 ALU2 Result2 _
00— Less
CarryOut
P : l Carryln i :
a31—{ Carryln Result31 14
b31— ALU31 Set
00— Less
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Conclusion

® We can build an ALU to support the MIPS instruction set
® key idea: use multiplexor to select the output we want
® we can efficiently perform subtraction using two’s complement
® we can replicate a 1-bit ALU to produce a 32-bit ALU
® Important points about hardware
® all of the gates are always working
® the speed of a gate is affected by the number of inputs to the gate
® the speed of a circuit is affected by the number of gates in series
(on the “critical path” or the “deepest level of logic”)
® Our primary focus: comprehension, however,
® Clever changes to organization can improve performance
(similar to using better algorithms in software)

® We saw this in multiplication, let’s look at addition now
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Problem: ripple carry adder is slow

e [sa32-bitALU as fastasa 1-bit ALU?

® |s there more than one way to do addition?

Can you see the ripple? How could you get rid of it?

® two extremes: ripple carry and sum—of—products

D0Co
0,C4
0,C5
D3C3

+ + + +

AgCp + Qg
a,C, +
aC, + a,
azCz + as
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One-bit Full-Adder Circuit

ELEC 5200/6200 - From P-H slides

sumi

Ci+l




32-bit Ripple-Carry Adder

sum?2
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How Fast is Ripple-Carry Adder?

Longest delay path (critical path) runs from cin to sum31.
Suppose delay of full-adder is 100ps.

Critical path delay = 3,200ps

Clock rate cannot be higher than 10'2/3,200 = 312MHz.

Must use more efficient ways to handle carry.
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Fast Adders

In general, any output of a 32-bit adder can be evaluated as a

logic expression in terms of all 65 inputs.

Levels of logic in the circuit can be reduced to logzN for N-bit
adder. Ripple-carry has N levels.

More gates are needed, about log,N times that of ripple-carry
design.

Fastest design is known as carry lookahead adder.

ELEC 5200/6200 - From P-H slides




N-bit Adder Design Options

Ripple-carry O(N) O(N)
Carry-lookahead O(log,N) O(N log,N)
Carry-skip O(VN) O(N)
Carry-select O(VN) O(N)

Reference: J. L. Hennessy and D. A. Patterson, Computer Architecture:
A Quantitative Approach, Second Edition, San Francisco, California,
1990.
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Carry-lookahead adder

e An approach in-between our two extremes

® Motivation:

* If we didn't know the value of carry-in, what could we do?

® When would we always generate a carry? g; = @;b;

® When would we propagate the carry? P; = a; + b;

e Did we get rid of the ripple?

C, = Qo T
C, = 01 +
Cz3 = 0, ¥
Cs = O3 7

PoCo

0,C4 = 01 * P19 T P1PeCo
0,C, Cg = ..

04C3 C, = ..

Feasible! Why?

O
N
I
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Use principle to build bigger adders

Carryln
a0 —= Carryin
b0 — Result0-3
al —»
bl —
a2 —» ALUD
b2 — PO pi
3 —» ;
33 ] GO - gi .
ci+1 Carry-lookahead unit
4 —»
24 — Carryin Result4-7 5 . . . .
as — ® Can’t build a 16 bit adder this way... (too big)
6 —> ALUL . .
b6— 1 pi+1 ® Could use ripple carry of 4-bit CLA adders
a7 — Gl gi+1
b7 —| . . .
1702 Gie2 ® Better: use the CLA pr1nc1ple agaln!
a8 —= Carryin
b8 — Result8-11
a9 —
b9 —
al0 — ALUR
b10 —= p2 pi+ 2
11 — P
311 — G2 gi+2
17(:3 ci+3
al2 —» Carryln
b12 — Result12-15
al3 —=
b13 —
ald —» ALUB
b14 — P3 pi+3
15 —> i
e G3 gi+3
li ci+4
CarryOut
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Carry-Select Adder

a0-al5

sumO-sum15
b0-b15

cin
al6-a3l

b16-b31

0
al6-a3l

suml6-sum3l

b16-b31 This is known as

carry-select adder

1
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ALU Summary

® We can build an ALU to support MIPS addition

® Our focus is on comprehension, not performance

® Real processors use more sophisticated techniques for arithmetic
® Where performance is not critical, hardware description languages allow
designers to Completely automate the creation of hardware!

module MIPSALU CALUztY, A, B, ALUQut, Zercd;
input [2:0]1 ALlUctl;
input [21:0] A.B:
output reg [31:0] ALUOut;
output Zero;

assign fLero = (ALUOut=0); //fero is true 1f ALUOut is O; goes anywhere
always @(ALUctT, A, B) /freevaluate if these change
case (ALUctT)

O: AlUOut <= A & B;
1: AlUCut <= & | B;
2 ALUOut <= A + B;
G: AlUOut <= & - B;
7o ALUDut <= A B 7 1:0;

12: ALUOut <= ~(A | Bd; // result is nor
default: ALUOut <= 0; //default to O, should not happen:
endcase
endmodule

FIGURE B4.3 A Verilog behavioral definition of a MIPS ALU. This could be synthesizad using a medule library containing basic arithmetic

and logical operations.
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Multiplication

® More complicated than addition

° accomplished via shifting and addition
® More time and more area

e [et's look at 3 versions based on a gradeschool algorithm

0010 (multiplicand)
X_1011 (multiplier)

® Negative numbers: convert and multiply

® there are better techniques, we won’t look at them
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Multiplication I

e Start with long—multiplication approach

multiplicand \ Muttiplicand
— 1000 Shift left |—
multiplier ? 1001 v
1000 \ l —
0000 \/ Multiplier
OOOO 64-bit ALU Shift right
1000 32 bits
roduct | T
P 1001000 Product Write Conm
Length of product is P

the sum of operand
lengths
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Multiplication Hardware

MultiplierQ = 1

/

Start

A

1. Test
Multiplier0

1a. Add multiplicand to product and
place the result in Product register

Multiplier0 = 0

Y Y

| 2. Shift the Multiplicand register left 1 bit |

Y

| 3. Shift the Multiplier register right 1 bit |

No: < 32 repetitions

Yes: 32 repetitions \

™~

1
|
|-—
_b_

—
Multiplicand
Shift left
164 bits
Y
\./ Multiplier
64-bit ALU Shift right
32 bits

Product
Write

Control test 5 '

64 bits

Cohtrol

Datapath

Initially O
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Optimized Multiplier

® Perform steps in parallel: add/shift

Multiplicand

_l 132 bits

\/

32-bit ALU

-~

_>-

Product Shift ng_ht
Write

64 bits

= One cycle per partial-product addition
= That’s ok, If frequency of multiplications is low

ELEC 5200/6200 - From P-H
k slides /




Example: 0010

two

ooio,.x 0011,,, = 0110

two two?

two

x 0011

l.e., 2

ten

two
X3, =6

™~

Initial values 0010 0000 0011
LSB=1 => Prod=Prod+Mcand 0010 0010 0011
Right shift product 0010 0001 0001
LSB=1 => Prod=Prod+Mcand 0010 0011 0001
Right shift product 0010 0001 1000
LSB=0 => no operation 0010 0001 1000
Right shift product 0010 0000 1100
LSB=0 => no operation 0010 0000 1100
Right shift product 0010 0000 0110
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Faster Multiplier

® Uses multiple adders

® Cost/performance tradeoft

Mplier31 » Mcand Mplier30 « Mcand Mpliel r29 Mcand Mplier 28 Mcand Mplierd « Mcand Mplier2 « Mcand Mplier1 « Mcand Mplier0 « Mcand

‘,l lll,

1 bit + 1 bit—+ e i it
N
32 bits
Product63 Product62 . Product47..16 Product1 ProductC

= Can be plpellned
= Several multiplication performed in parallel
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MIPS Multiplication

e Two 32-bit registers for product

e HI: most-significant 32 bits
e LO: least—significant 32-bits

® [nstructions

emult rs, rt / multu rs, rt
64-bit product in HI/LO

emfhr rd / mflo rd
Move from HI/LO to rd

Can test HI value to see if product overflows 32 bits

emul rd, rs, rt
Least—significant 32 bits of product —> rd
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Multiplying Signed Numbers with
Boothe’s Algorithm

® Consider A x B where A and B are signed integers (2’s
complemented format)

® Decompose B into the sum B1 + B2 + ... + Bn
AxB =Ax (Bl +B2+ ... +Bn)
= (AxBl)+(AxB2)+ ... (A xBn)
® Let each Bi be a single string of 1’s embedded in O’s:
...0011...1100...
* Example:
0110010011100 = 0110000000000
+ 0000010000000
+ 0000000011100
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Boothe’s Algorithm R

® Scanning from right to left, bit number u is the first 1 bit of
the string and bit v is the first O left of the string:

vV u

Bi= 0...01...10...0

= 0..01..11...1 (2 1)
0...00...01...1 (2u—1)

=2 - 1- 2"~ 1)
= )v-—)u
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Boothe’s Algorithm

® Decomposing B:
AxB = AxB1+B2+...)
=Ax[(2¥ vy + (22 2wy + ]
= Ax2h) —(Ax 2" + (Ax2") —(Ax 2" ...

® A x B can be computed by adding and subtracted shifted

values of A:

® Scan bits right to left, shifting A once per bit

® When the bit string changes from O to 1, subtract shifted A
from the current product P — (A x 2Y)

® When the bit string changes from 1 to 0, add shifted A to the
current product P + (A x 2V)
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Booth Algorithm: Example 1_________

e 7X3=21
O111 multiplicand =7
X0011(0) multiplier =3

11111001  bit-pair 10, add -7 in two’s com.
bit-pair 11, do nothing

000111 bit-pair 01, add 7

bit-pair 00, do nothing

00010101 =21
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Booth Algorithm: Example 2

o TX(-3)=-21
O111 multiplicand =7
X1101(0) multiplier =3

11111001 bit-pair 10, add -7 in two’s com.
0000111 bit-pair 01, add 7

111001 bit-pair 10, add -7 in two’s com.
bit-pair 11, do nothing
11101011 - 21
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Booth Algorithm: Example 3

o  7X3=.1
1001 multiplicand = -7 in two’s com.
X0011 multiplier =3

00000111 bit-pair 10, add 7

bit-pair 11, do nothing
111001 bit-pair 01, add -7
bit-pair 00, do nothing
11101011 - 21
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Booth Algorithm: Example 4

o 7X(-3)=21

1001 multiplicand = -7 in two’s com.

X1101(0) multiplier = -3 in two’s com.
00000111 bit-pair 10, add 7
1111001 bit-pair 01, add -7 in two’s com.
000111 bit-pair 10, add 7

bit-pair 11, do nothing
00010101 21
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Booth Advantage I

Serial multiplication Booth algorithm

00010100 20
x00011110 30 ;gg%igigg gg
00000000 l
00010100
00010100 111111111101100
00010100
00010100
00000000
00000000
00000000

000001001011000 600 0000001001011000 600

00000010100

Four partial product additions Two partial product additions
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Adding Partial Products

y3 y2 yl yO0 Multiplicanc
X3 X2 x1 x0 Multiplier

x0y3 x0y2 x0yl xO0yO
carry«—x1ly3 x1ly2 x1lyl x1yO Partial
carry«—x2y3 x2y2 x2yl x2y0 Products
carry«— X3y3 x3y2 x3yl x3yO0

P/ p6 pS p4 p3 p2 pl PO

Requires three 4-bit adders. Slow.
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Array Multiplier: Carry Forward

y3 y2 yl y0 Multiplicand
X3 X2 x1 x0 Multiplier

x0y3 x0y2 x0yl x0yO
/x1y3 x1ly2 x1lyl x1yO Partial
X2y3 © x2y2 © x2yl® x2y0 Products
x3y3 “ x3y2 “ x3y1 * x3y0 <
rd rd rd rd

P’/ pé6 po p4 p3 p2 pl pO

Note: Carry is added to the next partial product. Adding the carry
from the final stage needs an extra stage. These additions are
faster but we need four stages.
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Basic Building Blocks

Two-input AND

Full-adder yi Xk
kth _
_ 0 partial carry bits
yb X product from (k-1)th
product
Full
adder

pOi = XOyi carry bits / 1

to (k+1)th (k+1)th partial
Ot partial product product product
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Array Multiplier

ppk
nyi 0

x0

i T T e Lo 1
. O/HWH/

Ly

Critical path
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Types of Array Multipliers

o Baugh—Wooley Algorithm: Signed product by two’s

complement addition or subtraction according to the MSB's.
® Booth multiplier algorithm
® Tree multipliers

® Reference: N. H. E. Weste and D. Harris, CMOSVLSI Design, A
Circuits and Systems Perspective, Third Edition, Boston: Addison-
Wesley, 2005.
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Division o
® Check for O divisor S

* Long division approach

quotient e If divisor < dividend bits

dividend 1 bit in quotient, subtract
1001 e Otherwise

1000 ) 1001010 0 bit in quotient, bring down next dividend bit
— / -1000 ® Restoring division
divisor
10 ® Do the subtract, and if remainder goes < 0, add

101 divisor back
1010

Signed division
-1000

— 10

e Divide using absolute values
remainder

* Adjust sign of quotient and remainder as

required
n-bit operands yield n-bit
guotient and remainder

ELEC 5200/6200 - From P-H
k slides /




n Hardware

Divigio

1. Subtract the Divisor register from the
Remainder register and place the
result in the Remainder register

Remainder = 0

\

Test Remainder

Remainder < 0

Y

Initially divisor

2a. Shift the Quotient register to the left,
setting the new rightmost bit to 1

2b. Restore the original value by adding
the Divisor register to the Remainder
register and placing the sum in the
Remainder register. Also shift the
Quotient register to the left, setting the
new least significant bit to 0

in left half
—_—
Divisor
Shift right |-
64 bits
-

N

Z Quotient

64-bit ALU / Shift left |<«—

32 bits

Y

\/

3. Shift the Divisor register right 1 bit

33rd repetition?

No: < 33 repetitions

Y
Remainder Control ™\
Write test
64 bits A

Yes: 33 repetitions

Initially dividend

ELEC 5200/6200 - From P-H
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Optimized Divider

Divisor

_l 32 bits

Shift right
Remainder Shift left
Write

64 bits

® One cycle per partial-remainder subtraction

* Looks a lot like a multiplier!

e Same hardware can be used for both

ELEC 5200/6200 - From P-H
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Deriving a Better Algorithm (1)

Start — $R=0, $SM=Divisor, $Q=Dividend, count=n

v
> Shift 1-bit left $R, $Q  $R (33 b) | $Q (32 b)
$R and $M have
one extra sign bit
beyond 32 bits.

Restore $R

Cycle|dontains _
(remainder)

2 additions

Done
Yes
unt=0? — $Q=Quotient
$R= Remainder

@ ELEC 5200/6200 - From P-H slides /




Deriving a Better Algorithm (2)

estore $R
emainder)

No

@ ELEC 5200/6200 - From P-H slides




Deriving a Better Algorithm (3)

$R=0, $M=Divisor, $Q=Dividend, count=n
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Deriving a Better Algorithm (4)

Start — $R=0, $M=Divisor, $Q=Dividend, count=n
|

™~

$R,$Q = a

*47
“ - —Yes—
6((@0‘3 & $R<0? —> $F<—)$IR+$M

0 e
QLQf\\O““’Y\ N

IMx232= b

Restore $R
(remainder)

Shift 1-bil left $R, $Q | $R (33 b) | $Q (32 b)

R
$R §R-$M  (@FD)2-b
2a—b T, =2a+b
$Q0=1 2 $R<0? Y5 $Q0=0
| |
¥ Restore $R
count =count -1 (remainder)
No ¥ Yes No
count=0? — $R<0?
lYes

Restore $R

i $R<—$R+$M
ELEC 5200/6200 - From P-H slides(F€Mainder)
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eriving a Better Algorithm (4) A

Start — $R=0, $M=Divisor, $Q=Dividend, count=n 3R (33b)|$Q (32 b)

} $R,#Q = a
: No $R < O? Yes $Mx232 = p
' v
Shift 1-bit left $R; $G — o Shift Ihit left $R, $Q
I (\ . 0(\6(\06 _’)¢
$R <— $R - $M Q\)\\ T$R—S$R+$M
I e ,1_,(_ I
2a—D 2a+Db

$00=1 N2 $R<0? &5 $00=0

I I
v

count =count -1
¥

No Yes No
count=0? —+ $R<0? _l
lYes
Restore $R Done

. SR—PR+$M - $Q=Quotient
@ ELEC 5200/6200 - From P-H slides(remal nder) $R= Remainder
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on-Restoring Division Algorithm

Start — $R=0, $M=Divisor, $Q=Dividend, count=n
|

™~

$R (33 b)|$Q (32 b)

(-

— ¥
—N— sp<02 Yes
Shift 1-bit left $R, $Q Shift 1-bit left $R, $Q
¢ }
SR — $R - $M SR—$R+$M
| |
v
$Q0=1 NO sk < 07 85, $Q0=0
Cycle | |
contains ¥
1 addition counf =count-1
¥
N Yes No
count=0? — $R<O0? _l
Yes
Restore $R 1 Done

ELEC 5200/6200 - From P-H slides(T€Mainder)
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$R= Remainder
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Non-Restoring Division

® Avoids the addition in the restore operation — does exactly
one add or subtract per cycle.

* Non-restoring division algorithm:

* Step 1: Repeat 32 times
if sign bit of R is 0
Left shift $R,Q one-bit and subtract, SR < $R - $M
else (sign bit of $R is 1)
Left shift $R,Q one-bit and add, $R < $R + $M
if sign bit of resulting $R is 0

Set Q0 =1
else (sign bit of resulting $R is 1)
Set Q0 =0

* Step 2: (after 32 Step 1 iterations) if sign bit of $R 1s 1, add
SR — SR +$M

@ ELEC 5200/6200 - From P-H slides /
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Non-Restoring Division: 8/3 = 2 (Rem=2)

= P Initialize $R = 00000 $Q= 1000 $M= 00011

-% Stepl,L-shiftNOOOOl $Q = 000? $M= 00011

5 Subtract -$M = 11101

= $R =11110 $Q= 0000

(Q\|

S N Step 1, L-shift SR,O =11100 $Q = 0007?77 $M= 00011

7 Add ~ +$M = 00011

3 $R =11111 $Q= 0000
w

® Stepl,L-shift@llllO $Q= 000? $M= 00011

2 Add +$M = 00011

. $R  =00001 $Q= 0001

< Step 1, L-shift $R,QO =00010 $Q = 001? $M= 00011

5 Subtract-$M = 11101

© $R =11111 $Q= 0010 Final quotient

o ¥/

Step 2, Add $R — $R + $M = 11111+00011 = 00010 (Final remainder)
@ ELEC 5200-001/6200-001 Lecture 11 Spring 2010 /




Faster Division

® Can’t use parallel hardware as in multiplier

e Subtraction is conditional on sign of remainder

® Faster dividers (e.g. SRT devision) generate multiple quotient

bits per step
® Still require multiple steps
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MIPS Division

* Use HI/LO registers for result
e HI: 32-bit remainder
® LO: 32-bit quotient

® Instructions

ediv rs, rt / divu rs,
® No overflow or divide-by-O checking

Software must perform checks if required

e Use mFhi , MF IO to access result

ELEC 5200/6200 - From P-H slides
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