
Patterson & Hennessey
Chapter 5

Cache Memory

1

Memory Hierarchy

Cache
Memory

MC

Main
Memory

MM

Secondary
Memory
(Disk)

MD

CPU

Registers

Memory Parameters:

•Access Time: increase with distance from CPU

•Cost/Bit: decrease with distance from CPU

•Capacity: increase with distance from CPU

Memory Content: MC ⊆ MM ⊆ MD

2

Chapter 5 — Large and
Fast: Exploiting Memory

Hierarchy — 3

Cache Memory
 Cache memory
 The level of the memory hierarchy closest to the CPU

 Given accesses X1, …, Xn–1, Xn

§5.2 The B
asics of C

aches

 How do we know if the data
is present in cache?

 Where do we look in the
cache?

 Where do we put new data in
the cache?

3

Hits vs. Misses
 Read hits
 this is what we want!

 Read misses
 stall the CPU, fetch block from memory, deliver to cache, restart

 Write hits:
 can replace data in cache and memory (write-through)
 write the data only into the cache (write-back the cache later)

 Write misses:
 read the entire block into the cache, then write the word

4

Average Memory Access Time
 Look-through cache: main accessed after cache miss detected:
 TC ,TM = cache and main memory access times

 HC = cache hit ratio

 TAavg
 = TC*HC + (1-HC)(TC + TMavg

)

 = TC + (1-HC)(TMavg
)

 miss penalty

 Look-aside cache: main accessed concurrent with cache access
 abort main access on cache hit
 main access already in progress on cache miss
 Wasted main bus cycles on cache hit (problem if memory shared)
 TAavg = TC*HC + (1-HC)(TM)

 5

Average Memory Access Time
 Extending to 3rd level (disk):
 TAavg

 = TC + (1-HC)(TM) + (1-HC)(1-HM)(TDavg
)

 Note that TM << TDavg

6

Fully Associative Cache
 Associative memory – access by “content” rather than address

V Address Data
1 3 D3
1 7 D7
1 5 D5
0 ? ?

D1
D2
D3
D4
D5
D6
D7
D8

D9
D10

Main Memory

Cache Memory

1

2

3

4

5

6

7

8

9

10

Valid entry

=

=

=

=

Address from CPU

Concurrently compare CPU address
to all cache address fields

7

Fully Associative Cache
 CPU memory read from address 5

D1
D2
D3
D4
D5
D6
D7
D8

D9
D10

Main Memory

1

2

3

4

5

6

7

8

9

10

5

V Address Data
1 3 D3
1 7 D7
1 5 D5
0 ? ?

=

=

=

=

Data to CPU

Address from CPU

“Hit”

Cache

8

Fully Associative Cache
 CPU memory read from address 8

D1
D2
D3
D4
D5
D6
D7
D8

D9
D10

Main Memory

1

2

3

4

5

6

7

8

9

10

8

V Address Data
1 3 D3
1 7 D7
1 5 D5
0 ? ?

=

=

=

=

Address from CPU

“Miss” (no “hit”)

CPU reads
Main Memory
after Cache

miss

Cache

9

Cache Memory Structures
 Update cache with data from address 8

D1
D2
D3
D4
D5
D6
D7
D8

D9
D10

Main Memory

1

2

3

4

5

6

7

8

9

10

V Address Data
1 3 D3
1 7 D7
1 5 D5
1 8 D8

=

=

=

=

Cache

Use “open”
cache line

10

Cache Memory Structures
 Where should the CPU place data from address 2??

D1
D2
D3
D4
D5
D6
D7
D8

D9
D10

Main Memory

1

2

3

4

5

6

7

8

9

10

V Address Data
1 3 D3
1 7 D7
1 5 D5
1 8 D8

=

=

=

=

Cache

-no open cache lines

- must replace data in some line

Address 2

“Miss” (no “hit”)

11

Multi-Word Blocks
 Cache line holds a multi-word block from main memory
 Take advantage of spatial locality of reference

D0
D1
D2
D3
D4
D5
D6
D7
D8
D9

Main Memory

0

1

2

3

4

5

6

7

8

9

V Block # Data
1 1 D2-D3
1 3 D6-D7
1 0 D0-D1
0

=

=

=

=

Cache

Block #
Word offset

Block 0

Blk 1

2

3

4

12

Direct Mapped Cache

 Location is determined by the main memory address
 Mapping: address is modulo the #blocks in the cache

00001 00101 01001 01101 10001 10101 11001 11101

00
0

Cache

Memory

00
1

01
0

01
1

10
0

10
1

11
0

11
1

index tag

Main memory address

cache line

13

Chapter 5 — Large and
Fast: Exploiting Memory

Hierarchy — 14

Tags and Valid Bits
 How do we know which particular block is stored in a cache

location?
 Store block address as well as the data
 Actually, only need the high-order bits
 Called the tag

 What if there is no data in a location?
 Valid bit: 1 = present, 0 = not present
 Initially 0
 Reset all valid bits to 0 if main memory changed (“invalidate the

cache”)

14

Chapter 5 — Large and
Fast: Exploiting Memory

Hierarchy — 15

Direct Mapped Cache
Address Subdivision

15

For MIPS:

What kind of locality are we taking advantage of?

Chapter 5 — Large and
Fast: Exploiting Memory

Hierarchy — 16

Cache Example
 8-blocks, 1 word/block, direct mapped
 Initial state

Index V Tag Data
000 N
001 N
010 N
011 N
100 N
101 N
110 N
111 N

16

Chapter 5 — Large and
Fast: Exploiting Memory

Hierarchy — 17

Cache Example

Index V Tag Data
000 N
001 N
010 N
011 N
100 N
101 N
110 Y 10 Mem[10110]
111 N

Word addr Binary addr Hit/miss Cache block
22 10 110 Miss 110

17

Chapter 5 — Large and
Fast: Exploiting Memory

Hierarchy — 18

Cache Example

Index V Tag Data
000 N
001 N
010 Y 11 Mem[11010]
011 N
100 N
101 N
110 Y 10 Mem[10110]
111 N

Word addr Binary addr Hit/miss Cache block
26 11 010 Miss 010

18

Chapter 5 — Large and
Fast: Exploiting Memory

Hierarchy — 19

Cache Example

Index V Tag Data
000 N
001 N
010 Y 11 Mem[11010]
011 N
100 N
101 N
110 Y 10 Mem[10110]
111 N

Word addr Binary addr Hit/miss Cache block
22 10 110 Hit 110
26 11 010 Hit 010

19

Chapter 5 — Large and
Fast: Exploiting Memory

Hierarchy — 20

Cache Example

Index V Tag Data
000 Y 10 Mem[10000]
001 N
010 Y 11 Mem[11010]
011 Y 00 Mem[00011]
100 N
101 N
110 Y 10 Mem[10110]
111 N

Word addr Binary addr Hit/miss Cache block
16 10 000 Miss 000
3 00 011 Miss 011

16 10 000 Hit 000

20

Chapter 5 — Large and
Fast: Exploiting Memory

Hierarchy — 21

Cache Example

Index V Tag Data
000 Y 10 Mem[10000]
001 N
010 Y 10 Mem[10010]
011 Y 00 Mem[00011]
100 N
101 N
110 Y 10 Mem[10110]
111 N

Word addr Binary addr Hit/miss Cache block
18 10 010 Miss 010

21

Replaces
Mem[110010

Chapter 5 — Large and
Fast: Exploiting Memory

Hierarchy — 22

Block Size Considerations
 Larger blocks can reduce miss rate
 Due to spatial locality

 But in a fixed-sized cache
 Larger blocks ⇒ fewer of them
 More competition ⇒ increased miss rate

 Larger blocks ⇒ pollution

 Larger miss penalty to load larger block
 Can override benefit of reduced miss rate
 Early restart and critical-word-first can help

22

Chapter 5 — Large and
Fast: Exploiting Memory

Hierarchy — 23

Example: Larger Block Size
 Example: 64 blocks, 16 bytes/block
 To what block number does address 1200 map?
 Block address = 1200/16 = 75
 Block number = 75 modulo 64 = 11

Tag Index Offset
0 3 4 9 10 31

4 bits 6 bits 22 bits

23

Performance
 Increasing the block size tends to decrease miss rate:

 Use split caches because there is more spatial locality in code:

1 KB
8 KB
16 KB
64 KB
256 KB

256

40%

35%

30%

25%

20%

15%

10%

5%

0%

M
is

s
ra

te

64164

Block size (bytes)

Program
Block size in

words
Instruction
miss rate

Data miss
rate

Effective combined
miss rate

gcc 1 6.1% 2.1% 5.4%
4 2.0% 1.7% 1.9%

spice 1 1.2% 1.3% 1.2%
4 0.3% 0.6% 0.4%24

Chapter 5 — Large and
Fast: Exploiting Memory

Hierarchy — 25

Example: Intrinsity FastMATH
 Embedded MIPS processor
 12-stage pipeline
 Instruction and data access on each cycle

 Split cache: separate I-cache and D-cache
 Each 16KB: 256 blocks × 16 words/block
 D-cache: write-through or write-back

 SPEC2000 miss rates
 I-cache: 0.4%
 D-cache: 11.4%
 Weighted average: 3.2%

Example: Intrinsity FastMATH
Takes advantage
of spatial locality.

Chapter 5 — Large and
Fast: Exploiting Memory

Hierarchy — 27

Cache Misses
 On cache hit, CPU proceeds normally
 On cache miss
 Stall the CPU pipeline
 Fetch block from next level of hierarchy
 Instruction cache miss
 Restart instruction fetch

 Data cache miss
 Complete data access

27

Cache Misses
 Compulsory – cache “empty” at startup
 Capacity – cache unable to hold entire working set
 Conflict – two memory loc’s map to same cache line

Conflict (1-way)

Compulsory – “flat” but
negligible in this example

Conflict (2-way)

Conflict (8-way)

Fig. 7.31

28

Chapter 5 — Large and
Fast: Exploiting Memory

Hierarchy — 29

Write-Through

 On data-write hit, could just update the block in cache
 But then cache and memory would be inconsistent

 Write through: also update memory
 But makes writes take longer
 e.g., if base CPI = 1, 10% of instructions are stores, write to

memory takes 100 cycles
 Effective CPI = 1 + 0.1×100 = 11

 Solution: write buffer
 Holds data waiting to be written to memory
 CPU continues immediately
 Only stalls on write if write buffer is already full

29

Chapter 5 — Large and
Fast: Exploiting Memory

Hierarchy — 30

Write-Back
 Alternative: On data-write hit, just update the block in cache
 Keep track of whether each block is dirty

 When a dirty block is replaced
 Write it back to memory
 Can use a write buffer to allow replacing block to be read first

30

Chapter 5 — Large and
Fast: Exploiting Memory

Hierarchy — 31

Write Allocation
 What should happen on a write miss?
 Alternatives for write-through
 Allocate on miss: fetch the block
 Write around: don’t fetch the block
 Since programs often write a whole block before reading it (e.g.,

initialization)

 For write-back
 Usually fetch the block

31

Chapter 5 — Large and
Fast: Exploiting Memory

Hierarchy — 32

Replacement Policy
 Direct mapped: no choice
 Set associative
 Prefer non-valid entry, if there is one
 Otherwise, choose among entries in the set

 Least-recently used (LRU)
 Choose the one unused for the longest time
 Simple for 2-way, manageable for 4-way, too hard beyond that

 Random
 Gives approximately the same performance as LRU for high

associativity

Decreasing miss ratio with associativity

 Problems:
 Fully associative – high cost, but misses only when capacity

reached since any item can go in any line
 Direct-mapped: less expensive, but can hold only one item with

a given index, leading to conflicts

 Compromise: Set Associative Cache
 “N-way” set associative cache has N direct-mapped caches
 One “set” = N lines with a particular index
 Item with index K can be placed in line K of any of the N

direct-mapped caches
 Results in fewer misses due to conflicts

33

Chapter 5 — Large and
Fast: Exploiting Memory

Hierarchy — 34

Associative Cache Example

Chapter 5 — Large and
Fast: Exploiting Memory

Hierarchy — 35

Spectrum of Associativity
 For a cache

with 8 entries

Chapter 5 — Large and
Fast: Exploiting Memory

Hierarchy — 36

Associativity Example
 Compare 4-block caches
 Direct mapped, 2-way set associative, fully associative
 Block access sequence: 0, 8, 0, 6, 8

 Direct mapped
Block

address
Cache
index

Hit/miss Cache content after access

0 1 2 3
0 0 miss Mem[0]
8 0 miss Mem[8]
0 0 miss Mem[0]
6 2 miss Mem[0] Mem[6]
8 0 miss Mem[8] Mem[6]

Continued on next slide

Chapter 5 — Large and
Fast: Exploiting Memory

Hierarchy — 37

Associativity Example
 2-way set associative (sequence: 0, 8, 0, 6, 8)

 Block
address

Cache
index

Hit/miss Cache content after access
Set 0 Set 1

0 0 miss Mem[0]
8 0 miss Mem[0] Mem[8]
0 0 hit Mem[0] Mem[8]
6 0 miss Mem[0] Mem[6]
8 0 miss Mem[8] Mem[6]

 Fully associative (sequence: 0, 8, 0, 6, 8)
Block

address
Hit/miss Cache content after access

0 miss Mem[0]
8 miss Mem[0] Mem[8]
0 hit Mem[0] Mem[8]
6 miss Mem[0] Mem[8] Mem[6]
8 hit Mem[0] Mem[8] Mem[6]

Chapter 5 — Large and
Fast: Exploiting Memory

Hierarchy — 38

How Much Associativity
 Increased associativity decreases miss rate
 But with diminishing returns

 Simulation of a system with 64KB
D-cache, 16-word blocks, SPEC2000
 1-way: 10.3%
 2-way: 8.6%
 4-way: 8.3%
 8-way: 8.1%

Performance vs. associativity

Associativity

0
One-way Two-way

3%

6%

9%

12%

15%

Four-way Eight-way

1 KB

2 KB

4 KB

8 KB

16 KB
32 KB

64 KB 128 KB

39

Chapter 5 — Large and
Fast: Exploiting Memory

Hierarchy — 40

Set Associative Cache Organization

4-way set-associative cache

VAX 11/780 Cache

41

Intel 80486/Pentium L1 Cache

2K (486)

4K (Pentium)
128 Lines

(sets)

Data line = 16 bytes (486)
 32 bytes (Pentium)

Tags
(20 bit)

LRU Valid*
 (3) (4)

* Instruction cache: 1 valid bit per line

* Data cache: 2-bit MESI state per line

80486 4-way Set Associative (Pentium 2-way)

Write-back/Write-through programmable

80486 – 8K unified I/D
Pentium – 8K/8K I/D
Pentium II/III – 16K/16K I/D

42

MESI Cache Line State
 MESI = 2-bit cache line “state” for “write-back” cache
 I = Invalid (line does not contain valid data)
 S = Line valid, with shared access – no writes allowed
 E = Line valid, with exclusive access – data may be written
 M = Line valid & modified since read from main (must be

rewritten to main memory)

I S

E M

read

read

write

invalidate

invalidate invalidate

43

Intel Approximated-LRU Replacement
 3-bit number B2B1B0 assigned to each “set” of 4 lines
 Access L0/L1 – set B0=1
 Access L2/L3 – set B0=0
 Access L0 – set B1=1 or L1 – set B1=0
 Access L2 – set B2=1 or L1 – set B2=0

B0

B2 B1

L0 L1 L2 L3

0

0 0

1

1 1

B0B1 = 00 – replace L0

 01 – replace L1

B0B2 = 10 – replace L2

 11 – replace L3

44

Chapter 5 — Large and
Fast: Exploiting Memory

Hierarchy — 45

Measuring Cache Performance

 Components of CPU time:
 Program execution cycles
 Includes cache hit time
 Execution time = (execution cycles + stall cycles) x cycle time

 Memory stall cycles
 Mainly from cache misses

 With simplifying assumptions:

§5.3 M
easuring and Im

proving C
ache P

erform
ance penalty Miss

nInstructio
Misses

Program
nsInstructio

penalty Missrate Miss
Program

accessesMemory

cycles stallMemory

××=

××=

Chapter 5 — Large and
Fast: Exploiting Memory

Hierarchy — 46

Cache Performance Example
 Given
 I-cache miss rate = 2%
 D-cache miss rate = 4%
 Miss penalty = 100 cycles
 Base CPI (ideal cache) = 2
 Load & stores are 36% of instructions

 Miss cycles per instruction
 I-cache: 0.02 × 100 = 2
 D-cache: 0.36 × 0.04 × 100 = 1.44

 Actual CPI = 2 + 2 + 1.44 = 5.44
 Ideal CPU is 5.44/2 =2.72 times faster

Chapter 5 — Large and
Fast: Exploiting Memory

Hierarchy — 47

Average Access Time

 Hit time is also important for performance
 Average memory access time (AMAT)
 AMAT = Hit time + Miss rate × Miss penalty

 Example
 CPU with 1ns clock, hit time = 1 cycle, miss penalty = 20

cycles, I-cache miss rate = 5%
 AMAT = 1 + 0.05 × 20 = 2ns
 2 cycles per instruction

Example – “gcc”compiler on MIPS

 Instruction count = IC
 Instruction cache miss rate = 5%
 Data cache miss rate = 10%
 Clocks/instruction (CPI) = 4 if no misses/stalls
 Miss penalty = 12 cycles (all misses)
 Instruction frequencies:
 lw = 22% of instructions executed
 sw = 11% of instructions executed

What is the effect of cache misses on CPU performance (ex, on CPI)?

48

Chapter 5 — Large and
Fast: Exploiting Memory

Hierarchy — 49

Performance Summary
 Two ways of improving performance:
 decrease the miss ratio
 decrease the miss penalty

 When CPU performance increased
 Miss penalty becomes more significant

 Decreasing base CPI
 Greater proportion of time spent on memory stalls

 Increasing clock rate
 Memory stalls account for more CPU cycles

 Can’t neglect cache behavior when evaluating system
performance

Chapter 5 — Large and
Fast: Exploiting Memory

Hierarchy — 50

Main Memory Supporting Caches

 Use DRAMs for main memory
 Fixed width (e.g., 1 word)
 Connected by fixed-width clocked bus
 Bus clock is typically slower than CPU clock

 Example cache block read
 1 bus cycle for address transfer
 15 bus cycles per DRAM access
 1 bus cycle per data transfer

 For 4-word block, 1-word-wide DRAM
 Miss penalty = 1 + 4×15 + 4×1 = 65 bus cycles
 Bandwidth = 16 bytes / 65 cycles = 0.25 B/cycle

Chapter 5 — Large and
Fast: Exploiting Memory

Hierarchy — 51

Increasing Memory Bandwidth

 4-word wide memory
 Miss penalty = 1 + 15 + 1 = 17 bus cycles
 Bandwidth = 16 bytes / 17 cycles = 0.94 B/cycle

 4-bank interleaved memory
 Miss penalty = 1 + 15 + 4×1 = 20 bus cycles
 Bandwidth = 16 bytes / 20 cycles = 0.8 B/cycle

Chapter 5 — Large and
Fast: Exploiting Memory

Hierarchy — 52

Advanced DRAM Organization

 Bits in a DRAM are organized as a rectangular array
 DRAM accesses an entire row
 Burst mode: supply successive words from a row with reduced

latency

 Double data rate (DDR) DRAM
 Transfer on rising and falling clock edges

 Quad data rate (QDR) DRAM
 Separate DDR inputs and outputs

Chapter 5 — Large and
Fast: Exploiting Memory

Hierarchy — 53

DRAM Generations

0

50

100

150

200

250

300

'80 '83 '85 '89 '92 '96 '98 '00 '04 '07

Trac
Tcac

Year Capacity $/GB

1980 64Kbit $1500000

1983 256Kbit $500000

1985 1Mbit $200000

1989 4Mbit $50000

1992 16Mbit $15000

1996 64Mbit $10000

1998 128Mbit $4000

2000 256Mbit $1000

2004 512Mbit $250

2007 1Gbit $50

Chapter 5 — Large and
Fast: Exploiting Memory

Hierarchy — 54

Multilevel Caches
 Primary (Level-1) cache attached to CPU
 Small, but fast
 Try to optimize hit ratio

 Level-2 cache services misses from primary cache
 Larger, slower, but still faster than main memory
 Optimize penalty for L-1 cache miss

 Main memory services L-2 cache misses
 Some high-end systems include L-3 cache

Chapter 5 — Large and
Fast: Exploiting Memory

Hierarchy — 55

Multilevel Cache Example
 Given
 CPU base CPI = 1, clock rate = 4GHz
 Miss rate/instruction = 2%
 Main memory access time = 100ns

 With just primary cache
 Miss penalty = 100ns/0.25ns = 400 cycles
 Effective CPI = 1 + 0.02 × 400 = 9

Chapter 5 — Large and
Fast: Exploiting Memory

Hierarchy — 56

Example (cont.)
 Now add L-2 cache
 Access time = 5ns
 Global miss rate to main memory = 0.5%

 Primary miss with L-2 hit
 Penalty = 5ns/0.25ns = 20 cycles

 Primary miss with L-2 miss
 Extra penalty = 500 cycles

 CPI = 1 + 0.02 × 20 + 0.005 × 400 = 3.4
 Performance ratio = 9/3.4 = 2.6

Chapter 5 — Large and
Fast: Exploiting Memory

Hierarchy — 57

Multilevel Cache Considerations

 Primary cache
 Focus on minimal hit time

 L-2 cache
 Focus on low miss rate to avoid main memory access
 Hit time has less overall impact

 Results
 L-1 cache usually smaller than a single cache
 L-1 block size smaller than L-2 block size

Intel Pentium P4 vs. AMD Opteron
Characteristic Intel Pentium P4 AMD Opteron

L1 cache org. Split instr/data cache Split instr/data cache

L1 cache size 8KB data, 96KB trace
cache (12K RISC instr)

64KB each I/D

L1 cache associativity 4-way set-associative 2-way set associative

L1 replacement Approximated LRU LRU

L1 block size 64 bytes 64 bytes

L1 write policy Write-through Write-back

L2 cache org. Unified I/D Unified I/D

L2 cache size 512KB 1024KB

L2 cache associativity 8-way set-associative 16-way set-associative

L2 replacement Approximated LRU Approximated LRU

L2 block size 128 bytes 64 bytes

L2 write policy Write-back Write-back

Figure 7.35 58

Chapter 5 — Large and
Fast: Exploiting Memory

Hierarchy — 59

Interactions with Advanced CPUs

 Out-of-order CPUs can execute instructions during cache
miss
 Pending store stays in load/store unit
 Dependent instructions wait in reservation stations
 Independent instructions continue

 Effect of miss depends on program data flow
 Much harder to analyze
 Use system simulation

	Cache Memory
	Memory Hierarchy
	Cache Memory
	Hits vs. Misses
	Average Memory Access Time
	Average Memory Access Time
	Fully Associative Cache
	Fully Associative Cache
	Fully Associative Cache
	Cache Memory Structures
	Cache Memory Structures
	Multi-Word Blocks
	Direct Mapped Cache
	Tags and Valid Bits
	Direct Mapped Cache �Address Subdivision
	Cache Example
	Cache Example
	Cache Example
	Cache Example
	Cache Example
	Cache Example
	Block Size Considerations
	Example: Larger Block Size
	Performance
	Example: Intrinsity FastMATH
	Example: Intrinsity FastMATH
	Cache Misses
	Cache Misses
	Write-Through
	Write-Back
	Write Allocation
	Replacement Policy
	Decreasing miss ratio with associativity
	Associative Cache Example
	Spectrum of Associativity
	Associativity Example
	Associativity Example
	How Much Associativity
	Performance vs. associativity
	Set Associative Cache Organization
	VAX 11/780 Cache
	Intel 80486/Pentium L1 Cache	
	MESI Cache Line State	
	Intel Approximated-LRU Replacement
	Measuring Cache Performance
	Cache Performance Example
	Average Access Time
	Example – “gcc”compiler on MIPS
	Performance Summary
	Main Memory Supporting Caches
	Increasing Memory Bandwidth
	Advanced DRAM Organization
	DRAM Generations
	Multilevel Caches
	Multilevel Cache Example
	Example (cont.)
	Multilevel Cache Considerations
	Intel Pentium P4 vs. AMD Opteron	
	Interactions with Advanced CPUs

