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Memory Hierarchy 

Cache 
Memory 

MC 

Main 
Memory 

MM 

Secondary 
Memory 
(Disk) 

MD 

CPU 
---- 

Registers 

Memory Parameters: 

•Access Time: increase with distance from CPU 

•Cost/Bit: decrease with distance from CPU 

•Capacity: increase with distance from CPU 

Memory Content: MC ⊆ MM ⊆  MD  
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Cache Memory 
 Cache memory 
 The level of the memory hierarchy closest to the CPU 

 Given accesses X1, …, Xn–1, Xn 

§5.2 The B
asics of C

aches 

 How do we know if the data 
is present in cache? 

 Where do we look in the 
cache? 

 Where do we put new data in 
the cache? 
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Hits vs. Misses 
 Read hits 
 this is what we want! 

 
 Read misses 
 stall the CPU, fetch block from memory, deliver to cache, restart  

 
 Write hits: 
 can replace data in cache and memory (write-through) 
 write the data only into the cache (write-back the cache later) 

 
 Write misses: 
 read the entire block into the cache, then write the word 
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Average Memory Access Time 
 Look-through cache: main accessed after cache miss detected: 
       TC ,TM = cache and main memory access times 

       HC = cache hit ratio 

              TAavg
 = TC*HC + (1-HC)(TC + TMavg

) 

                       = TC + (1-HC)(TMavg
) 

                                               miss penalty 

 Look-aside cache: main accessed concurrent with cache access  
 abort main access on cache hit 
 main access already in progress on cache miss  
 Wasted main bus cycles on cache hit (problem if memory shared) 
               TAavg = TC*HC + (1-HC)(TM) 
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Average Memory Access Time 
 Extending to 3rd level (disk): 
        TAavg

 = TC + (1-HC)(TM) + (1-HC)(1-HM)(TDavg
 ) 

              Note that TM << TDavg
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Fully Associative Cache 
 Associative memory – access by “content” rather than address 

V Address Data 
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Fully Associative Cache 
 CPU memory read from address 5 

D1 
D2 
D3 
D4 
D5 
D6 
D7 
D8 

D9 
D10 

Main Memory 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

5 

V Address Data 
1 3 D3 
1 7 D7 
1 5 D5 
0 ? ? 

= 

= 

= 

= 

Data to CPU 

Address from CPU 

“Hit” 

Cache 
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Fully Associative Cache 
 CPU memory read from address 8 
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Cache Memory Structures 
 Update cache with data from address 8 
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Cache Memory Structures 
 Where should the CPU place data from address 2?? 
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Multi-Word Blocks 
 Cache line holds a multi-word block from main memory 
 Take advantage of spatial locality of reference 
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Direct Mapped Cache 

 Location is determined by the main memory address 
 Mapping:  address is modulo the #blocks in the cache 

00001 00101 01001 01101 10001 10101 11001 11101

00
0

Cache

Memory

00
1

01
0

01
1

10
0

10
1

11
0

11
1

index tag 

Main memory address 

cache line 
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Tags and Valid Bits 
 How do we know which particular block is stored in a cache 

location? 
 Store block address as well as the data 
 Actually, only need the high-order bits 
 Called the tag 

 What if there is no data in a location? 
 Valid bit: 1 = present, 0 = not present 
 Initially 0 
 Reset all valid bits to 0 if main memory changed (“invalidate the 

cache”) 
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Direct Mapped Cache  
Address Subdivision 

15 

For MIPS: 

What kind of locality are we taking advantage of? 
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Cache Example 
 8-blocks, 1 word/block, direct mapped 
 Initial state 

Index V Tag Data 
000 N 
001 N 
010 N 
011 N 
100 N 
101 N 
110 N 
111 N 
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Cache Example 

Index V Tag Data 
000 N 
001 N 
010 N 
011 N 
100 N 
101 N 
110 Y 10 Mem[10110] 
111 N 

Word addr Binary addr Hit/miss Cache block 
22 10 110 Miss 110 
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Cache Example 

Index V Tag Data 
000 N 
001 N 
010 Y 11 Mem[11010] 
011 N 
100 N 
101 N 
110 Y 10 Mem[10110] 
111 N 

Word addr Binary addr Hit/miss Cache block 
26 11 010 Miss 010 
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Cache Example 

Index V Tag Data 
000 N 
001 N 
010 Y 11 Mem[11010] 
011 N 
100 N 
101 N 
110 Y 10 Mem[10110] 
111 N 

Word addr Binary addr Hit/miss Cache block 
22 10 110 Hit 110 
26 11 010 Hit 010 
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Cache Example 

Index V Tag Data 
000 Y 10 Mem[10000] 
001 N 
010 Y 11 Mem[11010] 
011 Y 00 Mem[00011] 
100 N 
101 N 
110 Y 10 Mem[10110] 
111 N 

Word addr Binary addr Hit/miss Cache block 
16 10 000 Miss 000 
3 00 011 Miss 011 

16 10 000 Hit 000 
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Cache Example 

Index V Tag Data 
000 Y 10 Mem[10000] 
001 N 
010 Y 10 Mem[10010] 
011 Y 00 Mem[00011] 
100 N 
101 N 
110 Y 10 Mem[10110] 
111 N 

Word addr Binary addr Hit/miss Cache block 
18 10 010 Miss 010 

21 

Replaces  
Mem[110010 
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Block Size Considerations 
 Larger blocks can reduce miss rate 
 Due to spatial locality 

 But in a fixed-sized cache 
 Larger blocks ⇒ fewer of them 
 More competition ⇒ increased miss rate 

 Larger blocks ⇒ pollution 

 Larger miss penalty to load larger block 
 Can override benefit of reduced miss rate 
 Early restart and critical-word-first can help 

22 



Chapter 5 — Large and 
Fast: Exploiting Memory 

Hierarchy — 23 

Example: Larger Block Size 
 Example: 64 blocks, 16 bytes/block 
 To what block number does address 1200 map? 
 Block address = 1200/16 = 75 
 Block number = 75 modulo 64 = 11 

Tag Index Offset 
0 3 4 9 10 31 

4 bits 6 bits 22 bits 

23 



Performance 
 Increasing the block size tends to decrease miss rate: 

 
 
 
 
 
 
 

 Use split caches because there is more spatial locality in code: 

1 KB
8 KB
16 KB
64 KB
256 KB

256

40%

35%

30%

25%

20%

15%

10%

5%

0%

M
is

s 
ra

te

64164

Block size (bytes)

Program
Block size in 

words
Instruction 
miss rate

Data miss 
rate

Effective combined 
miss rate

gcc 1 6.1% 2.1% 5.4%
4 2.0% 1.7% 1.9%

spice 1 1.2% 1.3% 1.2%
4 0.3% 0.6% 0.4%24 
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Example: Intrinsity FastMATH 
 Embedded MIPS processor 
 12-stage pipeline 
 Instruction and data access on each cycle 

 Split cache: separate I-cache and D-cache 
 Each 16KB: 256 blocks × 16 words/block 
 D-cache: write-through or write-back 

 SPEC2000 miss rates 
 I-cache: 0.4% 
 D-cache: 11.4% 
 Weighted average: 3.2% 



Example: Intrinsity FastMATH 
Takes advantage 
of spatial locality. 
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Cache Misses 
 On cache hit, CPU proceeds normally 
 On cache miss 
 Stall the CPU pipeline 
 Fetch block from next level of hierarchy 
 Instruction cache miss 
 Restart instruction fetch 

 Data cache miss 
 Complete data access 
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Cache Misses 
 Compulsory – cache “empty” at startup 
 Capacity – cache unable to hold entire working set 
 Conflict – two memory loc’s map to same cache line 

Conflict (1-way) 

Compulsory – “flat” but  
negligible in this example 

Conflict (2-way) 

Conflict (8-way) 

Fig. 7.31 
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Write-Through 

 On data-write hit, could just update the block in cache 
 But then cache and memory would be inconsistent 

 Write through: also update memory 
 But makes writes take longer 
 e.g., if base CPI = 1, 10% of instructions are stores, write to 

memory takes 100 cycles 
  Effective CPI = 1 + 0.1×100 = 11 

 Solution: write buffer 
 Holds data waiting to be written to memory 
 CPU continues immediately 
 Only stalls on write if write buffer is already full 
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Write-Back 
 Alternative: On data-write hit, just update the block in cache 
 Keep track of whether each block is dirty 

 When a dirty block is replaced 
 Write it back to memory 
 Can use a write buffer to allow replacing block to be read first 
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Write Allocation 
 What should happen on a write miss? 
 Alternatives for write-through 
 Allocate on miss: fetch the block 
 Write around: don’t fetch the block 
 Since programs often write a whole block before reading it (e.g., 

initialization) 

 For write-back 
 Usually fetch the block 
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Replacement Policy 
 Direct mapped: no choice 
 Set associative 
 Prefer non-valid entry, if there is one 
 Otherwise, choose among entries in the set 

 Least-recently used (LRU) 
 Choose the one unused for the longest time 
 Simple for 2-way, manageable for 4-way, too hard beyond that 

 Random 
 Gives approximately the same performance as LRU for high 

associativity 



Decreasing miss ratio with associativity 

 Problems: 
 Fully associative – high cost, but misses only when capacity 

reached since any item can go in any line 
 Direct-mapped: less expensive, but can hold only one item with 

a given index, leading to conflicts 

 Compromise: Set Associative Cache 
 “N-way” set associative cache has N direct-mapped caches 
 One “set” = N lines with a particular index 
 Item with index K can be placed in line K of any of the N 

direct-mapped caches 
 Results in fewer misses due to conflicts 
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Associative Cache Example 
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Spectrum of Associativity 
 For a cache 

with 8 entries 
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Associativity Example 
 Compare 4-block caches 
 Direct mapped, 2-way set associative, fully associative 
 Block access sequence: 0, 8, 0, 6, 8 

 Direct mapped 
Block 

address 
Cache 
index 

Hit/miss Cache content after access 

0 1 2 3 
0 0 miss Mem[0] 
8 0 miss Mem[8] 
0 0 miss Mem[0] 
6 2 miss Mem[0] Mem[6] 
8 0 miss Mem[8] Mem[6] 

Continued on next slide 
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Associativity Example 
 2-way set associative (sequence: 0, 8, 0, 6, 8) 

 Block 
address 

Cache 
index 

Hit/miss Cache content after access 
Set 0 Set 1 

0 0 miss Mem[0] 
8 0 miss Mem[0] Mem[8] 
0 0 hit Mem[0] Mem[8] 
6 0 miss Mem[0] Mem[6] 
8 0 miss Mem[8] Mem[6] 

 Fully associative (sequence: 0, 8, 0, 6, 8) 
Block 

address 
Hit/miss Cache content after access 

0 miss Mem[0] 
8 miss Mem[0] Mem[8] 
0 hit Mem[0] Mem[8] 
6 miss Mem[0] Mem[8] Mem[6] 
8 hit Mem[0] Mem[8] Mem[6] 
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How Much Associativity 
 Increased associativity decreases miss rate 
 But with diminishing returns 

 Simulation of a system with 64KB 
D-cache, 16-word blocks, SPEC2000 
 1-way: 10.3% 
 2-way: 8.6% 
 4-way: 8.3% 
 8-way: 8.1% 



Performance vs. associativity 

Associativity

0
One-way Two-way

3%

6%

9%

12%

15%

Four-way Eight-way

1 KB

2 KB

4 KB

8 KB

16 KB
32 KB

64 KB 128 KB
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Set Associative Cache Organization 

4-way set-associative cache 



VAX 11/780 Cache 

41 



Intel 80486/Pentium L1 Cache  

2K (486) 

4K (Pentium) 
128 Lines 

(sets) 

Data line = 16 bytes (486) 
                   32 bytes (Pentium) 

Tags 
(20 bit) 

LRU  Valid* 
 (3)      (4) 

* Instruction cache: 1 valid bit per line 

* Data cache: 2-bit MESI state per line 

80486 4-way Set Associative (Pentium 2-way) 

Write-back/Write-through programmable 

80486 – 8K unified I/D 
Pentium – 8K/8K I/D 
Pentium II/III – 16K/16K I/D 
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MESI Cache Line State  
 MESI = 2-bit cache line “state” for “write-back” cache 
 I = Invalid (line does not contain valid data) 
 S = Line valid, with shared access – no writes allowed 
 E = Line valid, with exclusive access – data may be written 
 M = Line valid & modified since read from main (must be 

rewritten to main memory) 
 

I S 

E M 

read 

read 

write 

invalidate 

invalidate invalidate 
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Intel Approximated-LRU Replacement 
 3-bit number B2B1B0 assigned to each “set” of 4 lines 
 Access L0/L1 – set B0=1 
 Access L2/L3 – set B0=0 
 Access L0 – set B1=1 or L1 – set B1=0 
 Access L2 – set B2=1 or L1 – set B2=0 
 

B0 

B2 B1 

L0 L1 L2 L3 

0 

0 0 

1 

1 1 

B0B1 = 00 – replace L0 

             01 – replace L1 

B0B2 = 10 – replace L2 

              11 – replace L3 
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Measuring Cache Performance 

 Components of CPU time: 
 Program execution cycles 
 Includes cache hit time 
 Execution time = (execution cycles + stall cycles) x cycle time 

 Memory stall cycles 
 Mainly from cache misses 

 With simplifying assumptions: 

§5.3 M
easuring and Im

proving C
ache P

erform
ance penalty Miss

nInstructio
Misses

Program
nsInstructio

penalty Missrate Miss
Program

accessesMemory 

cycles stallMemory 

××=

××=
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Cache Performance Example 
 Given 
 I-cache miss rate = 2% 
 D-cache miss rate = 4% 
 Miss penalty = 100 cycles 
 Base CPI (ideal cache) = 2 
 Load & stores are 36% of instructions 

 Miss cycles per instruction 
 I-cache: 0.02 × 100 = 2 
 D-cache: 0.36 × 0.04 × 100 = 1.44 

 Actual CPI = 2 + 2 + 1.44 = 5.44 
 Ideal CPU is 5.44/2 =2.72 times faster 
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Average Access Time 

 Hit time is also important for performance 
 Average memory access time (AMAT) 
 AMAT = Hit time + Miss rate × Miss penalty 

 Example 
 CPU with 1ns clock, hit time = 1 cycle, miss penalty = 20 

cycles, I-cache miss rate = 5% 
 AMAT = 1 + 0.05 × 20 = 2ns 
 2 cycles per instruction 



Example – “gcc”compiler on MIPS 

 Instruction count = IC 
 Instruction cache miss rate = 5% 
 Data cache miss rate = 10% 
 Clocks/instruction (CPI) = 4 if no misses/stalls 
 Miss penalty = 12 cycles (all misses) 
 Instruction frequencies: 
 lw = 22% of instructions executed 
 sw = 11% of instructions executed 

 
What is the effect of cache misses on CPU  performance (ex, on CPI)? 
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Performance Summary 
 Two ways of improving performance: 
 decrease the miss ratio 
 decrease the miss penalty 

 When CPU performance increased 
 Miss penalty becomes more significant 

 Decreasing base CPI 
 Greater proportion of time spent on memory stalls 

 Increasing clock rate 
 Memory stalls account for more CPU cycles 

 Can’t neglect cache behavior when evaluating system 
performance 
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Main Memory Supporting Caches 

 Use DRAMs for main memory 
 Fixed width (e.g., 1 word) 
 Connected by fixed-width clocked bus 
 Bus clock is typically slower than CPU clock 

 Example cache block read 
 1 bus cycle for address transfer 
 15 bus cycles per DRAM access 
 1 bus cycle per data transfer 

 For 4-word block, 1-word-wide DRAM 
 Miss penalty = 1 + 4×15 + 4×1 = 65 bus cycles 
 Bandwidth = 16 bytes / 65 cycles = 0.25 B/cycle 
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Increasing Memory Bandwidth 

 4-word wide memory 
 Miss penalty = 1 + 15 + 1 = 17 bus cycles 
 Bandwidth = 16 bytes / 17 cycles = 0.94 B/cycle 

 4-bank interleaved memory 
 Miss penalty = 1 + 15 + 4×1 = 20 bus cycles 
 Bandwidth = 16 bytes / 20 cycles = 0.8 B/cycle 
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Advanced DRAM Organization 

 Bits in a DRAM are organized as a rectangular array 
 DRAM accesses an entire row 
 Burst mode: supply successive words from a row with reduced 

latency 

 Double data rate (DDR) DRAM 
 Transfer on rising and falling clock edges 

 Quad data rate (QDR) DRAM 
 Separate DDR inputs and outputs 
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DRAM Generations 

0

50

100

150

200

250

300

'80 '83 '85 '89 '92 '96 '98 '00 '04 '07

Trac
Tcac

Year Capacity $/GB 

1980 64Kbit $1500000 

1983 256Kbit $500000 

1985 1Mbit $200000 

1989 4Mbit $50000 

1992 16Mbit $15000 

1996 64Mbit $10000 

1998 128Mbit $4000 

2000 256Mbit $1000 

2004 512Mbit $250 

2007 1Gbit $50 
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Multilevel Caches 
 Primary (Level-1) cache attached to CPU 
 Small, but fast 
 Try to optimize hit ratio 

 Level-2 cache services misses from primary cache 
 Larger, slower, but still faster than main memory 
 Optimize penalty for L-1 cache miss 

 Main memory services L-2 cache misses 
 Some high-end systems include L-3 cache 
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Multilevel Cache Example 
 Given 
 CPU base CPI = 1, clock rate = 4GHz 
 Miss rate/instruction = 2% 
 Main memory access time = 100ns 

 With just primary cache 
 Miss penalty = 100ns/0.25ns = 400 cycles 
 Effective CPI = 1 + 0.02 × 400 = 9 
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Example (cont.) 
 Now add L-2 cache 
 Access time = 5ns 
 Global miss rate to main memory = 0.5% 

 Primary miss with L-2 hit 
 Penalty = 5ns/0.25ns = 20 cycles 

 Primary miss with L-2 miss 
 Extra penalty = 500 cycles 

 CPI = 1 + 0.02 × 20 + 0.005 × 400 = 3.4 
 Performance ratio = 9/3.4 = 2.6 
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Multilevel Cache Considerations 

 Primary cache 
 Focus on minimal hit time 

 L-2 cache 
 Focus on low miss rate to avoid main memory access 
 Hit time has less overall impact 

 Results 
 L-1 cache usually smaller than a single cache 
 L-1 block size smaller than L-2 block size 



Intel Pentium P4 vs. AMD Opteron  
Characteristic Intel Pentium P4 AMD Opteron 

L1 cache org. Split instr/data cache Split instr/data cache 

L1 cache size 8KB data, 96KB trace 
cache (12K RISC instr) 

64KB each I/D 

L1 cache associativity 4-way set-associative 2-way set associative 

L1 replacement Approximated LRU LRU 

L1 block size 64 bytes 64 bytes 

L1 write policy Write-through Write-back 

L2 cache org. Unified I/D Unified I/D 

L2 cache size 512KB 1024KB 

L2 cache associativity 8-way set-associative 16-way set-associative 

L2 replacement Approximated LRU Approximated LRU 

L2 block size 128 bytes 64 bytes 

L2 write policy Write-back Write-back 

Figure 7.35 58 
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Interactions with Advanced CPUs 

 Out-of-order CPUs can execute instructions during cache 
miss 
 Pending store stays in load/store unit 
 Dependent instructions wait in reservation stations 
 Independent instructions continue 

 Effect of miss depends on program data flow 
 Much harder to analyze 
 Use system simulation 
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