
Patterson & Hennessey
Chapter 5

Cache Memory

1

Memory Hierarchy

Cache
Memory

MC

Main
Memory

MM

Secondary
Memory
(Disk)

MD

CPU

Registers

Memory Parameters:

•Access Time: increase with distance from CPU

•Cost/Bit: decrease with distance from CPU

•Capacity: increase with distance from CPU

Memory Content: MC ⊆ MM ⊆ MD

2

Chapter 5 — Large and
Fast: Exploiting Memory

Hierarchy — 3

Cache Memory
 Cache memory
 The level of the memory hierarchy closest to the CPU

 Given accesses X1, …, Xn–1, Xn

§5.2 The B
asics of C

aches

 How do we know if the data
is present in cache?

 Where do we look in the
cache?

 Where do we put new data in
the cache?

3

Hits vs. Misses
 Read hits
 this is what we want!

 Read misses
 stall the CPU, fetch block from memory, deliver to cache, restart

 Write hits:
 can replace data in cache and memory (write-through)
 write the data only into the cache (write-back the cache later)

 Write misses:
 read the entire block into the cache, then write the word

4

Average Memory Access Time
 Look-through cache: main accessed after cache miss detected:
 TC ,TM = cache and main memory access times

 HC = cache hit ratio

 TAavg
 = TC*HC + (1-HC)(TC + TMavg

)

 = TC + (1-HC)(TMavg
)

 miss penalty

 Look-aside cache: main accessed concurrent with cache access
 abort main access on cache hit
 main access already in progress on cache miss
 Wasted main bus cycles on cache hit (problem if memory shared)
 TAavg = TC*HC + (1-HC)(TM)

 5

Average Memory Access Time
 Extending to 3rd level (disk):
 TAavg

 = TC + (1-HC)(TM) + (1-HC)(1-HM)(TDavg
)

 Note that TM << TDavg

6

Fully Associative Cache
 Associative memory – access by “content” rather than address

V Address Data
1 3 D3
1 7 D7
1 5 D5
0 ? ?

D1
D2
D3
D4
D5
D6
D7
D8

D9
D10

Main Memory

Cache Memory

1

2

3

4

5

6

7

8

9

10

Valid entry

=

=

=

=

Address from CPU

Concurrently compare CPU address
to all cache address fields

7

Fully Associative Cache
 CPU memory read from address 5

D1
D2
D3
D4
D5
D6
D7
D8

D9
D10

Main Memory

1

2

3

4

5

6

7

8

9

10

5

V Address Data
1 3 D3
1 7 D7
1 5 D5
0 ? ?

=

=

=

=

Data to CPU

Address from CPU

“Hit”

Cache

8

Fully Associative Cache
 CPU memory read from address 8

D1
D2
D3
D4
D5
D6
D7
D8

D9
D10

Main Memory

1

2

3

4

5

6

7

8

9

10

8

V Address Data
1 3 D3
1 7 D7
1 5 D5
0 ? ?

=

=

=

=

Address from CPU

“Miss” (no “hit”)

CPU reads
Main Memory
after Cache

miss

Cache

9

Cache Memory Structures
 Update cache with data from address 8

D1
D2
D3
D4
D5
D6
D7
D8

D9
D10

Main Memory

1

2

3

4

5

6

7

8

9

10

V Address Data
1 3 D3
1 7 D7
1 5 D5
1 8 D8

=

=

=

=

Cache

Use “open”
cache line

10

Cache Memory Structures
 Where should the CPU place data from address 2??

D1
D2
D3
D4
D5
D6
D7
D8

D9
D10

Main Memory

1

2

3

4

5

6

7

8

9

10

V Address Data
1 3 D3
1 7 D7
1 5 D5
1 8 D8

=

=

=

=

Cache

-no open cache lines

- must replace data in some line

Address 2

“Miss” (no “hit”)

11

Multi-Word Blocks
 Cache line holds a multi-word block from main memory
 Take advantage of spatial locality of reference

D0
D1
D2
D3
D4
D5
D6
D7
D8
D9

Main Memory

0

1

2

3

4

5

6

7

8

9

V Block # Data
1 1 D2-D3
1 3 D6-D7
1 0 D0-D1
0

=

=

=

=

Cache

Block #
Word offset

Block 0

Blk 1

2

3

4

12

Direct Mapped Cache

 Location is determined by the main memory address
 Mapping: address is modulo the #blocks in the cache

00001 00101 01001 01101 10001 10101 11001 11101

00
0

Cache

Memory

00
1

01
0

01
1

10
0

10
1

11
0

11
1

index tag

Main memory address

cache line

13

Chapter 5 — Large and
Fast: Exploiting Memory

Hierarchy — 14

Tags and Valid Bits
 How do we know which particular block is stored in a cache

location?
 Store block address as well as the data
 Actually, only need the high-order bits
 Called the tag

 What if there is no data in a location?
 Valid bit: 1 = present, 0 = not present
 Initially 0
 Reset all valid bits to 0 if main memory changed (“invalidate the

cache”)

14

Chapter 5 — Large and
Fast: Exploiting Memory

Hierarchy — 15

Direct Mapped Cache
Address Subdivision

15

For MIPS:

What kind of locality are we taking advantage of?

Chapter 5 — Large and
Fast: Exploiting Memory

Hierarchy — 16

Cache Example
 8-blocks, 1 word/block, direct mapped
 Initial state

Index V Tag Data
000 N
001 N
010 N
011 N
100 N
101 N
110 N
111 N

16

Chapter 5 — Large and
Fast: Exploiting Memory

Hierarchy — 17

Cache Example

Index V Tag Data
000 N
001 N
010 N
011 N
100 N
101 N
110 Y 10 Mem[10110]
111 N

Word addr Binary addr Hit/miss Cache block
22 10 110 Miss 110

17

Chapter 5 — Large and
Fast: Exploiting Memory

Hierarchy — 18

Cache Example

Index V Tag Data
000 N
001 N
010 Y 11 Mem[11010]
011 N
100 N
101 N
110 Y 10 Mem[10110]
111 N

Word addr Binary addr Hit/miss Cache block
26 11 010 Miss 010

18

Chapter 5 — Large and
Fast: Exploiting Memory

Hierarchy — 19

Cache Example

Index V Tag Data
000 N
001 N
010 Y 11 Mem[11010]
011 N
100 N
101 N
110 Y 10 Mem[10110]
111 N

Word addr Binary addr Hit/miss Cache block
22 10 110 Hit 110
26 11 010 Hit 010

19

Chapter 5 — Large and
Fast: Exploiting Memory

Hierarchy — 20

Cache Example

Index V Tag Data
000 Y 10 Mem[10000]
001 N
010 Y 11 Mem[11010]
011 Y 00 Mem[00011]
100 N
101 N
110 Y 10 Mem[10110]
111 N

Word addr Binary addr Hit/miss Cache block
16 10 000 Miss 000
3 00 011 Miss 011

16 10 000 Hit 000

20

Chapter 5 — Large and
Fast: Exploiting Memory

Hierarchy — 21

Cache Example

Index V Tag Data
000 Y 10 Mem[10000]
001 N
010 Y 10 Mem[10010]
011 Y 00 Mem[00011]
100 N
101 N
110 Y 10 Mem[10110]
111 N

Word addr Binary addr Hit/miss Cache block
18 10 010 Miss 010

21

Replaces
Mem[110010

Chapter 5 — Large and
Fast: Exploiting Memory

Hierarchy — 22

Block Size Considerations
 Larger blocks can reduce miss rate
 Due to spatial locality

 But in a fixed-sized cache
 Larger blocks ⇒ fewer of them
 More competition ⇒ increased miss rate

 Larger blocks ⇒ pollution

 Larger miss penalty to load larger block
 Can override benefit of reduced miss rate
 Early restart and critical-word-first can help

22

Chapter 5 — Large and
Fast: Exploiting Memory

Hierarchy — 23

Example: Larger Block Size
 Example: 64 blocks, 16 bytes/block
 To what block number does address 1200 map?
 Block address = 1200/16 = 75
 Block number = 75 modulo 64 = 11

Tag Index Offset
0 3 4 9 10 31

4 bits 6 bits 22 bits

23

Performance
 Increasing the block size tends to decrease miss rate:

 Use split caches because there is more spatial locality in code:

1 KB

8 KB

16 KB

64 KB

256 KB

256

40%

35%

30%

25%

20%

15%

10%

5%

0%

M
is

s
ra

te

64164

Block size (bytes)

Program
Block size in

words
Instruction
miss rate

Data miss
rate

Effective combined
miss rate

gcc 1 6.1% 2.1% 5.4%
4 2.0% 1.7% 1.9%

spice 1 1.2% 1.3% 1.2%
4 0.3% 0.6% 0.4%24

Chapter 5 — Large and
Fast: Exploiting Memory

Hierarchy — 25

Example: Intrinsity FastMATH
 Embedded MIPS processor
 12-stage pipeline
 Instruction and data access on each cycle

 Split cache: separate I-cache and D-cache
 Each 16KB: 256 blocks × 16 words/block
 D-cache: write-through or write-back

 SPEC2000 miss rates
 I-cache: 0.4%
 D-cache: 11.4%
 Weighted average: 3.2%

Example: Intrinsity FastMATH
Takes advantage
of spatial locality.

Chapter 5 — Large and
Fast: Exploiting Memory

Hierarchy — 27

Cache Misses
 On cache hit, CPU proceeds normally
 On cache miss
 Stall the CPU pipeline
 Fetch block from next level of hierarchy
 Instruction cache miss
 Restart instruction fetch

 Data cache miss
 Complete data access

27

Cache Misses
 Compulsory – cache “empty” at startup
 Capacity – cache unable to hold entire working set
 Conflict – two memory loc’s map to same cache line

Conflict (1-way)

Compulsory – “flat” but
negligible in this example

Conflict (2-way)

Conflict (8-way)

Fig. 7.31

28

Chapter 5 — Large and
Fast: Exploiting Memory

Hierarchy — 29

Write-Through

 On data-write hit, could just update the block in cache
 But then cache and memory would be inconsistent

 Write through: also update memory
 But makes writes take longer
 e.g., if base CPI = 1, 10% of instructions are stores, write to

memory takes 100 cycles
 Effective CPI = 1 + 0.1×100 = 11

 Solution: write buffer
 Holds data waiting to be written to memory
 CPU continues immediately
 Only stalls on write if write buffer is already full

29

Chapter 5 — Large and
Fast: Exploiting Memory

Hierarchy — 30

Write-Back
 Alternative: On data-write hit, just update the block in cache
 Keep track of whether each block is dirty

 When a dirty block is replaced
 Write it back to memory
 Can use a write buffer to allow replacing block to be read first

30

Chapter 5 — Large and
Fast: Exploiting Memory

Hierarchy — 31

Write Allocation
 What should happen on a write miss?
 Alternatives for write-through
 Allocate on miss: fetch the block
 Write around: don’t fetch the block
 Since programs often write a whole block before reading it (e.g.,

initialization)

 For write-back
 Usually fetch the block

31

Chapter 5 — Large and
Fast: Exploiting Memory

Hierarchy — 32

Replacement Policy
 Direct mapped: no choice
 Set associative
 Prefer non-valid entry, if there is one
 Otherwise, choose among entries in the set

 Least-recently used (LRU)
 Choose the one unused for the longest time
 Simple for 2-way, manageable for 4-way, too hard beyond that

 Random
 Gives approximately the same performance as LRU for high

associativity

Decreasing miss ratio with associativity

 Problems:
 Fully associative – high cost, but misses only when capacity

reached since any item can go in any line
 Direct-mapped: less expensive, but can hold only one item with

a given index, leading to conflicts

 Compromise: Set Associative Cache
 “N-way” set associative cache has N direct-mapped caches
 One “set” = N lines with a particular index
 Item with index K can be placed in line K of any of the N

direct-mapped caches
 Results in fewer misses due to conflicts

33

Chapter 5 — Large and
Fast: Exploiting Memory

Hierarchy — 34

Associative Cache Example

Chapter 5 — Large and
Fast: Exploiting Memory

Hierarchy — 35

Spectrum of Associativity
 For a cache

with 8 entries

Chapter 5 — Large and
Fast: Exploiting Memory

Hierarchy — 36

Associativity Example
 Compare 4-block caches
 Direct mapped, 2-way set associative, fully associative
 Block access sequence: 0, 8, 0, 6, 8

 Direct mapped
Block

address
Cache
index

Hit/miss Cache content after access

0 1 2 3
0 0 miss Mem[0]
8 0 miss Mem[8]
0 0 miss Mem[0]
6 2 miss Mem[0] Mem[6]
8 0 miss Mem[8] Mem[6]

Continued on next slide

Chapter 5 — Large and
Fast: Exploiting Memory

Hierarchy — 37

Associativity Example
 2-way set associative (sequence: 0, 8, 0, 6, 8)

 Block
address

Cache
index

Hit/miss Cache content after access
Set 0 Set 1

0 0 miss Mem[0]
8 0 miss Mem[0] Mem[8]
0 0 hit Mem[0] Mem[8]
6 0 miss Mem[0] Mem[6]
8 0 miss Mem[8] Mem[6]

 Fully associative (sequence: 0, 8, 0, 6, 8)
Block

address
Hit/miss Cache content after access

0 miss Mem[0]
8 miss Mem[0] Mem[8]
0 hit Mem[0] Mem[8]
6 miss Mem[0] Mem[8] Mem[6]
8 hit Mem[0] Mem[8] Mem[6]

Chapter 5 — Large and
Fast: Exploiting Memory

Hierarchy — 38

How Much Associativity
 Increased associativity decreases miss rate
 But with diminishing returns

 Simulation of a system with 64KB
D-cache, 16-word blocks, SPEC2000
 1-way: 10.3%
 2-way: 8.6%
 4-way: 8.3%
 8-way: 8.1%

Performance vs. associativity

Associativity

0
One-way Two-way

3%

6%

9%

12%

15%

Four-way Eight-way

1 KB

2 KB

4 KB

8 KB

16 KB
32 KB

64 KB 128 KB

39

Chapter 5 — Large and
Fast: Exploiting Memory

Hierarchy — 40

Set Associative Cache Organization

4-way set-associative cache

VAX 11/780 Cache

41

Intel 80486/Pentium L1 Cache

2K (486)

4K (Pentium)
128 Lines

(sets)

Data line = 16 bytes (486)
 32 bytes (Pentium)

Tags
(20 bit)

LRU Valid*
 (3) (4)

* Instruction cache: 1 valid bit per line

* Data cache: 2-bit MESI state per line

80486 4-way Set Associative (Pentium 2-way)

Write-back/Write-through programmable

80486 – 8K unified I/D
Pentium – 8K/8K I/D
Pentium II/III – 16K/16K I/D

42

MESI Cache Line State
 MESI = 2-bit cache line “state” for “write-back” cache
 I = Invalid (line does not contain valid data)
 S = Line valid, with shared access – no writes allowed
 E = Line valid, with exclusive access – data may be written
 M = Line valid & modified since read from main (must be

rewritten to main memory)

I S

E M

read

read

write

invalidate

invalidate invalidate

43

Intel Approximated-LRU Replacement
 3-bit number B2B1B0 assigned to each “set” of 4 lines
 Access L0/L1 – set B0=1
 Access L2/L3 – set B0=0
 Access L0 – set B1=1 or L1 – set B1=0
 Access L2 – set B2=1 or L1 – set B2=0

B0

B2 B1

L0 L1 L2 L3

0

0 0

1

1 1

B0B1 = 00 – replace L0

 01 – replace L1

B0B2 = 10 – replace L2

 11 – replace L3

44

Chapter 5 — Large and
Fast: Exploiting Memory

Hierarchy — 45

Measuring Cache Performance

 Components of CPU time:
 Program execution cycles
 Includes cache hit time
 Execution time = (execution cycles + stall cycles) x cycle time

 Memory stall cycles
 Mainly from cache misses

 With simplifying assumptions:

§5.3 M
easuring and Im

proving C
ache P

erform
ance penalty Miss

nInstructio
Misses

Program
nsInstructio

penalty Missrate Miss
Program

accessesMemory

cycles stallMemory

××=

××=

Chapter 5 — Large and
Fast: Exploiting Memory

Hierarchy — 46

Cache Performance Example
 Given
 I-cache miss rate = 2%
 D-cache miss rate = 4%
 Miss penalty = 100 cycles
 Base CPI (ideal cache) = 2
 Load & stores are 36% of instructions

 Miss cycles per instruction
 I-cache: 0.02 × 100 = 2
 D-cache: 0.36 × 0.04 × 100 = 1.44

 Actual CPI = 2 + 2 + 1.44 = 5.44
 Ideal CPU is 5.44/2 =2.72 times faster

Chapter 5 — Large and
Fast: Exploiting Memory

Hierarchy — 47

Average Access Time

 Hit time is also important for performance
 Average memory access time (AMAT)
 AMAT = Hit time + Miss rate × Miss penalty

 Example
 CPU with 1ns clock, hit time = 1 cycle, miss penalty = 20

cycles, I-cache miss rate = 5%
 AMAT = 1 + 0.05 × 20 = 2ns
 2 cycles per instruction

Example – “gcc”compiler on MIPS

 Instruction count = IC
 Instruction cache miss rate = 5%
 Data cache miss rate = 10%
 Clocks/instruction (CPI) = 4 if no misses/stalls
 Miss penalty = 12 cycles (all misses)
 Instruction frequencies:
 lw = 22% of instructions executed
 sw = 11% of instructions executed

What is the effect of cache misses on CPU performance (ex, on CPI)?

48

Chapter 5 — Large and
Fast: Exploiting Memory

Hierarchy — 49

Performance Summary
 Two ways of improving performance:
 decrease the miss ratio
 decrease the miss penalty

 When CPU performance increased
 Miss penalty becomes more significant

 Decreasing base CPI
 Greater proportion of time spent on memory stalls

 Increasing clock rate
 Memory stalls account for more CPU cycles

 Can’t neglect cache behavior when evaluating system
performance

Chapter 5 — Large and
Fast: Exploiting Memory

Hierarchy — 50

Main Memory Supporting Caches

 Use DRAMs for main memory
 Fixed width (e.g., 1 word)
 Connected by fixed-width clocked bus
 Bus clock is typically slower than CPU clock

 Example cache block read
 1 bus cycle for address transfer
 15 bus cycles per DRAM access
 1 bus cycle per data transfer

 For 4-word block, 1-word-wide DRAM
 Miss penalty = 1 + 4×15 + 4×1 = 65 bus cycles
 Bandwidth = 16 bytes / 65 cycles = 0.25 B/cycle

Chapter 5 — Large and
Fast: Exploiting Memory

Hierarchy — 51

Increasing Memory Bandwidth

 4-word wide memory
 Miss penalty = 1 + 15 + 1 = 17 bus cycles
 Bandwidth = 16 bytes / 17 cycles = 0.94 B/cycle

 4-bank interleaved memory
 Miss penalty = 1 + 15 + 4×1 = 20 bus cycles
 Bandwidth = 16 bytes / 20 cycles = 0.8 B/cycle

Chapter 5 — Large and
Fast: Exploiting Memory

Hierarchy — 52

Advanced DRAM Organization

 Bits in a DRAM are organized as a rectangular array
 DRAM accesses an entire row
 Burst mode: supply successive words from a row with reduced

latency

 Double data rate (DDR) DRAM
 Transfer on rising and falling clock edges

 Quad data rate (QDR) DRAM
 Separate DDR inputs and outputs

Chapter 5 — Large and
Fast: Exploiting Memory

Hierarchy — 53

DRAM Generations

0

50

100

150

200

250

300

'80 '83 '85 '89 '92 '96 '98 '00 '04 '07

Trac
Tcac

Year Capacity $/GB

1980 64Kbit $1500000

1983 256Kbit $500000

1985 1Mbit $200000

1989 4Mbit $50000

1992 16Mbit $15000

1996 64Mbit $10000

1998 128Mbit $4000

2000 256Mbit $1000

2004 512Mbit $250

2007 1Gbit $50

Chapter 5 — Large and
Fast: Exploiting Memory

Hierarchy — 54

Multilevel Caches
 Primary (Level-1) cache attached to CPU
 Small, but fast
 Try to optimize hit ratio

 Level-2 cache services misses from primary cache
 Larger, slower, but still faster than main memory
 Optimize penalty for L-1 cache miss

 Main memory services L-2 cache misses
 Some high-end systems include L-3 cache

Chapter 5 — Large and
Fast: Exploiting Memory

Hierarchy — 55

Multilevel Cache Example
 Given
 CPU base CPI = 1, clock rate = 4GHz
 Miss rate/instruction = 2%
 Main memory access time = 100ns

 With just primary cache
 Miss penalty = 100ns/0.25ns = 400 cycles
 Effective CPI = 1 + 0.02 × 400 = 9

Chapter 5 — Large and
Fast: Exploiting Memory

Hierarchy — 56

Example (cont.)
 Now add L-2 cache
 Access time = 5ns
 Global miss rate to main memory = 0.5%

 Primary miss with L-2 hit
 Penalty = 5ns/0.25ns = 20 cycles

 Primary miss with L-2 miss
 Extra penalty = 500 cycles

 CPI = 1 + 0.02 × 20 + 0.005 × 400 = 3.4
 Performance ratio = 9/3.4 = 2.6

Chapter 5 — Large and
Fast: Exploiting Memory

Hierarchy — 57

Multilevel Cache Considerations

 Primary cache
 Focus on minimal hit time

 L-2 cache
 Focus on low miss rate to avoid main memory access
 Hit time has less overall impact

 Results
 L-1 cache usually smaller than a single cache
 L-1 block size smaller than L-2 block size

Intel Pentium P4 vs. AMD Opteron
Characteristic Intel Pentium P4 AMD Opteron

L1 cache org. Split instr/data cache Split instr/data cache

L1 cache size 8KB data, 96KB trace
cache (12K RISC instr)

64KB each I/D

L1 cache associativity 4-way set-associative 2-way set associative

L1 replacement Approximated LRU LRU

L1 block size 64 bytes 64 bytes

L1 write policy Write-through Write-back

L2 cache org. Unified I/D Unified I/D

L2 cache size 512KB 1024KB

L2 cache associativity 8-way set-associative 16-way set-associative

L2 replacement Approximated LRU Approximated LRU

L2 block size 128 bytes 64 bytes

L2 write policy Write-back Write-back

Figure 7.35 58

Chapter 5 — Large and
Fast: Exploiting Memory

Hierarchy — 59

Interactions with Advanced CPUs

 Out-of-order CPUs can execute instructions during cache
miss
 Pending store stays in load/store unit
 Dependent instructions wait in reservation stations
 Independent instructions continue

 Effect of miss depends on program data flow
 Much harder to analyze
 Use system simulation

	Cache Memory
	Memory Hierarchy
	Cache Memory
	Hits vs. Misses
	Average Memory Access Time
	Average Memory Access Time
	Fully Associative Cache
	Fully Associative Cache
	Fully Associative Cache
	Cache Memory Structures
	Cache Memory Structures
	Multi-Word Blocks
	Direct Mapped Cache
	Tags and Valid Bits
	Direct Mapped Cache �Address Subdivision
	Cache Example
	Cache Example
	Cache Example
	Cache Example
	Cache Example
	Cache Example
	Block Size Considerations
	Example: Larger Block Size
	Performance
	Example: Intrinsity FastMATH
	Example: Intrinsity FastMATH
	Cache Misses
	Cache Misses
	Write-Through
	Write-Back
	Write Allocation
	Replacement Policy
	Decreasing miss ratio with associativity
	Associative Cache Example
	Spectrum of Associativity
	Associativity Example
	Associativity Example
	How Much Associativity
	Performance vs. associativity
	Set Associative Cache Organization
	VAX 11/780 Cache
	Intel 80486/Pentium L1 Cache	
	MESI Cache Line State	
	Intel Approximated-LRU Replacement
	Measuring Cache Performance
	Cache Performance Example
	Average Access Time
	Example – “gcc”compiler on MIPS
	Performance Summary
	Main Memory Supporting Caches
	Increasing Memory Bandwidth
	Advanced DRAM Organization
	DRAM Generations
	Multilevel Caches
	Multilevel Cache Example
	Example (cont.)
	Multilevel Cache Considerations
	Intel Pentium P4 vs. AMD Opteron	
	Interactions with Advanced CPUs

