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Memory Hierarchy 

Cache 
Memory 

MC 

Main 
Memory 

MM 

Secondary 
Memory 
(Disk) 

MD 

CPU 
---- 

Registers 

Memory Parameters: 

•Access Time: increase with distance from CPU 

•Cost/Bit: decrease with distance from CPU 

•Capacity: increase with distance from CPU 

Memory Content: MC ⊆ MM ⊆  MD  
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Cache Memory 
 Cache memory 
 The level of the memory hierarchy closest to the CPU 

 Given accesses X1, …, Xn–1, Xn 

§5.2 The B
asics of C

aches 

 How do we know if the data 
is present in cache? 

 Where do we look in the 
cache? 

 Where do we put new data in 
the cache? 
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Hits vs. Misses 
 Read hits 
 this is what we want! 

 
 Read misses 
 stall the CPU, fetch block from memory, deliver to cache, restart  

 
 Write hits: 
 can replace data in cache and memory (write-through) 
 write the data only into the cache (write-back the cache later) 

 
 Write misses: 
 read the entire block into the cache, then write the word 
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Average Memory Access Time 
 Look-through cache: main accessed after cache miss detected: 
       TC ,TM = cache and main memory access times 

       HC = cache hit ratio 

              TAavg
 = TC*HC + (1-HC)(TC + TMavg

) 

                       = TC + (1-HC)(TMavg
) 

                                               miss penalty 

 Look-aside cache: main accessed concurrent with cache access  
 abort main access on cache hit 
 main access already in progress on cache miss  
 Wasted main bus cycles on cache hit (problem if memory shared) 
               TAavg = TC*HC + (1-HC)(TM) 
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Average Memory Access Time 
 Extending to 3rd level (disk): 
        TAavg

 = TC + (1-HC)(TM) + (1-HC)(1-HM)(TDavg
 ) 

              Note that TM << TDavg
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Fully Associative Cache 
 Associative memory – access by “content” rather than address 

V Address Data 
1 3 D3 
1 7 D7 
1 5 D5 
0 ? ? 

D1 
D2 
D3 
D4 
D5 
D6 
D7 
D8 

D9 
D10 

Main Memory 

Cache Memory 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Valid entry 

= 

= 

= 

= 

Address from CPU 

Concurrently compare CPU address 
to all cache address fields 
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Fully Associative Cache 
 CPU memory read from address 5 

D1 
D2 
D3 
D4 
D5 
D6 
D7 
D8 

D9 
D10 

Main Memory 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

5 

V Address Data 
1 3 D3 
1 7 D7 
1 5 D5 
0 ? ? 

= 

= 

= 

= 

Data to CPU 

Address from CPU 

“Hit” 

Cache 
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Fully Associative Cache 
 CPU memory read from address 8 

D1 
D2 
D3 
D4 
D5 
D6 
D7 
D8 

D9 
D10 

Main Memory 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

8 

V Address Data 
1 3 D3 
1 7 D7 
1 5 D5 
0 ? ? 

= 

= 

= 

= 

Address from CPU 

“Miss” (no “hit”) 

CPU reads 
Main Memory 
after Cache 

miss 

Cache 
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Cache Memory Structures 
 Update cache with data from address 8 

D1 
D2 
D3 
D4 
D5 
D6 
D7 
D8 

D9 
D10 

Main Memory 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

V Address Data 
1 3 D3 
1 7 D7 
1 5 D5 
1 8 D8 

= 

= 

= 

= 

Cache 

Use “open” 
cache line 
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Cache Memory Structures 
 Where should the CPU place data from address 2?? 

D1 
D2 
D3 
D4 
D5 
D6 
D7 
D8 

D9 
D10 

Main Memory 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

V Address Data 
1 3 D3 
1 7 D7 
1 5 D5 
1 8 D8 

= 

= 

= 

= 

Cache 

-no open cache lines 

- must replace data in some line 

Address 2 

“Miss” (no “hit”) 
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Multi-Word Blocks 
 Cache line holds a multi-word block from main memory 
 Take advantage of spatial locality of reference 

D0 
D1 
D2 
D3 
D4 
D5 
D6 
D7 
D8 
D9 

Main Memory 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

V Block # Data 
1 1 D2-D3 
1 3 D6-D7 
1 0 D0-D1 
0 

= 

= 

= 

= 

Cache 

Block # 
Word offset 

Block 0 

Blk 1 

2 

3 

4 
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Direct Mapped Cache 

 Location is determined by the main memory address 
 Mapping:  address is modulo the #blocks in the cache 

00001 00101 01001 01101 10001 10101 11001 11101

00
0

Cache

Memory

00
1

01
0

01
1

10
0

10
1

11
0

11
1

index tag 

Main memory address 

cache line 
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Tags and Valid Bits 
 How do we know which particular block is stored in a cache 

location? 
 Store block address as well as the data 
 Actually, only need the high-order bits 
 Called the tag 

 What if there is no data in a location? 
 Valid bit: 1 = present, 0 = not present 
 Initially 0 
 Reset all valid bits to 0 if main memory changed (“invalidate the 

cache”) 

14 



Chapter 5 — Large and 
Fast: Exploiting Memory 

Hierarchy — 15 

Direct Mapped Cache  
Address Subdivision 
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For MIPS: 

What kind of locality are we taking advantage of? 
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Cache Example 
 8-blocks, 1 word/block, direct mapped 
 Initial state 

Index V Tag Data 
000 N 
001 N 
010 N 
011 N 
100 N 
101 N 
110 N 
111 N 
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Cache Example 

Index V Tag Data 
000 N 
001 N 
010 N 
011 N 
100 N 
101 N 
110 Y 10 Mem[10110] 
111 N 

Word addr Binary addr Hit/miss Cache block 
22 10 110 Miss 110 
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Cache Example 

Index V Tag Data 
000 N 
001 N 
010 Y 11 Mem[11010] 
011 N 
100 N 
101 N 
110 Y 10 Mem[10110] 
111 N 

Word addr Binary addr Hit/miss Cache block 
26 11 010 Miss 010 
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Cache Example 

Index V Tag Data 
000 N 
001 N 
010 Y 11 Mem[11010] 
011 N 
100 N 
101 N 
110 Y 10 Mem[10110] 
111 N 

Word addr Binary addr Hit/miss Cache block 
22 10 110 Hit 110 
26 11 010 Hit 010 
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Cache Example 

Index V Tag Data 
000 Y 10 Mem[10000] 
001 N 
010 Y 11 Mem[11010] 
011 Y 00 Mem[00011] 
100 N 
101 N 
110 Y 10 Mem[10110] 
111 N 

Word addr Binary addr Hit/miss Cache block 
16 10 000 Miss 000 
3 00 011 Miss 011 

16 10 000 Hit 000 
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Cache Example 

Index V Tag Data 
000 Y 10 Mem[10000] 
001 N 
010 Y 10 Mem[10010] 
011 Y 00 Mem[00011] 
100 N 
101 N 
110 Y 10 Mem[10110] 
111 N 

Word addr Binary addr Hit/miss Cache block 
18 10 010 Miss 010 

21 

Replaces  
Mem[110010 
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Block Size Considerations 
 Larger blocks can reduce miss rate 
 Due to spatial locality 

 But in a fixed-sized cache 
 Larger blocks ⇒ fewer of them 
 More competition ⇒ increased miss rate 

 Larger blocks ⇒ pollution 

 Larger miss penalty to load larger block 
 Can override benefit of reduced miss rate 
 Early restart and critical-word-first can help 
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Example: Larger Block Size 
 Example: 64 blocks, 16 bytes/block 
 To what block number does address 1200 map? 
 Block address = 1200/16 = 75 
 Block number = 75 modulo 64 = 11 

Tag Index Offset 
0 3 4 9 10 31 

4 bits 6 bits 22 bits 
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Performance 
 Increasing the block size tends to decrease miss rate: 

 
 
 
 
 
 
 

 Use split caches because there is more spatial locality in code: 

1 KB

8 KB

16 KB

64 KB

256 KB

256

40%

35%

30%

25%

20%

15%

10%

5%

0%

M
is

s 
ra

te

64164

Block size (bytes)

Program
Block size in 

words
Instruction 
miss rate

Data miss 
rate

Effective combined 
miss rate

gcc 1 6.1% 2.1% 5.4%
4 2.0% 1.7% 1.9%

spice 1 1.2% 1.3% 1.2%
4 0.3% 0.6% 0.4%24 
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Example: Intrinsity FastMATH 
 Embedded MIPS processor 
 12-stage pipeline 
 Instruction and data access on each cycle 

 Split cache: separate I-cache and D-cache 
 Each 16KB: 256 blocks × 16 words/block 
 D-cache: write-through or write-back 

 SPEC2000 miss rates 
 I-cache: 0.4% 
 D-cache: 11.4% 
 Weighted average: 3.2% 



Example: Intrinsity FastMATH 
Takes advantage 
of spatial locality. 
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Cache Misses 
 On cache hit, CPU proceeds normally 
 On cache miss 
 Stall the CPU pipeline 
 Fetch block from next level of hierarchy 
 Instruction cache miss 
 Restart instruction fetch 

 Data cache miss 
 Complete data access 
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Cache Misses 
 Compulsory – cache “empty” at startup 
 Capacity – cache unable to hold entire working set 
 Conflict – two memory loc’s map to same cache line 

Conflict (1-way) 

Compulsory – “flat” but  
negligible in this example 

Conflict (2-way) 

Conflict (8-way) 

Fig. 7.31 
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Write-Through 

 On data-write hit, could just update the block in cache 
 But then cache and memory would be inconsistent 

 Write through: also update memory 
 But makes writes take longer 
 e.g., if base CPI = 1, 10% of instructions are stores, write to 

memory takes 100 cycles 
  Effective CPI = 1 + 0.1×100 = 11 

 Solution: write buffer 
 Holds data waiting to be written to memory 
 CPU continues immediately 
 Only stalls on write if write buffer is already full 
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Write-Back 
 Alternative: On data-write hit, just update the block in cache 
 Keep track of whether each block is dirty 

 When a dirty block is replaced 
 Write it back to memory 
 Can use a write buffer to allow replacing block to be read first 
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Write Allocation 
 What should happen on a write miss? 
 Alternatives for write-through 
 Allocate on miss: fetch the block 
 Write around: don’t fetch the block 
 Since programs often write a whole block before reading it (e.g., 

initialization) 

 For write-back 
 Usually fetch the block 
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Replacement Policy 
 Direct mapped: no choice 
 Set associative 
 Prefer non-valid entry, if there is one 
 Otherwise, choose among entries in the set 

 Least-recently used (LRU) 
 Choose the one unused for the longest time 
 Simple for 2-way, manageable for 4-way, too hard beyond that 

 Random 
 Gives approximately the same performance as LRU for high 

associativity 



Decreasing miss ratio with associativity 

 Problems: 
 Fully associative – high cost, but misses only when capacity 

reached since any item can go in any line 
 Direct-mapped: less expensive, but can hold only one item with 

a given index, leading to conflicts 

 Compromise: Set Associative Cache 
 “N-way” set associative cache has N direct-mapped caches 
 One “set” = N lines with a particular index 
 Item with index K can be placed in line K of any of the N 

direct-mapped caches 
 Results in fewer misses due to conflicts 
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Associative Cache Example 
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Spectrum of Associativity 
 For a cache 

with 8 entries 
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Associativity Example 
 Compare 4-block caches 
 Direct mapped, 2-way set associative, fully associative 
 Block access sequence: 0, 8, 0, 6, 8 

 Direct mapped 
Block 

address 
Cache 
index 

Hit/miss Cache content after access 

0 1 2 3 
0 0 miss Mem[0] 
8 0 miss Mem[8] 
0 0 miss Mem[0] 
6 2 miss Mem[0] Mem[6] 
8 0 miss Mem[8] Mem[6] 

Continued on next slide 
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Associativity Example 
 2-way set associative (sequence: 0, 8, 0, 6, 8) 

 Block 
address 

Cache 
index 

Hit/miss Cache content after access 
Set 0 Set 1 

0 0 miss Mem[0] 
8 0 miss Mem[0] Mem[8] 
0 0 hit Mem[0] Mem[8] 
6 0 miss Mem[0] Mem[6] 
8 0 miss Mem[8] Mem[6] 

 Fully associative (sequence: 0, 8, 0, 6, 8) 
Block 

address 
Hit/miss Cache content after access 

0 miss Mem[0] 
8 miss Mem[0] Mem[8] 
0 hit Mem[0] Mem[8] 
6 miss Mem[0] Mem[8] Mem[6] 
8 hit Mem[0] Mem[8] Mem[6] 
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How Much Associativity 
 Increased associativity decreases miss rate 
 But with diminishing returns 

 Simulation of a system with 64KB 
D-cache, 16-word blocks, SPEC2000 
 1-way: 10.3% 
 2-way: 8.6% 
 4-way: 8.3% 
 8-way: 8.1% 



Performance vs. associativity 

Associativity

0
One-way Two-way

3%

6%

9%

12%

15%

Four-way Eight-way

1 KB

2 KB

4 KB

8 KB

16 KB
32 KB

64 KB 128 KB
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Set Associative Cache Organization 

4-way set-associative cache 



VAX 11/780 Cache 

41 



Intel 80486/Pentium L1 Cache  

2K (486) 

4K (Pentium) 
128 Lines 

(sets) 

Data line = 16 bytes (486) 
                   32 bytes (Pentium) 

Tags 
(20 bit) 

LRU  Valid* 
 (3)      (4) 

* Instruction cache: 1 valid bit per line 

* Data cache: 2-bit MESI state per line 

80486 4-way Set Associative (Pentium 2-way) 

Write-back/Write-through programmable 

80486 – 8K unified I/D 
Pentium – 8K/8K I/D 
Pentium II/III – 16K/16K I/D 
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MESI Cache Line State  
 MESI = 2-bit cache line “state” for “write-back” cache 
 I = Invalid (line does not contain valid data) 
 S = Line valid, with shared access – no writes allowed 
 E = Line valid, with exclusive access – data may be written 
 M = Line valid & modified since read from main (must be 

rewritten to main memory) 
 

I S 

E M 

read 

read 

write 

invalidate 

invalidate invalidate 
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Intel Approximated-LRU Replacement 
 3-bit number B2B1B0 assigned to each “set” of 4 lines 
 Access L0/L1 – set B0=1 
 Access L2/L3 – set B0=0 
 Access L0 – set B1=1 or L1 – set B1=0 
 Access L2 – set B2=1 or L1 – set B2=0 
 

B0 

B2 B1 

L0 L1 L2 L3 

0 

0 0 

1 

1 1 

B0B1 = 00 – replace L0 

             01 – replace L1 

B0B2 = 10 – replace L2 

              11 – replace L3 
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Measuring Cache Performance 

 Components of CPU time: 
 Program execution cycles 
 Includes cache hit time 
 Execution time = (execution cycles + stall cycles) x cycle time 

 Memory stall cycles 
 Mainly from cache misses 

 With simplifying assumptions: 

§5.3 M
easuring and Im

proving C
ache P

erform
ance penalty Miss

nInstructio
Misses

Program
nsInstructio

penalty Missrate Miss
Program

accessesMemory 

cycles stallMemory 

××=

××=
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Cache Performance Example 
 Given 
 I-cache miss rate = 2% 
 D-cache miss rate = 4% 
 Miss penalty = 100 cycles 
 Base CPI (ideal cache) = 2 
 Load & stores are 36% of instructions 

 Miss cycles per instruction 
 I-cache: 0.02 × 100 = 2 
 D-cache: 0.36 × 0.04 × 100 = 1.44 

 Actual CPI = 2 + 2 + 1.44 = 5.44 
 Ideal CPU is 5.44/2 =2.72 times faster 
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Average Access Time 

 Hit time is also important for performance 
 Average memory access time (AMAT) 
 AMAT = Hit time + Miss rate × Miss penalty 

 Example 
 CPU with 1ns clock, hit time = 1 cycle, miss penalty = 20 

cycles, I-cache miss rate = 5% 
 AMAT = 1 + 0.05 × 20 = 2ns 
 2 cycles per instruction 



Example – “gcc”compiler on MIPS 

 Instruction count = IC 
 Instruction cache miss rate = 5% 
 Data cache miss rate = 10% 
 Clocks/instruction (CPI) = 4 if no misses/stalls 
 Miss penalty = 12 cycles (all misses) 
 Instruction frequencies: 
 lw = 22% of instructions executed 
 sw = 11% of instructions executed 

 
What is the effect of cache misses on CPU  performance (ex, on CPI)? 
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Performance Summary 
 Two ways of improving performance: 
 decrease the miss ratio 
 decrease the miss penalty 

 When CPU performance increased 
 Miss penalty becomes more significant 

 Decreasing base CPI 
 Greater proportion of time spent on memory stalls 

 Increasing clock rate 
 Memory stalls account for more CPU cycles 

 Can’t neglect cache behavior when evaluating system 
performance 
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Main Memory Supporting Caches 

 Use DRAMs for main memory 
 Fixed width (e.g., 1 word) 
 Connected by fixed-width clocked bus 
 Bus clock is typically slower than CPU clock 

 Example cache block read 
 1 bus cycle for address transfer 
 15 bus cycles per DRAM access 
 1 bus cycle per data transfer 

 For 4-word block, 1-word-wide DRAM 
 Miss penalty = 1 + 4×15 + 4×1 = 65 bus cycles 
 Bandwidth = 16 bytes / 65 cycles = 0.25 B/cycle 
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Increasing Memory Bandwidth 

 4-word wide memory 
 Miss penalty = 1 + 15 + 1 = 17 bus cycles 
 Bandwidth = 16 bytes / 17 cycles = 0.94 B/cycle 

 4-bank interleaved memory 
 Miss penalty = 1 + 15 + 4×1 = 20 bus cycles 
 Bandwidth = 16 bytes / 20 cycles = 0.8 B/cycle 
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Advanced DRAM Organization 

 Bits in a DRAM are organized as a rectangular array 
 DRAM accesses an entire row 
 Burst mode: supply successive words from a row with reduced 

latency 

 Double data rate (DDR) DRAM 
 Transfer on rising and falling clock edges 

 Quad data rate (QDR) DRAM 
 Separate DDR inputs and outputs 
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DRAM Generations 

0

50

100

150

200

250

300

'80 '83 '85 '89 '92 '96 '98 '00 '04 '07

Trac
Tcac

Year Capacity $/GB 

1980 64Kbit $1500000 

1983 256Kbit $500000 

1985 1Mbit $200000 

1989 4Mbit $50000 

1992 16Mbit $15000 

1996 64Mbit $10000 

1998 128Mbit $4000 

2000 256Mbit $1000 

2004 512Mbit $250 

2007 1Gbit $50 
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Multilevel Caches 
 Primary (Level-1) cache attached to CPU 
 Small, but fast 
 Try to optimize hit ratio 

 Level-2 cache services misses from primary cache 
 Larger, slower, but still faster than main memory 
 Optimize penalty for L-1 cache miss 

 Main memory services L-2 cache misses 
 Some high-end systems include L-3 cache 
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Multilevel Cache Example 
 Given 
 CPU base CPI = 1, clock rate = 4GHz 
 Miss rate/instruction = 2% 
 Main memory access time = 100ns 

 With just primary cache 
 Miss penalty = 100ns/0.25ns = 400 cycles 
 Effective CPI = 1 + 0.02 × 400 = 9 
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Example (cont.) 
 Now add L-2 cache 
 Access time = 5ns 
 Global miss rate to main memory = 0.5% 

 Primary miss with L-2 hit 
 Penalty = 5ns/0.25ns = 20 cycles 

 Primary miss with L-2 miss 
 Extra penalty = 500 cycles 

 CPI = 1 + 0.02 × 20 + 0.005 × 400 = 3.4 
 Performance ratio = 9/3.4 = 2.6 
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Multilevel Cache Considerations 

 Primary cache 
 Focus on minimal hit time 

 L-2 cache 
 Focus on low miss rate to avoid main memory access 
 Hit time has less overall impact 

 Results 
 L-1 cache usually smaller than a single cache 
 L-1 block size smaller than L-2 block size 



Intel Pentium P4 vs. AMD Opteron  
Characteristic Intel Pentium P4 AMD Opteron 

L1 cache org. Split instr/data cache Split instr/data cache 

L1 cache size 8KB data, 96KB trace 
cache (12K RISC instr) 

64KB each I/D 

L1 cache associativity 4-way set-associative 2-way set associative 

L1 replacement Approximated LRU LRU 

L1 block size 64 bytes 64 bytes 

L1 write policy Write-through Write-back 

L2 cache org. Unified I/D Unified I/D 

L2 cache size 512KB 1024KB 

L2 cache associativity 8-way set-associative 16-way set-associative 

L2 replacement Approximated LRU Approximated LRU 

L2 block size 128 bytes 64 bytes 

L2 write policy Write-back Write-back 

Figure 7.35 58 
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Interactions with Advanced CPUs 

 Out-of-order CPUs can execute instructions during cache 
miss 
 Pending store stays in load/store unit 
 Dependent instructions wait in reservation stations 
 Independent instructions continue 

 Effect of miss depends on program data flow 
 Much harder to analyze 
 Use system simulation 
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