

#### COMPUTER ORGANIZATION AND DESIGN



The Hardware/Software Interface

# Chapter 6

Storage and Other I/O Topics

### Introduction

- I/O devices can be characterized by
  - Behaviour: input, output, storage
  - Partner: human or machine
  - Data rate: bytes/sec, transfers/sec
- I/O bus connections





# I/O System Characteristics

- Performance measures
  - Latency (response time)
  - Throughput (bandwidth)
  - Desktops & embedded systems
    - Mainly interested in response time & diversity of devices
  - Servers
    - Mainly interested in throughput & expandability of devices
- Dependability is important
  - Particularly for storage devices



# Diversity of I/O devices

| Device               | Behavior        | Partner | Data rate (Mbit/sec) |
|----------------------|-----------------|---------|----------------------|
| Keyboard             | Input           | Human   | 0.0001               |
| Mouse                | Input           | Human   | 0.0038               |
| Voice input          | Input           | Human   | 0.2640               |
| Sound input          | Input           | Machine | 3.0000               |
| Scanner              | Input           | Human   | 3.2000               |
| Voice output         | Output          | Human   | 0.2640               |
| Sound output         | Output          | Human   | 8.0000               |
| Laser printer        | Output          | Human   | 3.2000               |
| Graphics display     | Output          | Human   | 800.0000-8000.0000   |
| Cable modem          | Input or output | Machine | 0.1280-6.0000        |
| Network/LAN          | Input or output | Machine | 100.0000-10000.0000  |
| Network/wireless LAN | Input or output | Machine | 11.0000-54.0000      |
| Optical disk         | Storage         | Machine | 80.0000-220.0000     |
| Magnetic tape        | Storage         | Machine | 5.0000-120.0000      |
| Flash memory         | Storage         | Machine | 32.0000-200.0000     |
| Magnetic disk        | Storage         | Machine | 800.0000–3000.0000   |

Embedded systems have even more diversity of devices: sensors, actuators, etc.



# **Disk Storage**

- Nonvolatile, rotating magnetic storage
  - Vary in #platters, rotational speed, density







### **Magnetic Disk Characteristics**

- Disk read/write components
  - Seek time: position the head over the proper track (3 to 13 ms avg)
    - due to locality of disk references the actual average seek time may be only 25% to 33% of the advertised number



- 2. Rotational latency: wait for the desired sector to rotate under the head (½ of 1/RPM converted to ms)
  - 0.5/5400RPM = 5.6ms to 0.5/15000RPM = 2.0ms
- Transfer time: transfer a block of bits (one or more sectors) under the head to the disk controller's cache (70 to 125 MB/s are typical disk transfer rates in 2008)
  - the disk controller's "cache" takes advantage of spatial locality in disk accesses
    - cache transfer rates are much faster (e.g., 375 MB/s)
- 4. Controller time: the overhead the disk controller imposes in performing a disk I/O access (typically < .2 ms)





### **Disk Sectors and Access**

- Each sector records
  - Sector ID
  - Data (512 bytes, 4096 bytes proposed)
  - Error correcting code (ECC)
    - Used to hide defects and recording errors
  - Synchronization fields and gaps
- Access to a sector involves
  - Queuing delay if other accesses are pending
  - Seek: move the heads
  - Rotational latency
  - Data transfer
  - Controller overhead



# Disk Access Example

#### Given

- 512B sector, 15,000rpm, 4ms average seek time, 100MB/s transfer rate, 0.2ms controller overhead, idle disk
- Average read time
  - 4ms seek time
    - $+ \frac{1}{2} / (15,000/60) = 2$ ms rotational latency
    - + 512 / 100 MB/s = 0.005 ms transfer time
    - + 0.2ms controller delay
    - = 6.2 ms
- If actual average seek time is 1ms
  - Average read time = 3.2ms



### **Disk Performance Issues**

- Manufacturers quote average seek time
  - Based on all possible seeks
  - Locality and OS scheduling lead to smaller actual average seek times
- Smart disk controller allocate physical sectors on disk
  - Present logical sector interface to host
  - ATA/IDE, SATA, SCSI/SAS (serial SCSI)
  - Disk drives include caches
  - Prefetch sectors in anticipation of access
  - Avoid seek and rotational delay



### Disk drive characteristics

| Characteristics                           | Seagate<br>haracteristics ST33000655SS   |                                | Seagate<br>ST973451SS                      | Seagate<br>ST9160821AS                     |  |  |
|-------------------------------------------|------------------------------------------|--------------------------------|--------------------------------------------|--------------------------------------------|--|--|
| Disk diameter (inches)                    | 3.50                                     | 3.50                           | 2.50                                       | 2.50                                       |  |  |
| Formatted data capacity (GB)              | 147                                      | 1000                           | 73                                         | 160                                        |  |  |
| Number of disk surfaces (heads)           | 2                                        | 4                              | 2                                          | 2                                          |  |  |
| Rotation speed (RPM)                      | 15,000                                   | 7200                           | 15,000                                     | 5400                                       |  |  |
| Internal disk cache size (MB)             | 16                                       | 32                             | 16                                         | 8                                          |  |  |
| External interface, bandwidth (MB/sec)    | SAS, 375                                 | SATA, 375                      | SAS, 375                                   | SATA, 150                                  |  |  |
| Sustained transfer rate (MB/sec)          | 73–125                                   | 105                            | 79–112                                     | 44                                         |  |  |
| Minimum seek<br>(read/write) (ms)         | 0.2/0.4                                  | 0.8/1.0                        | 0.2/0.4                                    | 1.5/2.0                                    |  |  |
| Average seek read/write (ms)              | 3.5/4.0                                  | 8.5/9.5                        | 2.9/3.3                                    | 12.5/13.0                                  |  |  |
| Mean time to failure (MTTF) (hours)       | 1,400,000 @ 25°C                         | 1,200,000 @ 25°C               | 1,600,000 @ 25°C                           | _                                          |  |  |
| Annual failure rate<br>(AFR) (percent)    | 0.62%                                    | 0.73%                          | 0.55%                                      | _                                          |  |  |
| Contact start-stop cycles                 | _                                        | 50,000                         | _                                          | >600,000                                   |  |  |
| Warranty (years)                          | 5                                        | 5                              | 5                                          | 5                                          |  |  |
| Nonrecoverable read errors per bits read  | <1 sector per 10 <sup>16</sup>           | <1 sector per 10 <sup>15</sup> | <1 sector per 10 <sup>16</sup>             | <1 sector per 10 <sup>14</sup>             |  |  |
| Temperature, shock (operating)            | 5°-55°C, 60 G                            | 5°–55°C, 63 G                  | 5°-55°C, 60 G                              | 0°-60°C, 350 G                             |  |  |
| Size: dimensions (in.), weight (pounds)   | $1.0" \times 4.0" \times 5.8"$ , 1.5 lbs | 1.0" × 4.0" × 5.8", 1.4 lbs    | $0.6" \times 2.8" \times 3.9$ ", $0.5$ lbs | $0.4" \times 2.8" \times 3.9$ ", $0.2$ lbs |  |  |
| Power: operating/idle/<br>standby (watts) | 15/11/—                                  | 11/8/1                         | 8/5.8/—                                    | 1.9/0.6/0.2                                |  |  |
| GB/cu. in., GB/watt                       | 6 GB/cu.in., 10 GB/W                     | 43 GB/cu.in., 91 GB/W          | 11 GB/cu.in., 9 GB/W                       | 37 GB/cu.in., 84 GB/W                      |  |  |
| Price in 2008, \$/GB                      | ~ \$250, ~ \$1.70/GB                     | ~ \$275, ~ \$0.30/GB           | ~ \$350, ~ \$5.00/GB                       | ~ \$100, ~ \$0.60/GB                       |  |  |

Laptops

(others for servers)





#### Disk Latency & Bandwidth Milestones

|                   | CDC Wren | SG ST41 | SG ST15 | SG ST39 | SG ST37 |
|-------------------|----------|---------|---------|---------|---------|
| RSpeed (RPM)      | 3600     | 5400    | 7200    | 10000   | 15000   |
| Year              | 1983     | 1990    | 1994    | 1998    | 2003    |
| Capacity (Gbytes) | 0.03     | 1.4     | 4.3     | 9.1     | 73.4    |
| Diameter (inches) | 5.25     | 5.25    | 3.5     | 3.0     | 2.5     |
| Interface         | ST-412   | SCSI    | SCSI    | SCSI    | SCSI    |
| Bandwidth (MB/s)  | 0.6      | 4       | 9       | 24      | 86      |
| Latency (msec)    | 48.3     | 17.1    | 12.7    | 8.8     | 5.7     |

Patterson, CACM Vol 47, #10, 2004

- Disk latency is one average seek time plus the rotational latency.
- Disk bandwidth is the peak transfer time of formatted data from the media (not from the cache).



### **Latency & Bandwidth Improvements**

In the time that the disk bandwidth doubles the latency improves by a factor of only 1.2 to 1.4



Mary Jane Irwin, PSU, 2008

Year of Introduction



# **Dependability**

Service accomplishment Service delivered as specified Restoration Failure Service interruption **Deviation from** specified service

- Fault: failure of a component
  - May or may not lead to system failure



# **Dependability Measures**

- Reliability: mean time to failure (MTTF)
- Service interruption: mean time to repair (MTTR)
- Mean time between failures
  - MTBF = MTTF + MTTR
- Availability = MTTF / (MTTF + MTTR)
- Improving Availability
  - Increase MTTF: fault avoidance, fault tolerance, fault forecasting
  - Reduce MTTR: improved tools and processes for diagnosis and repair



### **RAID**

- Redundant Array of Inexpensive (Independent) Disks
  - Use multiple smaller disks (c.f. one large disk)
  - Parallelism improves performance
  - Plus extra disk(s) for redundant data storage
- Provides fault tolerant storage system
  - Especially if failed disks can be "hot swapped"
- RAID 0
  - No redundancy ("AID"?)
    - Just stripe data over multiple disks
  - But it does improve performance



### **RAID 1 & 2**

- RAID 1: Mirroring
  - N + N disks, replicate data
    - Write data to both data disk and mirror disk
    - On disk failure, read from mirror
- RAID 2: Error correcting code (ECC)
  - N + E disks (e.g., 10 + 4)
  - Split data at bit level across N disks
  - Generate E-bit ECC
  - Too complex, not used in practice



# **RAID 3: Bit-Interleaved Parity**

- N + 1 disks
  - Data striped across N disks at byte level
  - Redundant disk stores parity
  - Read access
    - Read all disks
  - Write access
    - Generate new parity and update all disks
  - On failure
    - Use parity to reconstruct missing data
- Not widely used



### **RAID 4: Block-Interleaved Parity**

- N + 1 disks
  - Data striped across N disks at block level
  - Redundant disk stores parity for a group of blocks
  - Read access
    - Read only the disk holding the required block
  - Write access
    - Just read disk containing modified block, and parity disk
    - Calculate new parity, update data disk and parity disk
  - On failure
    - Use parity to reconstruct missing data
- Not widely used



### RAID 3 vs RAID 4







# **RAID 5: Distributed Parity**

- N + 1 disks
  - Like RAID 4, but parity blocks distributed across disks
    - Avoids parity disk being a bottleneck
- Widely used





RAID 5

# RAID 6: P + Q Redundancy

- N + 2 disks
  - Like RAID 5, but two lots of parity
  - Greater fault tolerance through more redundancy
- Multiple RAID
  - More advanced systems give similar fault tolerance with better performance



## **RAID Summary**

- RAID can improve performance and availability
  - High availability requires hot swapping
- Assumes independent disk failures
  - Too bad if the building burns down!
- See "Hard Disk Performance, Quality and Reliability"
  - http://www.pcguide.com/ref/hdd/perf/index.htm



# Flash Storage

- Nonvolatile semiconductor storage
  - 100x 1000x faster than disk
  - Smaller, lower power, more robust
  - But more \$/GB (between disk and DRAM)







# Flash Types

- NOR flash: bit cell like a NOR gate
  - Random read/write access
  - Used for instruction memory in embedded systems
- NAND flash: bit cell like a NAND gate
  - Denser (bits/area), but block-at-a-time access
  - Cheaper per GB
  - Used for USB keys, media storage, ...
- Flash bits wears out after 1000's of accesses
  - Not suitable for direct RAM or disk replacement
  - Wear leveling: remap data to less used blocks



# Flash storage characteristics

| Characteristics                        | Kingston<br>SecureDigital<br>(SD)<br>SD4/8 GB | Transend Type I<br>CompactFlash<br>TS16GCF133 | RiDATA<br>Solid State Disk<br>2.5 inch SATA |  |
|----------------------------------------|-----------------------------------------------|-----------------------------------------------|---------------------------------------------|--|
| Formatted data capacity (GB)           | 8                                             | 16                                            | 32                                          |  |
| Bytes per sector                       | 512                                           | 512                                           | 512                                         |  |
| Data transfer rate (read/write MB/sec) | 4                                             | 20/18                                         | 68/50                                       |  |
| Power operating/standby (W)            | 0.66/0.15                                     | 0.66/0.15                                     | 2.1/—                                       |  |
| Size: height × width × depth (inches)  | $0.94 \times 1.26 \times 0.08$                | $1.43 \times 1.68 \times 0.13$                | $0.35 \times 2.75 \times 4.00$              |  |
| Weight in grams (454 grams/pound)      | 2.5                                           | 11.4                                          | 52                                          |  |
| Mean time between failures (hours)     | > 1,000,000                                   | > 1,000,000                                   | > 4,000,000                                 |  |
| GB/cu. in., GB/watt                    | 84 GB/cu.in.,<br>12 GB/W                      | 51 GB/cu.in.,<br>24 GB/W                      | 8 GB/cu.in.,<br>16 GB/W                     |  |
| Best price (2008)                      | ~ \$30                                        | ~ \$70                                        | ~ \$300                                     |  |



# NOR vs NAND flash memory

| Characteristics                 | NOR Flash<br>Memory | NAND Flash<br>Memory |
|---------------------------------|---------------------|----------------------|
| Typical use                     | BIOS memory         | USB key              |
| Minimum access size (bytes)     | 512 bytes           | 2048 bytes           |
| Read time (microseconds)        | 0.08                | 25                   |
| Write time (microseconds)       | 10.00               | 1500 to erase +      |
|                                 |                     | 250                  |
| Read bandwidth (MBytes/second)  | 10                  | 40                   |
| Write bandwidth (MBytes/second) | 0.4                 | 8                    |
| Wearout (writes per cell)       | 100,000             | 10,000 to 100,000    |
| Best price/GB (2008)            | \$65                | \$4                  |



#### **SST39VF1601-1M x 16 Flash**

(on uCdragon board)





# SST39VF1601 characteristics

- Organized as 1M x 16
  - 2K word sectors, 32K word blocks
- Performance:
  - Read access time = 70ns or 90ns
  - Word program time = 7us
  - Sector/block erase time = 18ms
  - Chip erase time = 40ms
- Check status of write/erase operation via read
  - DQ7 = complement of written value until write complete
  - DQ7=0 during erase, DQ7=1 when erase done



### SST39VF1601 command sequences

(assert WE# and CE# to write commands)

| Command<br>Sequence                                       | 1st Bus<br>Write Cycle |                   | 2nd Bus<br>Write Cycle |                   | 3rd Bus<br>Write Cycle |                   | 4th Bus<br>Write Cycle |                   | 5th Bus<br>Write Cycle |                   | 6th Bus<br>Write Cycle       |                   |
|-----------------------------------------------------------|------------------------|-------------------|------------------------|-------------------|------------------------|-------------------|------------------------|-------------------|------------------------|-------------------|------------------------------|-------------------|
|                                                           | Addr <sup>1</sup>      | Data <sup>2</sup> | Addr <sup>1</sup>            | Data <sup>2</sup> |
| Word-Program                                              | 5555H                  | AAH               | 2AAAH                  | 55H               | 5555H                  | AoH               | MA <sub>3</sub>        | Data              |                        |                   |                              |                   |
| Sector-Erase                                              | 5555H                  | AAH               | 2AAAH                  | 55H               | 5555H                  | 80H               | 5555H                  | AAH               | 2AAAH                  | 55H               | SA <sub>X</sub> <sup>4</sup> | 30H               |
| Block-Erase                                               | 5555H                  | AAH               | 2AAAH                  | 55H               | 5555H                  | 80H               | 5555H                  | AAH               | 2AAAH                  | 55H               | BA <sub>X</sub> <sup>4</sup> | 50H               |
| Chip-Erase                                                | 5555H                  | AAH               | 2AAAH                  | 55H               | 5555H                  | 80H               | 5555H                  | AAH               | 2AAAH                  | 55H               | 5555H                        | 10H               |
| Erase-Suspend                                             | XXXXH                  | BoH               |                        |                   |                        |                   |                        |                   |                        |                   |                              |                   |
| Erase-Resume                                              | XXXXH                  | 30H               |                        |                   |                        |                   |                        |                   |                        |                   |                              |                   |
| Query Sec ID <sup>5</sup>                                 | 5555H                  | AAH               | 2AAAH                  | 55H               | 5555H                  | 88H               |                        |                   |                        |                   |                              |                   |
| User Security ID<br>Word-Program                          | 5555H                  | AAH               | 2AAAH                  | 55H               | 5555H                  | A5H               | WA <sup>6</sup>        | Data              |                        |                   |                              |                   |
| User Security ID<br>Program Lock-Out                      | 5555H                  | AAH               | 2AAAH                  | 55H               | 5555H                  | 85H               | XXH <sub>6</sub>       | 0000H             |                        |                   |                              |                   |
| Software ID Entry <sup>7,8</sup>                          | 5555H                  | AAH               | 2AAAH                  | 55H               | 5555H                  | 90H               |                        |                   |                        |                   |                              |                   |
| CFI Query Entry                                           | 5555H                  | AAH               | 2AAAH                  | 55H               | 5555H                  | 98H               |                        |                   |                        |                   |                              |                   |
| Software ID Exit <sup>9,10</sup><br>/CFI Exit/Sec ID Exit | 5555H                  | AAH               | 2AAAH                  | 55H               | 5555H                  | FoH               |                        |                   |                        |                   |                              |                   |
| Software ID Exit <sup>9,10</sup><br>/CFI Exit/Sec ID Exit | XXH                    | FoH               |                        |                   |                        |                   |                        |                   |                        |                   |                              |                   |



# SST39VF1601 read cycle timing



|                               |                                 | SST39VF | SST39VFxx01/xx02-70 SST39VFxx01/xx0 |     |     |       |
|-------------------------------|---------------------------------|---------|-------------------------------------|-----|-----|-------|
| Symbol                        | Parameter                       | Min     | Max                                 | Min | Max | Units |
| T <sub>RC</sub>               | Read Cycle Time                 | 70      |                                     | 90  |     | ns    |
| T <sub>CE</sub>               | Chip Enable Access Time         |         | 70                                  |     | 90  | ns    |
| TAA                           | Address Access Time             |         | 70                                  |     | 90  | ns    |
| T <sub>OE</sub>               | Output Enable Access Time       |         | 35                                  |     | 45  | ns    |
| T <sub>CLZ</sub> 1            | CE# Low to Active Output        | 0       |                                     | 0   |     | ns    |
| T <sub>OLZ</sub> 1            | OE# Low to Active Output        | 0       |                                     | 0   |     | ns    |
| T <sub>CHZ</sub> <sup>1</sup> | CE# High to High-Z Output       |         | 20                                  |     | 30  | ns    |
| T <sub>OHZ</sub> 1            | OE# High to High-Z Output       |         | 20                                  |     | 30  | ns    |
| T <sub>OH</sub> <sup>1</sup>  | Output Hold from Address Change | 0       |                                     | 0   |     | ns    |
| T <sub>RP</sub> 1             | RST# Pulse Width                | 500     |                                     | 500 |     | ns    |
| T <sub>RHR</sub> 1            | RST# High before Read           | 50      |                                     | 50  |     | ns    |
| T <sub>RY</sub> 1,2           | RST# Pin Low to Read Mode       |         | 20                                  |     | 20  | μs    |





#### SST39VF1601 word write



