

# ELEC 4200 Lab#1 Combinational Design Using Logic Equations

- References you may need:
  - Nexys4-DDR\_rm.pdf
  - Lab #0 Tutorial

SAMUEL GINN
COLLEGE OF ENGINEERING



### **Overview**

- Design an octal to 7-segment decoder with active-low outputs
  - Inputs D2-D0
  - Outputs A-G
- Generate:
  - Complete truth table
  - K-maps
  - Minimized SOP equations
  - Logic diagram
- Create a VHDL model from the SOP equations; use Active-HDL to simulate and verify the design, debugging as needed
  - One model with individual input/output signals
  - One model with vector input/output signals
- Use Vivado to synthesize, implement, download, and verify each model on the Nexys4 board









## **Pre-lab Assignment**

- 1) Derive the truth table for the decoder
- 2) Use K-maps to obtain minimized SOP expressions
  - Share common product terms and gates where possible
- 3) Draw a logic diagram
  - Share common product terms and gates where possible
  - Label all inputs and outputs according to the system specifications
- 4) Read the following from the Nexys4-DDR reference manual
  - Chapter 1
  - Chapter 10



### **Lab Exercise**

- Create a VHDL model from the instructor-provided template, entering your SOP logic equations in the architecture
- 2) Simulate your circuit in *Active-HDL* for design verification
  - Simulate and verify all possible input combinations
  - Debug and fix problems if the output is incorrect
    - Check truth table against K-map population
    - Check K-map groups against logic equation product terms
- 3) In *Vivado*, synthesize and implement your design for the Artix-7 XC7A100T FPGA on the Nexys4 board.
  - Connect inputs (D2-D0) to switches
  - Connect outputs (A-G) to the 7-segment display
- 4) Download and verify your design
  - Verify for all possible input values
  - Debug and re-download as needed
- 5) Demonstrate your working circuit to the GTA
- 6) Repeat steps 1-5 using <u>vectors</u> for the inputs and outputs.



## **Report Guidelines**

- Be sure to include all sections required by the lab manual guidelines. In addition be sure your report includes the following:
  - •Your VHDL model(s) including appropriate comments
  - Annotated screenshot of your Active-HDL simulation results
    - Be sure to describe your testing method
  - Design work (truth-tables, k-maps, equations, etc)
  - Answers to the following questions...
  - 1. Just by looking, would it have been easier to implement the circuit using POS equations for all outputs? What about just some outputs?
  - 2. Based on your understanding of FPGA's, how would the SOP and POS implementations of the above circuit differ when implemented on an FPGA?

