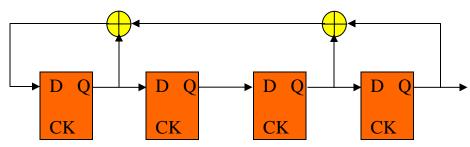
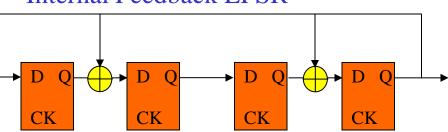
Linear Feedback Shift Registers (LFSRs)

- Efficient design for Test Pattern Generators & Output Response Analyzers (also used in CRC)
 - FFs plus a few XOR gates
 - better than counter
 - fewer gates
 - higher clock frequency
- Two types of LFSRs
 - External Feedback
 - Internal Feedback
 - higher clock frequency
- Characteristic polynomial
 - defined by XOR positions
 - $-P(x) = x^4 + x^3 + x + 1$ in both examples



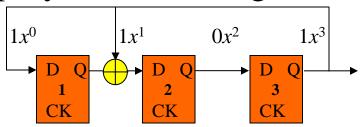
Internal Feedback LFSR

External Feedback LFSR



Characteristic polynomial of LFSR

- n = # of FFs = degree of polynomial
- XOR feedback connection to FF $i \Leftrightarrow$ coefficient of x^i
 - coefficient = 0 if no connection
 - coefficient = 1 if connection
 - coefficients always included in characteristic polynomial:
 - x^n (degree of polynomial & primary feedback)
 - $x^0 = 1$ (principle input to shift register)
- Note: state of the LFSR \Leftrightarrow polynomial of degree n-1
- Example: $P(x) = x^3 + x + 1$

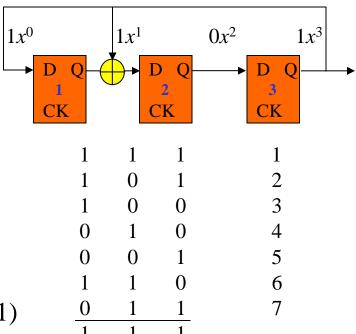


C. Stroud, Dept. of ECE, Auburn Univ. 10/04

- An LFSR generates periodic sequence
 - must start in a non-zero state,
- The maximum-length of an LFSR sequence is 2^n -1
 - does not generate all 0s pattern (gets stuck in that state)
- The characteristic polynomial of an LFSR generating a maximum-length sequence is a *primitive polynomial*
- A maximum-length sequence is **pseudo-random**:
 - number of 1s = number of 0s + 1
 - same number of runs of consectuive 0s and 1s
 - 1/2 of the runs have length 1
 - 1/4 of the runs have length 2
 - ... (as long as fractions result in integral numbers of runs)

- LFSRs (cont) Example: Characteristic polynomial is $P(x) = x^3 + x + 1$
- Beginning at all 1s state
 - 7 clock cycles to repeat
 - maximal length = 2^n -1
 - polynomial is primitive
- Properties:
 - four 1s and three 0s
 - 4 runs:
 - 2 runs of length 1 (one 0 & one 1)
 - 1 run of length 2 (0s)
- 1 run of length 3 (1s) Note: external & internal LFSRs with same primitive polynomial do not generate same sequence (only same length) C. Stroud, Dept. of ECE, Auburn

Univ. 10/04



- Reciprocal polynomial, $P^*(x)$
 - $P^*(x) = x^n P(1/x)$
 - example: $P(x) = x^3 + x + 1$
 - then: $P*(x) = x^3 (x^{-3} + x^{-1} + 1) = 1 + x^2 + x^3 = x^3 + x^2 + 1$
 - if P(x) is primitive, $P^*(x)$ is also primitive
 - same for non-primitive polynomials
- Polynomial arithmetic

- modulo-2
$$(x^n + x^n = x^n - x^n = 0)$$

Addition/Subtraction

$$(x^{5} + x^{2} + 1) + (x^{4} + x^{2})$$

$$x^{5} x^{2} 1$$

$$\frac{+ x^{4} x^{2}}{x^{5} x^{4}} 1$$

$$= x^{5} + x^{4} + 1$$

Multiplication

$$(x^{2} + x + 1) \times (x^{2} + 1)$$

$$x^{2} + x + 1$$

$$\times x^{2} + 1$$

$$x^{2} + x + 1$$

$$x^{2} + x + 1$$

$$x^{4} + x^{3} + x^{2}$$

$$= x^{4} + x^{3} + x + 1$$

C. Stroud, Dept. of ECE, Auburn Univ. 10/04

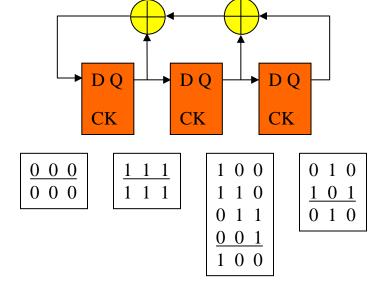
Division

$$\begin{array}{r}
x^{2} + x + 1 \\
x^{2} + 1 \overline{\smash)x^{4} + x^{3} + x + 1} \\
\underline{x^{4} + x^{2}} \\
x^{3} + x^{2} + x + 1 \\
\underline{x^{3} + x} \\
x^{2} + 1 \\
\underline{x^{2} + 1} \\
0
\end{array}$$

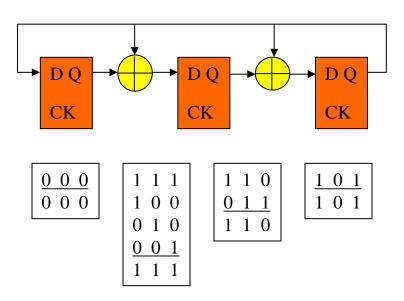
- Non-primitive polynomials produce sequences $< 2^{n}-1$
 - Typically primitive polys desired for TPGs & ORAs
- Example of non-primitive polynomial

$$-P(x) = x^3 + x^2 + x + 1$$

External Feedback LFSR



Internal Feedback LFSR



C. Stroud, Dept. of ECE, Auburn Univ. 10/04

• Primitive polynomials with minimum # of XORs

Degree (n)	Polynomial
2,3,4,6,7,15,22	$x^n + x + 1$
5,11,21,29	$x^n + x^2 + 1$
8,19	$x^n + x^6 + x^5 + x + 1$
9	$x^n + x^4 + 1$
10,17,20,25,28	$x^n + x^3 + 1$
12	$x^n + x^7 + x^4 + x^3 + 1$
13,24	$x^n + x^4 + x^3 + x + 1$
14	$x^n + x^{12} + x^{11} + x + 1$
16	$x^n + x^5 + x^3 + x^2 + 1$
18	$x^n + x^7 + 1$
23	$x^n + x^5 + 1$
26,27	$x^n + x^8 + x^7 + x + 1$
30	$x^n + x^{16} + x^{15} + x + 1$

C. Stroud, Dept. of ECE, Auburn

Univ. 10/04

HDL descriptions

```
P(x) = x^4 + x^3 + 1
```

```
-- VHDL model
entity LFSR is
port (CLK,PR: in bit;
     Q: buffer bit_vector(4 downto 1));
end entity LFSR;
architecture RTL of LFSR is
begin
process (CLK)
begin
if (CLK'event and CLK = '1') then
   if (PR = '1') then
     Q <= "1111";
  else
       for K in 2 to 4 loop
           Q(K) \le Q(K-1);
       end loop;
   end if:
   Q(1) \le Q(4) \text{ xor } Q(3);
end if:
end process;
end architecture RTL;
```

```
// Verilog model
module LFSR (CLK, PR, Q);
input CLK, PR;
output [4:1] Q;
/* end of "entity" portion and
   beginning of "architecture" portion */
reg Q;
integer K;
always @ (posedge CLK) begin
   if (PR == 1)
      Q = 4'b11111;
   else begin
     for (K=2; K < 5; K=K+1) begin
       Q[K] = Q[K-1];
      end
      Q[1] = Q[4] ^ Q[3];
   end
end
endmodule
```

C. Stroud, Dept. of ECE, Auburn Univ. 10/04