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Magnetostatics – Surface Current Density
A sheet current, K (A/m2) is considered to flow in an infinitesimally thin layer.  

The Biot-Savart law can also be written in 
terms of surface current density by replacing 
IdL with K dS
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Important Note: The sheet current’s direction is given by the 
vector quantity K rather than by a vector direction for dS. 

Method 2: The surface current sheet problem can be treated as a sheet 
consisting of a continuous series of line currents.

Line current

Method 1: The surface charge problem can be treated as a 
sheet consisting of a continuous point charge distribution.

Point charge
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Magnetostatics – Surface Current Density

Example 3.4:  We wish to find H at a point centered above 
an infinite length ribbon of sheet current 

We can treat the ribbon as a collection of infinite length 
lines of current Kzdx.  

Each line of current will contribute dH of field given by
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The differential segment 

The vector drawn from the source to the test point is 

2 2 = R axρ = +Magnitude: Unit Vector:

x a= − +x yR a a
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I=Kzdx

Method 2: Example
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Magnetostatics – Surface Current Density
To find the total field, we integrate from x = -d to x = +d 
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We notice by symmetry arguments that the first term 
inside the brackets, the ay component, is zero. 
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The second integral can be evaluated using the formula 
given in Appendix D.
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Infinite Current Sheet

Magnetostatics – Volume Current Density

Current and Current Densities:
Linear current I (A) 
Surface current density K (A/m) 
Volume current density J (A/m2) 

For many problems involving surface current densities, and indeed for most 
problems involving volume current densities, solving for the magnetic field 
intensity using the Law of Biot-Savart can be quite cumbersome and require 
numerical integration.  

For most problems that we will encounter with volume charge densities, we will 
have sufficient symmetry to be able to solve for the fields using Ampere’s 
Circuital Law (Next topic).

The Biot-Savart law can also be written in terms of 
volume current density by replacing IdL with Jdv
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Magnetostatics – Ampere’s Circuital Law
In electrostatics problems that featured a lot of symmetry we were able to 
apply Gauss’s Law to solve for the electric field intensity much more easily
than applying Coulomb’s Law.  

Likewise, in magnetostatic problems with sufficient symmetry we can employ 
Ampere’s Circuital Law more easily than the Law of Biot-Savart. 

Ampere’s Circuital Law says that the integration of H around any closed 
path is equal to the net current enclosed by that path. 

The line integral of H around a closed path is termed 
the circulation of H. 
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The direction of the circulation is chosen such that the 
right hand rule is satisfied.  That is, with the thumb in the 
direction of the current, the fingers will curl in the 
direction of the circulation. 

Amperian Path: Typically, the Amperian Path
(analogous to a Gaussian Surface) is chosen 
such that the integration path is either tangential 
or normal to H (over which H is constant) .

(i) Tangential to H, i.e.   

(ii) Normal to H, i.e.

Magnetostatics – Ampere’s Circuital Law

cos cos 0H dL HdL HdL HdLθ• = = ° =
G G

cos cos90 0H dL HdL HdLθ• = = ° =
G G
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Magnetostatics – Ampere’s Circuital Law 
Application to Line Current

Example 3.5: Here we want to find the magnetic field intensity everywhere 
resulting from an infinite length line of current situated on the z-axis .

The figure also shows a pair of Amperian paths, a and b.  
Performing the circulation of H about either path will 
result in the same current I.  But we choose path b that 
has a constant value of Hf around the circle specified by 
the radius ρ. 

In the Ampere’s Circuital Law equation, we substitute 
H = Hφaφ and dL = ρdφaφ, or 
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The direction of the circulation is chosen such that the 
right hand rule is satisfied.  That is, with the thumb in the 
direction of the current, the fingers will curl in the 
direction of the circulation. 

Amperian Path: Typically, the Amperian Path
(analogous to a Gaussian Surface) is chosen 
such that the integration path is either tangential 
or normal to H (over which H is constant) .

(i) Tangential to H, i.e.   

(ii) Normal to H, i.e.

Magnetostatics – Ampere’s Circuital Law

cos cos 0H dL HdL HdL HdLθ• = = ° =
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Magnetostatics – Ampere’s Circuital Law 
Application to Current Sheet

Example 3.6: Let us now use Ampere’s Circuital Law to find the magnetic 
field intensity resulting from an infinite extent sheet of current.

Let us consider a current sheet with uniform current 
density K = Kxax in the z = 0 plane along with a 
rectangular Amperian Path of height ∆h and width ∆w. 

Amperian Path: In accordance with the right hand 
rule, where the thumb of the right hand points in 
the direction of the current and the fingers curl in 
the direction of the field, we’ll perform the 
circulation in the order 
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Ampere’s Circuital Law

Magnetostatics – Ampere’s Circuital Law 
Application to Current Sheet

From symmetry arguments, we know that there is no 
Hx component. 
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Above the sheet H = Hy(-ay) and below the sheet H = Hyay. 

The current enclosed by the path is just
0

w

x xI K dy K w
∆

= = ∆∫

Equating the above two terms gives 
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where aN is a normal vector from the sheet current to the test point. 

A general equation for an infinite current sheet:
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Magnetostatics – Curl and the Point Form of 
Ampere’s Circuital Law

In electrostatics, the concept of divergence was employed to find the point 
form of Gauss’s Law from the integral form.  A non-zero divergence of the 
electric field indicates the presence of a charge at that point.

In magnetostatics, curl is employed to find the point form of Ampere’s Circuital 
Law from the integral form.  A non-zero curl of the magnetic field will indicate 
the presence of a current at that point.

To begin, let’s apply Ampere’s Circuital Law to a path surrounding a small 
surface.  Dividing both sides by the small surface area, we have the 
circulation per unit area 
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If the direction of the ∆S vector is chosen in the direction of the current, an.  
Multiplying both sides of by an we have
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Magnetostatics – Curl and the Point Form of 
Ampere’s Circuital Law

The left side is the maximum circulation of H per unit area as the area shrinks 
to zero, called the curl of H for short. The right side is the current density, J
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So we now have the point form of Ampere’s Circuital Law: 

curl = ∇×H H = J

∇× =H J

A Skilling Wheel used to measure curl 
of the velocity field in flowing water 

Field lines 

Divergence 

curl 
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Magnetostatics – Stokes Theorem
We can re-write Ampere’s Circuital Law in terms of 
a current density as 

d d=∫ ∫H L J Si iv
We use the point form of Ampere’s Circuital Law to 
replace J with ∇×H

( ) .d d= ∇×∫ ∫H L H Si iv
This expression, relating a closed line integral to a surface integral, is known as 
Stokes’s Theorem (after British Mathematician and Physicist Sir George Stokes, 
1819-1903). 

Now suppose we consider that the surface bounded by the contour in Figure (a)  
is actually a rubber sheet.  In Figure (b), we can distort the surface while 
keeping it intact.  As long as the surface remains unbroken, Stokes’s theorem is 
still valid! 


