

Magnetostatics – Surface Current Density Method 2: Example $\mathbf{K} = \mathbf{K}_{\mathbf{z}} \mathbf{a}_{\mathbf{z}}$ Example 3.4: We wish to find H at a point centered above KdS $I = K_z dx$ an infinite length ribbon of sheet current We can treat the ribbon as a collection of infinite length lines of current K,dx. Each line of current will contribute dH of field given by $d\mathbf{H} = \frac{I}{2\pi\rho} \mathbf{a}_{\phi}$ The differential segment I=K,dx -xa The vector drawn from the source to the test point is K_zdx $\mathbf{R} = -x\mathbf{a}_{x} + a\mathbf{a}_{y}$ Magnitude: $\rho = \mathbf{R} = \sqrt{x^2 + a^2}$ Unit Vector: $\mathbf{a}_x \times \mathbf{a}_{\mathbf{R}} = \mathbf{a}_{\phi}$

Magnetostatics – Ampere's Circuital Law Application to Line Current

<u>Example 3.5:</u> Here we want to find the magnetic field intensity everywhere resulting from an infinite length line of current situated on the z-axis .

The figure also shows a pair of Amperian paths, *a* and *b*. Performing the circulation of **H** about either path will result in the same current I. But we choose path *b* that has a constant value of *Hf* around the circle specified by the radius ρ .

In the Ampere's Circuital Law equation, we substitute $\mathbf{H} = H_{\mathbf{a}} \mathbf{a}_{\mathbf{a}}$ and $d\mathbf{L} = \rho d\phi \mathbf{a}_{\mathbf{a}}$ or

$$\oint \mathbf{H} \cdot d\mathbf{L} = I_{enc}$$
$$= \int_{0}^{2\pi} H_{\phi} \mathbf{a}_{\phi} \cdot \rho d\phi \mathbf{a}_{\phi} = 2\pi\rho H_{\phi} = I$$

Magnetostatics – Curl and the Point Form of Ampere's Circuital Law

In electrostatics, the *concept of divergence* was employed to find the point form of Gauss's Law from the integral form. A non-zero divergence of the electric field indicates the presence of a charge at that point.

In magnetostatics, *curl* is employed to find the point form of Ampere's Circuital Law from the integral form. A non-zero curl of the magnetic field will indicate the presence of a current at that point.

To begin, let's apply Ampere's Circuital Law to a path surrounding a small surface. Dividing both sides by the small surface area, we have the circulation per unit area

If the direction of the ΔS vector is chosen in the direction of the current, \mathbf{a}_n . Multiplying both sides of by \mathbf{a}_n we have

$$\lim_{\Delta S \to 0} \frac{\oint \mathbf{H} \cdot d\mathbf{L}}{\Delta S} \mathbf{a}_{\mathbf{n}} = \lim_{\Delta S \to 0} \frac{I_{enc}}{\Delta S} \mathbf{a}_{\mathbf{n}}$$

Magnetostatics – Stokes Theorem

We can re-write Ampere's Circuital Law in terms of a current density as

 $\oint \mathbf{H} \cdot d\mathbf{L} = \int \mathbf{J} \cdot d\mathbf{S}$

We use the point form of Ampere's Circuital Law to replace J with $\nabla \times \mathbf{H}$

 $\oint \mathbf{H} \cdot d\mathbf{L} = \int (\nabla \times \mathbf{H}) \cdot d\mathbf{S}$

This expression, relating a closed line integral to a surface integral, is known as *Stokes's Theorem* (after British Mathematician and Physicist Sir George Stokes, 1819-1903).

Now suppose we consider that the surface bounded by the contour in Figure (a) is actually a rubber sheet. In Figure (b), we can distort the surface while keeping it intact. As long as the surface remains unbroken, Stokes's theorem is still valid!