Course Number: MECH 2120
Course Title: Kinematics and Dynamics of
Machines
Credit Hours: 4
Prerequisites: MATH2630, MECH2110
Co requisites: None
Coordinators: Dan B. Marghitu
Objectives:
Upon completion of this course, the student will be able
to:
1. Characterize and describe the motion of a rigid body and
a system of rigid bodies.
2. Identify and describe the forces acting on a rigid body
and a system of rigid bodies.
3. Construct free body diagrams of rigid bodies in motion.
4. Construct equations relating the motion of the bodies to
the forces acting on the system. Solve the
resulting equations.
5. Use computer software (Working Model, MATLAB/Mathematica)
as a tool for the study of mechanisms.
6. Design gears and epicyclic gear trains.
Tentative Schedule:
1. INTRODUCTION figures (pdf) (1 classes) Solutions (pdf) Lecture (pdf) chapter1(pdf)
2. FUNDAMENTALS figures (pdf) (4 classes) Solutions (pdf) Lecture (pdf) chapter2(pdf) Exercise 1 (pdf) solutions (pdf)
3. POSITION ANALYSIS figures (pdf) (6 classes) Solutions (pdf) Lecture (pdf) MATLAB examples (pdf) MATLAB files: Program 1, Program 2 Exercise 2: MATLAB (pdf) Exercise 3: position (pdf) solutions (pdf)
4. VELOCITY AND ACCELERATION ANALYSIS figures (pdf) (12 classes) Solutions (pdf) chapter4(pdf) Lecture Rigid Body Kinematics(pdf) Examples: I. slider-crank (pdf) II. R-TRR (pdf) I. Problem R-RRT(pdf) Problem R-RRR-RRT (1.4.4) (pdf) II. Problem R-RTR(pdf) Problem R-RTR-RTR (pdf) Exercise 4: Problems 1, 2, (pdf) 3, 4 (pdf) Exercise 5: Acceleration of a point that moves relative to a rigid body (pdf) Exercise 6: Problems 5, 6 (pdf) solutions P5 P6 (pdf) Exercise 7: Problems 7, 8 (pdf) solutions P7 P8 (pdf)
5. CONTOUR EQUATIONS FOR MECHANISMS figures (pdf) (2 classes) Solutions (pdf)
6. FORCE ANALYSIS figures (pdf) (14 classes) Solutions (pdf) chapter6(pdf) Lecture Force Analysis (pdf) figures (pdf) table (pdf) Exercise 8: Accelerations of CM, mass moments of inertia (pdf) solutions Exercise 9: Force analysis (pdf) Example Problem R-RTR (pdf) Exercise 10-11: Problems 6.3-6.6 (pdf) Exercise: Joint reaction forces (pdf) figures (pdf) solutions Problem R-RRT (pdf) Problem R-RTR (pdf) HW: Problem R-RTR_I
7. DYNAMICS figures (pdf) [Direct Dynamics (pdf)] Appendix 2 (Mathematica) Direct Dynamics: text (pdf) figures (pdf) Appendix 1(program: pdf mathematica) Pendulum Programs: Mathematica (pdf and Mathematica) Matlab (pdf) ( R.m and R_program.m) Exercise 12: Pendulum (pdf) (Program (mathematica)) Exercise 13: Problems (pdf) P1- Bar on the wall MATLAB Solution P3 - MATLAB Solution Exercise 14: Problem 2, Problem 3, Problem 4, Problem 22 (PDF)
Rigid Body Dynamics Dr. Nels H. Madsen Example 1. Pendulum (HTML) - mathematica program(pdf) HTML-format Example 2. Example 3. Example 4. Example 5. Example 6. Example 7. Example 8.
NEWTON'S LAWS OF MOTION (AUDIO) Newton's Three Laws of Motion Understanding Newton's Laws of Motion
Ordinary Differential Equations (pdf)
8. MECHANISMS WITH GEARS (pdf) (3 classes) Exercise: Gear Trains (solutions: Problem 1 Problem 4 Problem 5)
Tests (3 classes)
Exam 2 solutions: Problem 1 Problem 2
Video Problems at ftp://ftp.eng.auburn.edu/pub/marghdb or smb://marghdb@lotus/ftp/marghdb (for MAC)
Laboratory projects:
PART I: WORKING MODEL
Mechanism analysis with Working Model figures
Gear analysis
Gear analysis with Working Model
PART II: MECHANISM ANALYSIS WITH MATLAB
Position Analysis with MATLAB
Velocity and Acceleration Analysis with MATLAB
Dynamic Force Analysis with MATLAB
Direct Dynamics (Newton-Euler eom) with MATLAB
MECHANISM ANALYSIS WITH MATHEMATICA Mechanisms analysis with Mathematica figures programs (pdf) Mechanism analysis with packages figures programs (pdf)
Textbook: J. L. Meriam and L. G. Kraige, Engineering Mechanics: Dynamics, John Wiley & Sons, New York instructor's notes (please see the AU Access Blackboard) References: R.L. Norton, Design of Machinery, McGraw-Hill, New York, 1999 D.B. Marghitu, Mechanisms and Robots Analysis with MATLAB, Springer, 2009 D.B. Marghitu, Kinematics Chains and Machine Components Design, Elsevier, Amsterdam, 2005 C. E. Wilson and J. P. Sadler, Kinematics and Dynamics of Machinery, Harper Collins College Publishers, 1991 eCourses - University of Oklahoma: http://ecourses.ou.edu/home.htm
APPLICATIONS
FIGURES and TABLES (Figs. 1 - 15 ) (pdf)
VIDEO (RealPlayer): R-RTR R-RTR1 R-RTR-RRR(fig3) R-RTR-RTR(fig5) R-RTR-RRT(fig13) R-RTR-RTR R-RTR-RTR
Exercises: Problems 1.2.1, 1.2.4, 1.2.6, 1.2.7, 1.2.9, 1.2.10 Problems 1.3.5, 1.3.6, 1.3.10 Problems 1.4.5, 1.4.9, 1.4.13 - velocities and accelerations Problems 1.4.10, 1.4.12, 1.4.21 - velocities and accelerations Problems 1.6.2, 1.6.2(mathematica), 1.6.3, 1.6.4 - joint forces Problems 1.6.8, 1.6.9, 1.6.12, 1.6.13 - joint forces
Position Analysis (pdf) [sample (pdf ) Mathematica files: Program 1, Program 2, Program 3 ]
Velocity and Acceleration Analysis (pdf) I. DERIVATIVE METHOD: text (pdf) program (Mathematica) program1 (Mathematica) II. ALGEBRAIC METHOD: text (pdf) program (Mathematica) III. CONTOUR METHOD: text (pdf) program (Mathematica)
Dynamic Force Analysis (pdf) sample (pdf) ProgramDyad (Mathematica) ProgramContour (Mathematica)
Rigid Body Kinematics Dr. Nels H. Madsen Example 1. Example 2. Example 3. Example 4. Example 5. Example 6.
Structural analysis: structural diagram, contour diagram, dyads (pdf)
Mathematica Programs Position analysis: R-RRT mechanism (pdf) Position analysis: R-RTR-RRT (pdf) Velocity and acceleration analysis: R-RTR-RRT (pdf) R-TRR (position, velocity, acceleration) (pdf)
Problem R-RTR-RRT position analysis; velocity and acceleration analysis (method I and method II - contour ) (pdf)
Problems (complete set) (pdf)
Dynamic Force Analysis Example FBD of individual links FBD of dyads Contour method
Force analysis: R-RTR mechanism (input data) solutions: fbdcontourdyad
Direct Dynamics (NEWTON- EULER eom) (pdf) Appendix 2 (Mathematica)
Newton-Euler equations - Double Pendulum (pdf) Double Pendulum - Mathematica program (pdf)
Problems(pdf) Moments of inertia Exercise: Find the joint forces using individual links
A practical introduction to Mathematica
Grading and Evaluation Procedures
Prerequisite: (first or second week): 3%
Exam I : 15%
Exam II : 15%
Comprehensive final exam: 30%
Laboratory project, quizzes (each quiz 2%), homework: 37%
Grading Scale: A=100-90% B=90-80% C=80-70% D=70-60% F<60%
Accessibility It is the policy of Auburn University to provide accessibility to its programs and activities, and reasonable accommodation for persons defined as having a disability under Section 504 of the Rehabilitation Act of 1973, as amended, and the Americans with Disabilities Act of 1990. Students who need special accommodations should make an appointment to see the instructor as soon as possible or contact the Students with Disabilities Program office at (334) 844-5943 (Voice/TT).