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n many companies, the Capability Maturity Model1 plays a
major role in defining software process improvement.
Frequently, organizations contemplating software process im-
provement (SPI) seek assurances that tangible benefits will re-
sult from such activities. Pockets of data across industry2 show
that CMM-based process improvement is making a difference

in those organizations committed to improvement. Raytheon yielded a
twofold increase in its productivity and a return ratio of 7.7 to 1 on its
improvement expenditures, for a 1990 savings of $4.48 million from a
$0.58 million investment. Over a period of four and a half years, from
mid-1988 to the end of 1992, the company eliminated $15.8 million in
rework costs.
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Many organizations are
using or considering the

Capability Maturity Model as
a vehicle for software process

improvement. But does the
CMM provide real benefits?

The authors offer metrics and
data that show the results
of Motorola’s CMM usage.
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Hughes Aircraft has computed a 5-to-
1 return ratio for its process improvement
initiatives, based on changes in its
cost–performance index. This has gener-
ated an annual savings of about $2 mil-
lion above Hughes’ process improvement
expenditures. Tinker Air Force Base re-
cently computed a 5-to-1 return on in-
vestment for its process improvement ini-
tiatives, which generated a savings of $3.8
million from a $0.64 million investment.
Other sources confirm this trend.3,4

Motorola has long been a champion
of the SEI’s CMM as a vehicle for fur-
thering software process improvement.
In November 1995, the company’s
Government Electronics Division was
independently assessed at SEI level 4.
The assessment further rated GED’s
policies and procedures at SEI level 5,
without verifying project implementa-
tion of the level 5 key process areas.
Motorola GED employs about 1,500 en-
gineers to design and build a wide variety

of government electronic systems.
Approximately 350 GED engineers par-
ticipate directly in software development.
Our organization’s long history of sup-
port for process improvement was, we
found, to prove key in reaping benefits
from the CMM process. In effect, we
supplemented the SEI’s model with sev-
eral of our own programs. 

The cycle time, quality, and produc-
tivity metrics we use are based on current
measures from approximately 34 pro-
grams, which are at various stages in the
software life cycle. Motorola GED plans
to reevaluate this project performance
analysis when all projects are completed.

PROCESS METRICS

At Motorola GED, each project per-
forms a quarterly SEI self-assessment. The
project evaluates each key process area
(KPA) activity as a score between 1 and 10,

which is then rolled into an average score
for each KPA. Any KPA average score that
falls below 7 is considered a weakness. The
SEI level for the project is defined as the
level at which all associated KPAs are con-
sidered strengths, that is, all KPA average
scores must equal 7 or more.

GED uses quality, cycle time, and
productivity to evaluate development
programs because our customers value
these attributes. In addition, Motorola
has always valued quality in all its prod-
ucts and processes: its Six Sigma Quality
focus has been a corporate initiative for
several years. Six Sigma is a quality
process that looks at reject rates as low as
a few per million opportunities. This
process originally started in the manu-
facturing arena and has been expanded
to software at Motorola.

Recently, Motorola corporate has
been championing the 10X cycle-time
initiative, which seeks to have all busi-
ness elements achieve a 10-fold reduc-
tion in product cycle time to accelerate
the introduction of new products.
Productivity is directly related to our
ability to win new programs from our
traditional US Department of Defense
customer and drives our profitability in
emerging commercial products. Table 1
summarizes the Motorola GED im-
provement trends for quality, cycle time,
and productivity by SEI level. Motorola
obtained performance data in these areas
for each program from its internal met-
rics, and categorized them by SEI level
as determined by each project’s internal
self assessment. The projects involved in
the analysis are at various stages of de-
velopment.

A more detailed examination of each
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Figure 1. Quality by SEI level, with quality defined by the scarcity of in-process defects.

TABLE 1
MOTOROLA GED PROJECT PERFORMANCE BY SEI CMM LEVEL.

SEI CMM Level Number of Quality (In- Cycle Time Productivity
Projects Process (X factor) (Relative)

Defects/
MAELOC*)

1 3 n/a 1.0 n/a

2 9 890 3.2 1.0

3 5 411 2.7 0.8

4 8 205 5.0 2.3

5 9 126 7.8 2.8

*Million assembly-equivalent lines of code
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metric follows, beginning with the em-
pirical methodology by which the met-
ric was derived. Specific improvement
results are not entirely attributable to in-
creasing SEI maturity levels, because
Motorola GED has put into place sig-
nificant cycle time and quality initiatives
above and beyond the SEI CMM. 

Quality. A problem detected in the
same phase it was introduced is defined as
an error; a defect is a problem that escapes
detection in the phase it was introduced.
The quality metric is defined as defects
per million earned assembly-equivalent
lines of code (defects/MEAELOC).
AELOC, the assembly-equivalent lines of
code, equals delivered source instructions
× the Capers Jones Expansion Factor.5
The earned AELOC, or EAELOC, is de-
fined as AELOC × percent complete,
which equals the budgeted cost of work
performed/budget at complete.

Results. Figure 1 examines the quality
of each project categorized by the pro-
ject’s internal SEI self-assessment. Since
most of these programs are still active,
we derived the normalization factor by
using the EAELOC.

Analysis. Project results show that each
level of the CMM improves quality by a
factor of about 2. The improvement in
quality is expected for projects that tran-
sition from level 2 to 3 due to the Peer
Review KPA found in level 3. Peer re-
views have been widely recognized in the
industry for being the single most im-
portant factor in detecting and prevent-
ing defects in software products. Quality
is also expected to improve for projects
transitioning from level 3 to 4 due to the
Quantitative Process Management and
Software Quality Management KPAs.
Using quality metric data such as phase
containment effectiveness (the ratio of
problems inserted and detected within a
phase to the summation of all problems
introduced in that phase) will let projects
modify their processes when the ob-
served metric falls below the organiza-
tional control limits.

For example, if the peer review

process detects 75 of every 100 problems
introduced during detailed design, the
phase containment effectiveness would
be 75 percent. You can estimate the
number of problems introduced by using
historical defect density data from simi-
lar projects and tracking problems found
early in the development cycle. (A
method to predict problems throughout
the development cycle is given else-
where.6) The Motorola GED control
limit is at 85 percent phase containment
effectiveness. Projects below this thresh-
old perform causal analysis to improve
their peer review and testing processes.
We attribute the improvement from
level 4 to level 5 to the Defect Prevention
and Process Change Management KPAs.
Projects operating at this level perform
Pareto analysis on the root cause of their
problems and perform causal analysis to
determine the process changes needed to
prevent similar problems from occurring
in the future.

You can more readily achieve large
improvements in defect density when the
number of defects is large, as would be
expected in lower–maturity-level pro-
jects. At higher maturity levels, it be-
comes increasingly difficult to dramati-
cally reduce the defect density.

Cycle time. We define the X factor or
cycle-time metric as the amount of cal-
endar time for the baseline project to de-
velop a product divided by the cycle time
for the new project. For example, if the

baseline project took six months to com-
plete, and the new project took two
months to complete, then the new pro-
ject’s X factor would be 3. Motorola’s
goal is to achieve an X factor of 10 for
new projects within five years.

The project we used as our baseline
was a similar project completed at
Motorola GED prior to 1992. Each pro-
ject at GED tracks its cycle time by se-
lecting a program with a similar target
domain and by tracking its progress
against that baseline program. The cycle-
time ratio of the current program over
the baseline program is known as the pro-
gram’s X factor. Many times the comple-
tion of a program is not entirely under the
contractor’s control, especially with gov-
ernment funding curve slowdowns. In ad-
dition, government contracts typically in-
volve a qualification test cycle that is not
normally seen in the commercial world.
To more accurately reflect the potential
cycle time from a commercial viewpoint,
cycle time is measured with respect to a
project’s first increment. This should
eliminate the effect of qualification test-
ing and government funding changes on
a project and more accurately compare
Motorola GED with the rest of the com-
mercially oriented company.

Results. Figure 2 shows the cycle-time
improvements with respect to SEI level.
Because the X factor is derived by divid-
ing an older, baseline project’s comple-
tion time by the current project’s com-
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Figure 2. Cycle time by SEI level. Shorter cycle times result in larger X factors.
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pletion time, the shorter the current pro-
ject the larger the X factor.

Analysis. Analysis of the data shows a 3.2
X factor for projects transitioning from
level 1 to 2, a surprising decrease in cycle
time for projects that move from level 2
to 3, an increase from 2.7X to 5.0X for
projects that move from level 3 to 4, and
an increase from 5.0X to 7.8X for pro-
jects that move from level 4 to 5. The de-
crease in cycle-time X factor for projects
moving from level 2 to 3 may indicate a
weak correlation between schedule per-
formance and maturity level that has
been seen in other CMM benefit surveys.
Elsewhere, we have noted a weak sched-
ule performance index correlation to ma-
turity levels above level 1.4 At least one
other survey, however, does not evince
such a correlation.3

The upward trend in cycle time above
level 3 tends to corroborate the underly-
ing assumption that higher-maturity
projects have a better schedule perfor-
mance index. 

Motorola’s 10X initiative is separate
and in addition to the SEI CMM level 5
initiative. A major component of the 10X
initiative is the implementation of a life
cycle called incremental development.
The idea is to complete a thread of func-
tionality that will test all the system in-
terfaces and demonstrate some function-
ality that has meaning to the customer.

Because the effort to progress from level
2 to level 3 involves a significant number
of KPAs and process changes, it is ex-
pected that such a project may also have
trouble absorbing a new life cycle such as
incremental development.

Because many of the projects used as
a basis for this analysis are still in devel-
opment, further analysis with final sched-
ule performance data is required to cor-
roborate the preliminary findings.
Another attribute that seems to correlate
with increasing SEI maturity level is the
decrease in variability of schedule and
cost performance. The performance to
plan variability decreases with higher ma-
turity levels. 

Productivity. We define productivity as
the amount of work produced divided
by the time to produce that work. This
may be measured in source lines of code
per hour or a similar measure. Each pro-
ject at Motorola GED tracks its pro-
ductivity by measuring AELOC pro-
duced and the number of hours needed
to produce that code.

Results. For proprietary reasons, we do
not show the actual number of lines of
code per hour. Figure 3 does, however,
show the relative productivity between
projects at different levels of maturity.
The data is normalized to the productiv-
ity of an average level 2 project.

Analysis. Factors other than process
maturity affect productivity, most im-
portantly technology changes. For ex-
ample, the data shown includes projects
that may have started before some form
of automated code generation became
available. In addition, the amount of code
reuse on a project can greatly affect that
project’s productivity. As projects in-
crease their level of maturity, the orga-
nization is better able to effectively reuse
software source code. Likewise, software
code that is reused from a high-maturity-
level project requires less rework and is
more easily understood. These factors
act as multipliers in the productivity of
high-maturity-level projects.

Projects experience an unexpected de-
crease in productivity when moving from
level 2 to level 3. This appears to be a side
effect of asking project staff to do too
many new things all at once at level 3.
When instituting a level 3 system, new
processes are rolled out that greatly af-
fect the way individual project members
perform their tasks. This “new process
rollout” does not have as great an impact
at higher maturity levels. As with any
adoption of new technology, we expect
that an absorption cycle will be needed
before the full benefits can be observed.
At levels 4 and 5, each project quantita-
tively measures its own performance and
can effectively change its processes while
maintaining productivity. 

Yet simply measuring performance
does not ensure that productivity can be
maintained. First, when you analyze and
select any new process improvement, you
should do so with the overall goal of at
least maintaining productivity if not in-
creasing it. Second, you must then mon-
itor the actual productivity impact of the
process improvement you implement.
Real-time adjustments to the process im-
provement may be needed to keep the
project working efficiently.

IMPLEMENTATION STRATEGIES

SPI implementation at Motorola
GED began in 1989, when GED was as-
sessed at level 2 of the Process Maturity
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Figure 3. Relative productivity by SEI level, normalized to the productivity of an av-
erage level 2 project. We define productivity as the number of assembly-equivalent lines
of code produced, divided by the time required to produce them.
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Model. At this time, we had already met
most of the level 2 KPAs by doing what
our government contracts required. Yet,
while each project performed certain
level 2 activities as required, there was no
real organizational focus on software en-
gineering processes.

While at level 2, GED’s chief soft-
ware engineers began focusing on
process improvement. A high-level stan-
dard policy and procedure further de-
fined GED processes for software engi-
neering, as did the publication of the
Software Quality Management Manual.
This manual laid out steps to follow in a
typical “waterfall” software development,
where requirements analysis led to de-
sign, which in turn led to code and test-
ing. At this time a software functional
team was created to attempt to unify soft-
ware engineers from various parts of the
organization into a cohesive team. Peer
review concepts were also introduced.
These activities led to a level 3 assess-
ment of Motorola GED in 1992.

Working groups. Starting in 1992 and
continuing through 1994, the engineer-
ing organization created a process im-
provement working group, made up of
senior practitioners. In addition, an ini-
tial software engineering improvement
working group was formed with eight se-
nior task leaders responsible for software
development. This group had hands-on
leadership from the engineering depart-
ment manager, which proved critical to
its success. It created the burden code
metrics tool, which collected the amount
and type of effort expended on each pro-
ject. The group also defined and applied
process and quality metrics that were
useful for each project. At the end of this
period, GED staff created the Handbook
for Quantitative Management of Software
Process and Quality, based on this group’s
work. These activities resulted in GED
being assessed at level 4 of the Process
Maturity Model, based on the PMM,
with goals added from the CMM.

Since 1994, GED has maintained a
defect prevention working group that
looks at quality data from around the or-
ganization to identify systemic causes of

poor quality. This group also created the
Defect Prevention Handbook, which pro-
jects can use to perform their own defect
prevention activities. The chief software
engineer group was expanded to ensure
that all new projects could begin operat-
ing at level 5; each project performs a
self-assessment of CMM activities to
identify areas that need work. During
this period, the level 5 metrics tool was
created and released to help projects in-
tegrate metrics collection from various
sources in their level 4 and level 5 activ-
ities. In addition, GED expanded the
working group from a single team of
eight members to approximately four
teams, each with a dozen software lead-
ers. The chief software engineers also
created handbooks for process change
management and technology change
management.

Throughout these activities, senior
management sponsorship proved critical
to the success of the process improve-
ment efforts. This meant not only taking
an active interest in the progress of var-
ious process improvement initiatives, but
also providing funding and time to do the
work, and rewarding those who con-
tributed. Ongoing activities include 

♦ continuing review and improve-
ment of existing handbooks;

♦ maintenance of the process im-
provement request system;

♦ weekly meetings of the working
groups to address process, technology,
and people issues;

♦ meetings of chief software engi-
neers and all new-project staffs to ensure
that level 5 principles are followed; and

♦ ongoing integration of develop-
ment and management tools.

Optimizing implementation. From the
data gleaned during these activities, we
found that several strategies provide op-
timal results.

♦ Focus on improving new projects.
It is extremely difficult to change pro-
jects, especially at a low maturity level,
once they have started.

♦ Adopt a top-down focus before im-
mersing yourself in CMM details; start
by assessing the intent of each KPA so

that you can determine how it fits into
your environment.

♦ Emphasize productivity, quality,
and cycle time. Avoid process for its own
sake.

♦ Management commitment is
needed from all levels; commitment from
upper management won’t be enough un-
less individual project leaders and man-
agers are also determined to succeed.

♦ Practitioners and task leaders, not
outside process experts, should be used
to define processes.

♦ Managers must be convinced of
process improvement’s value; it’s not
free, but in the long run it more than pays
for itself.

♦ The customer must be kept in-
formed about the process, especially
when process changes occur.

♦ Copying process documents from
other organizations usually does not
work well; the process must match your
organization.

♦ Overcoming resistance to change
is probably the most difficult rung to
climb on the SEI CMM ladder.

Process change takes time, talent, and
a commitment that many organizations
are uncomfortable with. Based on our ex-
perience, we believe the investment is
worth it.

ECONOMIC BENEFITS

To evaluate how much we saved, we
must first calculate how much we ex-
pended on SPI efforts, then evaluate
how much the errors and defects caught
or eliminated by these processes would
have cost us.

The process improvement effort con-
sisted of the following to support the base
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of 350 software developers:
♦ four full-time chief software engi-

neers = 48 staff-months;
♦ task leaders of the software engi-

neering improvement working group =
34 projects × 1 hour/week = 10.5 staff-
months;

♦ prephase kickoffs and post-
mortems: 34 projects × 1 hour per phase
× 7 phases = 1.5 staff-months;

♦ software development planning: 34
projects × 5 days = 1 staff-month; and

♦ defect prevention working group:
8 members × 1 hour per week = 2.5 staff-
months.

The total of all process improvement
activities was approximately a 1.5 percent
investment of our base staffing.

From a quality perspective, the defect
injection rate decreases by roughly half
each time a project advances a CMM
level. Therefore, an SEI level 2 project
has a defect injection rate eight times
greater than an SEI level 5 program. The
cost of rework is therefore at least eight
times greater at level 2. Assuming that
each defect requires an average of 16
hours’ rework and analysis, and that the
cost of rework is approximately $100 an
hour, a typical 500,000-AELOC (about
100,000 SLOC) project can anticipate
the following savings:

♦ At level 5, 63 defects (based upon
126 defects per MAELOC) would ex-
pend $100,800 on rework.

♦ At level 2, 445 defects (based upon
890 defects per MAELOC) would ex-
pend $712,000 on rework.

A typical 100,000-SLOC project
would span 18 months and employ ap-
proximately 20 software engineers. If we
allocate the 1.5-percent process im-
provement cost into each specific pro-
ject, this would amount to 1.5 percent ×
20 people × 18 months × 167 hours ×
$100/hr = $90,180 investment.

The resulting return on investment
would be ($712,000 − $100,800) =
$611,200 for a $90,180 investment, or a
total return of 677 percent.

Unfortunately, given the government
nature of our contracts, Motorola GED
does not realize all these savings as prof-
its. The true cost–benefit occurs when

projects finish earlier, allowing us to
apply more engineering resources to the
acquisition and development of new
business.

Each level of SEI CMM maturity re-
duces defect density by a factor of

2. Cycle time and, to a lesser extent, pro-
ductivity improve with each maturity
level except level 3, when cycle time and
productivity both decrease. From this,
we can conclude that achieving level 3
involves significant new process intro-
duction, which can negatively affect these
two metrics until the project absorbs and
learns to tailor the processes. From the
data presented here, it would appear that
setting a goal of SEI level 3 for an orga-
nization is the least beneficial point to
shoot for.

The effort to transition from level 2
to level 3 is probably the most difficult
because of the many KPAs associated
with level 3 and the impact that process
maturity plays in SPI.  Lower-maturity
organizations find it much more difficult
to change and implement SPI for a vari-
ety of reasons.

♦ Keying process changes to metric
analysis data is not addressed until CMM
levels 4 and 5. Such data is critical to im-
proving the effectiveness of SPI efforts.

♦ Lower-maturity organizations fo-
cus on defining their core processes, not
on improvement.

♦ Lower-maturity organizations are
just starting to improve their software
processes. This requires significant ef-
fort, especially in the beginning. Staff
skepticism can also be an obstacle. Before
they buy into a new SPI initiative, most
software engineers will wait to see if it
truly has management support and stay-
ing power.

These factors suggest that the SEI
CMM could be improved by addressing
some aspects of all KPAs even at the
lower maturity levels. For example, some
aspects of defect prevention and process
improvement can be performed at the
lower maturity levels.  The ISO Spice
model is an example of such a graduated
approach.

Process improvements take time to in-

stitutionalize and require a commitment
from management to succeed. Achieving
higher levels of process maturity requires
an investment of time and money in
process improvements, including tool in-
tegration to aid in the collection and in-
terpretation of quantitative data.

Given the costs they incur, process im-
provement activities must be undertaken
with a view to return on investment. You
could easily set up a high–SEI-maturity
organization that would suffer slowed de-
livery times and reduced productivity if
process were followed for process’s sake.
Thus, in addition to the traditional SEI
CMM emphasis, we must tailor our
processes and focus on cycle time. ◆
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