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Abstract

This work describes a non-statistical multi-scale model of the normal contact between rough surfaces. The model produces predictions for
contact area as a function of contact load, and is compared to the traditional Greenwood and Williamson (GW) and Majumdar and Bhushan (MB)
rough surface contact models, which represent single-scale statistical and fractal analyses, respectively. The current model incorporates the effect
of asperity deformations at multiple scales into a simple framework for modeling the contact between nominally flat rough surfaces. Similar to the
“protuberance upon protuberance” theory proposed by Archard, the model considers the effect of having smaller asperities located on top of larger
asperities in repeated fashion with increasing detail down to the limits of current measurement techniques. The parameters describing the surface
topography (areal asperity density and asperity radius) are calculated from an FFT performed of the surface profile. Thus, the model considers
multi-scale effects, which fractal methods have addressed, while attempting to more accurately incorporate the deformation mechanics into the
solution. After the FFT of a real surface is calculated, the computational resources needed for the method are very small. Perhaps surprisingly,
the trends produced by this non-statistical multi-scale model are quite similar to those arising from the GW and MB models, but seem largely
unaffected by the sampling resolution at the employed surface data.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Since virtually all engineering surfaces are rough to some
degree, accounting for the effects of surface topography is crit-
ical to modeling surface contact. Effective contact models can
lead to an improved understanding of friction and wear, as well
as thermal and electrical conductance between surfaces. When
two rough surfaces are pressed together, it is primarily the peaks
(or asperities) on the surface that will make actual contact. With
only a small fraction of the available area supporting the load, the
contacting asperities of the surfaces often carry very high com-
pressive stresses. These high stresses will often cause yielding
in the material and thus purely elastic contact models of rough
surfaces are not always adequate.

One of the earliest models of elastic, rough surface contact
is that of Greenwood and Williamson [1]. The Greenwood and
Williamson (GW) model applies a contact solution for curved
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elastic bodies, known as the Hertzian solution [2], to a popula-
tion of asperities following a given statistical height distribution,
while assuming that the deformation of a given asperity is not
influenced by the deformation of any other asperity. Various
extensions of the GW contact model have been developed to
incorporate affects of adhesion and plastic deformation [3–7].
The statistical GW framework has been preserved, but dif-
ferent models are implemented for the asperity deformation.
Because the Hertzian contact solution requires the specifica-
tion of the radius of curvature, this parameter is needed for
each of the contacting asperities. In the case of the GW and
related models, it is assumed that the asperity radius of cur-
vature is the same for all asperities. In practice, one uses the
average radius of curvature of the asperities, as determined from
a measurement of the surface profile [8]. One of the drawbacks
of this class of models, which rely on the specification of a
single radius of curvature, is the ambiguity of scale. That is,
the determination of the average radius of curvature of a sur-
face profile is sensitive to the scale of observation, or more
specifically, to the lateral resolution used to measure the sur-
face [9–11].
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Nomenclature

a radius of the area of contact
A area of contact
Ā area of contact for single asperity
An nominal contact area of the surface
Ar real contact area of the surface
B material dependent exponent
C critical yield stress coefficient
D fractal dimension
ey yield strength to elastic modulus ratio, Sy/E
E elastic modulus
E′ E/(1 − v2)
f spatial frequency (reciprocal of wavelength)
F contact force
F̄ contact force for single asperity
G fractal roughness parameter
H hardness
HG hardness geometric limit
L scan length
N number of asperities
p* pressure amplitude
p̄ mean pressure
R radius of hemispherical asperity
Sy yield strength

Greek symbols
β asperity amplitude
η asperity areal density
λ asperity wavelength
ν Poisson’s ratio
σ standard deviation of surface heights
ω interference between hemisphere and surface

Subscripts
c critical value at onset of plastic deformation
cont denotes contact
i frequency level
j dummy index for frequency level beyond i*

k index for frequency level beyond i*

JG from model of Jackson and Green [7]
JGH from model of Johnson et al. [12]

An early appreciation for the influence of multiple scales was
demonstrated by Archard [13] whose work precedes the GW
model. Archard suggested that the asperities of rough surfaces
must be modeled as “protuberance upon protuberance.” In other
words, any asperity has upon it a collection of smaller asperities,
each of which supports a collection of even smaller asperities,
and so on. One expects this process to continue down to the
atomic scale. With some simplifying assumptions, Archard was
able to model this scaling effect for the elastic contact between
(1) a rough sphere and a smooth, rigid flat and (2) a nominally
flat, rough surface and a smooth, rigid flat. In the latter case,
the rough surface was composed of rough hemispherical asperi-

ties, having a uniform height distribution. In both cases, Archard
showed that as higher and higher levels of refinement are con-
sidered (each of which has a characteristic asperity radius of
curvature and asperity areal density), the relationship between
area of contact and load approached linearity.

This linear relationship between contact load and area pro-
vides an explanation as to why Amonton’s law of friction appears
to hold in many cases. If friction force is linearly proportional to
area and area is linearly proportional to load then friction force
will be linearly proportional to load (i.e., F = µN). However,
Archard’s contact model is based on hypothetical, idealized sur-
faces and is difficult to apply to a real rough surface. For example,
Archard’s model does not provide a means of determining the
required coefficients from measurements of a surface profile.
Archard assumed that each successive level had asperity radii
much smaller that in the previous level. Because real surfaces
would generally not have successive scales so widely separated,
it is problematic to identify such in practice.

A more sophisticated approach to handling the multi-scale
nature of surface roughness was offered by Majumdar and
Bhushan [14], who developed a fractal based description of sur-
face contact. In that work, the authors assumed a form for the
distribution of the contact areas. They equated a given contact
diameter to a wavelength and then used the fractal dimension and
fractal roughness parameter (as determined from a power spec-
trum of the surface) to provide an associated asperity amplitude,
which they set to be the asperity deformation or interference.
Additionally, they used the asperity wavelength and amplitude
to provide the radius of curvature of the deformed asperity. With
this formulation, Hertzian analysis or the fully plastic truncation
model [15] was applied to each contact region and the resulting
areas were summed statistically based on the assumed form for
the distribution of contact areas. The results provided, among
other things, a relationship between the real area of contact and
the applied load, which demonstrated power-law behavior.

One criticism of the MB fractal model is that it predicts that
the lighter the load, the greater will be the percentage of contacts
that are plastically deformed. This counterintuitive result arises
from the fact that, for a given surface, the radius of curvature of an
asperity is determined solely by the contact diameter, with each
contacting asperity always in complete contact. That is, consid-
ering an asperity as a half sine wave, the MB model assumes that
the asperity is completely flattened. Therefore, there is no provi-
sion in the model for gradually increasing the deformation level
(i.e., the degree of interference) of an asperity of a given radius
of curvature. The authors view this feature as unrealistically
restrictive. These faults have also been identified by Borodich
[16] in two succinct statements: “the fractal dimension alone
cannot characterize the features of contact” and “the problems
for elastic rough surfaces cannot be solved using just geometrical
arguments and equations of elasticity should be involved.”

Other fractal-based models have also been developed by
a number of researchers including [17–22]. Persson and co-
workers [23,24] also developed a new method for modeling
rough surfaces, which is not dependent on fractal roughness,
but is not scale dependent like the GW model. However, the
model is implemented only for fractal surfaces. Probably most
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relevant to the current work is that by Ciavarella et al. [25],
which models contact using an idea similar to Archard’s and
the current work. The major differences is that they model the
surface structure between the scales as being fractal and also use
a two-dimensional elastic sinusoidal model (Westergaard [26])
instead of the three-dimensional sinusoidal contact and elasto-
plastic contact considered in the current work. A subsequent
work [27] expands the analysis to provide contact stiffness and
resistance. These works also conclude that as higher scales are
included in the contact model via fractal mathematics that the
contact area will approach zero. This result is not found in the
current work, perhaps because the current model is not governed
by the fractal description of surfaces.

The present study contributes the understanding of rough
surface contact by providing the following: (1) a new, non-
fractal-based, multi-scale model that is applicable to elastic as
well as elastoplastic conditions, and (2) comparisons to well
established statistical and fractal models in the literature.

2. Multi-scale model

2.1. General framework

The current work uses the same direction of thought as
Archard [13], but provides a method that can be much more
easily applied to real surfaces. The model assumptions, which
are somewhat different from those in the GW and MB fractal
models, are as follows:

(1) Asperities are arranged so that asperities of smaller cross-
sectional surface area are located on top of larger asperities.
In the frequency domain this means that asperity distribu-
tions of higher frequencies are superimposed upon lower
frequency asperities. This is similar to Archard’s “protuber-
ance upon protuberance” concept.

(2) Each “level” or frequency of asperities carries the same total
load.

(3) The load at each frequency level is shared equally among
all the asperities at that level.

(4) At a given frequency level, each asperity deforms according
to Hertz theory or to a chosen elasto-plastic asperity con-
tact model, irrespective of the presence of higher frequency
asperities upon it.

(5) A given frequency level cannot increase the contact area
beyond what is experienced by the frequency level below it.

These assumptions set up the following simple framework of
equations for the contact model:

Ar =
(

imax∏
i=1

Āiηi

)
An (1)

F = F̄iηiAi−1 (2)

where Ar is the real area of contact, F the contact load, An the
nominal contact area, and the subscript i denotes a frequency
level, with imax denoting the highest frequency level considered.

Parameters Āi and F̄i are the single asperity contact area and sin-
gle asperity contact force at a given frequency level, respectively.
The total (nominal) area of contact at a given frequency level is
denoted by Ai, while ηi is the corresponding areal asperity den-
sity. For example, if a simplified hypothetical case is assumed
such that there are only two frequency levels of asperities then
Eq. (1) becomes

Ar = Ā2η2Ā1η1An (3)

where Ā2 and Ā1 are the single asperity contact areas and η1 and
η2 are the areal asperity densities at their respective frequency
levels. The product of η1An gives the number of asperities at
frequency level 1. Thus the value of Ā1η1An gives the contact
area of frequency level 1, which is viewed as the nominal contact
area from the perspective of level 2. Next, the value of η2Ā1η1An
gives the number of asperities at frequency level 2, which, when
multiplied by Ā2, the contact area per level 2 asperity, yields the
real contact area, Ar. Values for Ā1 and Ā2 are determined from
a micro-contact model (e.g., Hertz), assuming that the contact
load is equally shared by all asperities of a given level, with
the asperity radius of curvature established from the frequency
spectrum. In the general case, the repetitive cycle continues until
all the asperity frequency levels are considered. Thus, the result-
ing model uses a recursive approach to predict the real area of
contact between two rough surfaces.

To illustrate in more detail how the contact model framework
is used to model contact between rough surfaces, a flow chart of
the method is given in Fig. 1. After selecting the scan length (L),
the input surface data is acquired and an FFT is performed. From
the resulting Fourier series, the areal asperity density and radius
of curvature are computed for each frequency level according
to:

ηi = 2f 2
i (4)

Ri = 1

4π2βifi
2 (5)

where fi denotes the frequency (i.e., the reciprocal of wave-
length) and βi is the amplitude corresponding to the given
frequency. Although the source of the factor 2 in Eq. (4) may be
difficult to see intuitively, the density of asperity peaks is indeed
two per reference area, which is defined as one wavelength by
one wavelength. This relation can be determined graphically, as
done in [12]. The nominal contact area (An) is then set to be
equal to L2 and is identified with i = 0.

For a given frequency level, the number of asperities is cal-
culated. The total load is then divided evenly among all of the
asperities of the given level. Next, the single asperity area of con-
tact is determined from the given asperity load, the given asperity
dimensions and the material properties, according to the chosen
asperity deformation model (e.g., Hertz). Then multiplying by
the number of asperities at that level, a provisional total con-
tact area for that frequency level is computed. In keeping with
Assumption #5 above, the result is checked against the contact
area predicted by the frequency level below it, and the smaller
value is selected as the contact area for the given frequency level.
The concept behind this rule is that the frequency level below a
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Fig. 1. Flow chart of iterative asperity contact model.

given frequency level serves as the nominal contact area for the
given frequency level. The iterative procedure continues until all
the desired frequencies are considered, resulting in a prediction
of the real area of contact at the prescribed load.

2.2. Asperity deformation

A variety of individual asperity models are available for use
within the multi-scale framework described above to relate the
contact area to the contact force. For a simulation of purely
elastic rough surface contact, the Hertzian model [2] may be
applied. Alternatively, several models are available that account
for elasto-plastic deformation of spherically shaped asperities
[3–7]. A detailed description of several elasto-plastic models is
given in Kogut and Etsion [5], and Jackson and Green [7].

Considering again the case of elastic contact, the model
framework can also employ the solution to the problem of a
sinusoidal surface in contact with a flat, which was solved first
by Westergaard [26] for the one-dimensional waviness case and
then by Johnson et al. [12] for the two-dimensional waviness
case. The analysis for the case of 2D waviness [12] developed by
authors Johnson, Greenwood and Higginson (hereafter referred
to as “JGH”) provides a relation between pressure and contact
area. First let p̄ be defined as the average pressure in the inter-
face (considering both contacting and non-contacting regions)
and let p* be the amplitude of a sinusoidal pressure superim-
posed on the mean pressure. Special relations arise when the

pressure amplitude p* is given by:

p∗ = 2πE′βf (6)

where E′ is the reduced elastic modulus, β the waviness ampli-
tude, and f is the reciprocal of wavelength. Namely, when
p̄ ≥ p∗, the pressure loads the surfaces so that there is no gap
between them. For such a case, the area of contact for the corre-
sponding frequency level is taken to equal that of the frequency
level below it, so that the asperities at the given frequency level
induce no separation between the surfaces. However, Assump-
tion #5 is upheld no matter which single asperity contact model
is used by simply comparing each frequency level to the one just
below it. Alternatively, when p̄ < p∗ the contact is not complete,
and a closed form solution for the two-dimensional waviness
contact problem is not available. However, Johnson et al. [12]
provides two asymptotic solutions to the problem. For p̄ � p∗
the following equation applies:

(ĀJGH)1 = π

f 2

[
3

8π

p̄

p∗

]2/3

(7)

and when p̄ approaches p* (i.e., contact is nearly complete) the
following equation applies:

(ĀJGH)2 = 1

2f 2

(
1 − 3

2π

[
1 − p̄

p∗

])
(8)

Since no general analytical solution is available, we fit a polyno-
mial equation linking Eqs. (7) and (8) based on the experimental
data provided by Johnson et al. [12]:
For p̄

p∗ < 0.8:

Ā = (ĀJGH)1

(
1 −

[
p̄

p∗

]0.51
)

+ (ĀJGH)2

(
p̄

p∗

)1.04

(9)

For p̄
p∗ ≥ 0.8:

Ā = (ĀJGH)2 (10)

The curve fit is shown in Fig. 2 with the asymptotic solutions
from Eqs. (7) and (8) as well as the data from a numerical sim-

Fig. 2. Real area of contact of two-dimensional wavy surface.

1.51
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ulation and experimental measurements obtained from [12]. As
observed, the curve fit faithfully captures the trend of the data.

As the load pressing two rough surfaces together increases,
the stresses within the individual asperities also increase. These
stresses eventually cause the material within the asperity (mod-
eled as a hemisphere) to yield. The interference at this initial
point of yielding is known as the critical interference, ωc. Jack-
son and Green [7] and Chang et al. [3] derive this critical
interference analytically using the von Mises yield criterion.
The resulting equation [7] is:

ωc =
(

πCSy

2E′

)2

R (11)

where C is given by

C = 1.295 exp(0.736ν) (12)

and ν is the Poisson ratio of the material that yields first. An
alternative to Eq. (11), which is explicitly dependent on material
hardness, is given by [3].

The critical force, F̄c, is then calculated at the critical inter-
ference, ωc, to be

F̄c = 4

3

(
R

E′

)2(
C

2
πSy

)3

(13)

Similarly, the critical contact area is

Āc = π3
(

CSyR

2E′

)2

(14)

Notice that Eqs. (11)–(14) do not require specification of the
hardness (i.e., the presumed maximum achievable surface pres-
sure), which has recently been shown to depend on the degree
of indentation [7,28,29], and be influenced by strain gradient
effects [30–36]. The current multi-scale contact model is capa-
ble of incorporating such effects via selection of an appropriate
single-asperity deformation model.

In the present study, the multi-scale framework (see Section
2.1) is used in combination with either Hertzian or the JGH
analysis at the asperity level to model elastic contact; whereas
to model elasto-plastic contact, the multi-scale framework is
used in conjunction with either the asperity deformation model
of Jackson and Green (“JG”) [7] or the truncation model [14].
While these are not the only modeling options [3,5,6], their use
will suffice for investigating the multi-scale formulation.

The JG model predicts the contact force and area between an
elastic, perfectly plastic hemisphere and a rigid flat as functions
of the ratio of interference (ω) to critical interference (ωc). (The
converse case of a rigid sphere indenting an elastic-perfectly
plastic half-space is not considered here.) At 0 ≤ ω/ωc ≤ 1.9 the
JG single asperity model virtually coincides with the Hertzian
solution. At interference ratios (ω/ωc) larger than 1.9 the for-
mulation below is used in the JG model for single-asperity
elasto-plastic contact:

For ω ≥ 1.9ωc

ĀJG = πRω

(
ω

1.9ωc

)B

(15)

Fig. 3. Extension of JG geometrically varying hardness empirical model for
heavy deformations (a/R > 0.41).

F̄ = F̄c

{[
exp

(
−1

4

(
ω

ωc

)5/12
)] (

ω

ωc

)3/2

+4HG

CSy

[
1 − exp

(
− 1

25

(
ω

ωc

)5/9
)]

ω

ωc

}
(16)

where

B = 0.14 exp(23ey) (17)

ey = Sy

E
(18)

HG

Sy
= 2.84

[
1 − exp

(
−0.82

( a

R

)−0.7
)]

(19)

The parameter HG, referred to as the “hardness geometric limit”
[7], represents an asymptote for mean compressive stress, for
increasing contact radius. Quicksall et al. [37] confirmed these
results for a range of materials by varying E, Sy and ν. It should be
noted that the validity of Eq. (19) is not established for a/R values
greater than 0.41 [7] and, further, the expression on the right-
hand side returns unrealistic values as a/R approaches unity.
Yet, in using the current contact model, the value of a/R can be
much larger than 0.41 for a given frequency level, depending on
the degree of loading and the details of the frequency spectrum,
Similarly, in the context of a GW-type statistical formulation, the
higher asperities may experience large enough values of interfer-
ence for a/R to exceed 0.41. To handle such cases, a polynomial
fit is used to extend beyond the valid range of Eq. (19). The coef-
ficients of the polynomial are found by satisfying the following
four boundary conditions: (1) the polynomial matches Eq. (19)
at a/R = 0.41, (2) the polynomial slope matches the slope of Eq.
(19) at a/R = 0.41, (3) the polynomial equals one, or the limiting
value of HG/Sy at a/R = 1 [7] and (4) the slope of the polynomial
equals zero at a/R = 1. This matching process results in the poly-
nomial extension of Eq. (19) that is shown in Fig. 3. Once the
asperity has deformed to the extent that a/R = 1, the surfaces are
considered to be in complete contact. This extension depicted
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in of Fig. 3 is used in conjunction with the JG model for the
remainder of this work.

One limitation of the JG model is that for very large defor-
mations (approximately ω > 5000ωc) the predicted average nor-
malized pressure, F̄/(ĀSy), can reduce to a value less than one,
which is not physically possible while the asperity is deforming
elasto-plastically. This unphysical result occurs because the JG
model was formulated based on FEM data developed for much
smaller deformations. For this reason and for lack of a better
model, the minimum value of F̄ is simply set to ĀSy whenever
Eq. (16) returns a value less than this quantity.

2.3. Power-law roughness with Hertzian asperity contact

In the case of Hertzian asperity contact, the relations (Eqs.
(1) and (2)) can be used to derive analytical relationships for the
contact area. Letting Āi denote the single-asperity contact area
at frequency level i, we have that

Āi = πa2
i = π

(
3F̄iR

4E′

)2/3

(20)

where F̄i is the load supported by the asperity, which has a
contact radius ai. Using Eq. (5) in (20) yields

Āi = π

(
3F̄i

8π2E′βiηi

)2/3

(21)

Letting Ni denote the number of asperities at frequency level i,
then we have F̄i = F/Ni and Āi = Ai/Ni. But, by definition,
Ni = ηiAi−1, so that

Āi = Ai/ηiAi−1 (23)

Similarly, we have

F̄i = F/ηiAi−1 (24)

which could have also been obtain directly from Eq. (2). For
convenience, Eq. (24) can be manipulated to give

F̄i =
(

F

An

) (
An

Ai−1

)
1

ηi

(25)

Substituting the relations (23), (25) and (4) in (21) gives rise to

Ai

An
= 1

4

(
9

2π

)1/3(
F

E′An

)2/3( 1

fiβi

)2/3(
Ai−1

An

)1/3

(26)

The above equation represents a recursion relation that
expresses the contact area corresponding to a given frequency
level in terms of contact area associated with the frequency
level below the given one. In the context of the current model,
Eq. (26) is valid provided that the predicted contact area at the
given frequency level does not exceed that of the previous level
(Assumption #5).

It is instructive to consider two special cases of a surface
topography. First consider a frequency spectrum that satisfies
βi = b/fi, for all i greater than some frequency level i*, where b
is a dimensionless constant (i.e., independent of i). Physically,
this case corresponds to the amplitude decaying according to the

reciprocal of frequency. For this type of spectrum, (26) can be
written as

Ai

An
= C

(
Ai−1

An

)1/3

( i > i∗) (27)

where

C = 1

4

(
9

2π

)1/3(
F

E′Anb

)2/3

(28)

The solution of (27) is given by

Ai∗+k

An
=

(
Ai∗

An

)1/3k k∏
j=1

C1/3j−1 =
(

Ai∗

An

)1/3k

C3/2(1−(1/3k))

(29)

Now Eq. (29) expresses the contact area corresponding to any
frequency level beyond i*, up to the highest frequency level
under consideration. It can be readily shown that Ai∗+k as
given by (29) will be a monotonically decreasing function of
k provided that C3/2 < Ai∗/An. In this case (29) will be in
accordance with Assumption #5 all the way to the highest fre-
quency level of the surface profile. Assuming k � 1 it is seen
from (29) that the first term on the far right-hand side rep-
resents a quantity being raised to a very small power. Even
when the ratio Ai∗/An is small the resulting expression tends
toward unity. For example, with Ai∗/An = 10−4 and k = 10,

(Ai∗/An)1/3k = (10−4)
1/310

= 0.99984. So for large k, Eq. (29)
simplifies to Ar/An = C3/2, where Ar is the real area of contact.
Now using the definition of C from Eq. (28), we obtain

Ar = 3

8
√

2π

F

E′b
(30)

Therefore, in this very special case, we have a precise linear
dependence of real area of contact on load.

Another, more general special case, occurs when, beyond a
certain frequency level we have that βi = bmf−m

i , where, bm

is a constant and m is a positive number. Now, by definition of
spatial frequency, fi = i/L, where L is the longest wavelength
of the profile, which is taken to be equal to

√
An. Now defining a

dimensionless constant b as bm/L1−m, one can write βi = Lbi−m,
so that βifi = bi1−m. Using this relation in (26) yields

Ai

An
= Cip

(
Ai−1

An

)1/3

(i > i∗) (31)

where p = 2(m − 1)/3. The solution of (31) is given by

Ai∗+k

An
=

(
Ai∗

An

)1/3k

C3/2(1−(1/3k))
k∏

j=1

(i∗ + j)p/3k−j

(32)

It is seen immediately that Eq. (32) reduces to the previous
special case considered when p = 0 (i.e., m = 1). Therefore, for
k large, the product of the first two terms on the right-hand side
tends rapidly toward C3/2. On the other hand, it is readily shown
that for p > 0 the product term is a monotonically increasing func-
tion of k. Hence at some value of k, Ai∗+k must itself become
a monotonically increasing function of k. Therefore, depending
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primarily on the value of i*, we expect to reach a frequency
level i = i* + k where Ai represents the real area of contact. That
is, given the restriction of Assumption #5, beyond this frequency
level Eq. (32) would no longer apply and the most recent cal-
culated area (i.e., at the given frequency level) would serve as
the real area of contact. While it is not apparent from inspection
of (32) what is the frequency level at which the right-hand side
becomes an increasing function of k, it is plausible that the area
corresponding to this frequency level is somewhat insensitive to
the load: for large k, the ratio of consecutive areas would be vir-
tually independent of load because they would both contain the
factor C3/2, which would cancel out (see Eq. (28)). Thus, only
for small k, would there be any possible dependence on load.
But, since the right-hand side of (32) has only weak dependence
on k, small changes in the critical k value (i.e., where the func-
tion becomes increasing) due to changes in load (and therefore
C) would have only a small impact on the contact area given by
(32). Hence, over a wide range of loads, it is anticipated that the
real area of contact will be nearly proportional to C3/2, which
implies linearity with load.

3. Results and discussion

3.1. Basis of comparison

In this study, the new multi-scale model is compared with
other models for both elastic and elasto-plastic contact. For the
case of purely elastic contact, the multi-scale framework incor-
porates the Hertzian or JGH analysis at the asperity level and
is compared to the GW model (which uses Hertzian analysis).
For the case of elasto-plastic contact, two types of comparisons
are made: First the multi-scale framework incorporates the JG
analysis at the asperity level and is compared to a modified GW
statistical model that also incorporates the JG asperity deforma-
tion model. Secondly, the multi-scale framework incorporates
a Hertzian analysis in conjunction with a (fully plastic) trun-
cation model [14] at the asperity level, and is compared to the
MB fractal model, which similarly employs Hertzian analysis
for elastically deformed asperities, while using the truncation
model for those asperities that have exceeded the elastic limit.
Note, in both cases involving the truncation model, there is a
discontinuity in the single-asperity contact area at the transi-
tion from elastic to fully plastic contact. For the present study,
the fractal analysis follows the methodology of references [9,14]
wherein equations are provided expressing load and contact area
as functions of the fractal parameters D and G, as well as the
material properties of the surface.

If the plastic deformation covers the entire area of contact, it
is said that a fully plastic condition is reached. The fully plastic
truncation model states that under fully plastic conditions the
area of contact of an asperity pressed against a rigid flat can
be approximately calculated by mathematically truncating the
asperity tip as the rigid flat translates an interference, ω, into
the tip. Then the average pressure between the asperity and the
flat is assumed to be equal to hardness, or approximately three
times the yield strength (H = 2.84Sy is used in this work). How-

ever, FEM results [7] show that this model oversimplifies the
picture a bit, in that the “hardness” if taken to be the average
contact pressure, can actually decrease with increasing interfer-
ence. Although the truncation model is often attributed to Abbott
and Firestone [15], they actually intended their model to be used
to describe a wear process rather than an indentation process.

3.2. Computational results

An experimentally obtained surface profile is used to com-
pare the new multi-scale model to statistical (i.e., GW-type) and
fractal formulations. A stylus profilometer was used to mea-
sure this profile from an arbitrary machined metal sample and is
shown in Fig. 4a. The displayed profile is comprised of 2454 data
points, so that the horizontal resolution is 0.204 �m. Although
more detailed profiles might be obtained using higher resolution
equipment (e.g., an AFM), since all the models will use the same
surface data, the given measurements are adequate for making a
comparison among the models considered in this paper. More-
over, the given resolution is likely representative of what might

Fig. 4. Surface profile from a stylus surface profilometer (a) and the resulting
frequency spectrum of the surface (b).
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Table 1
Statistical, fractal and material parameters used in current work

Category Parameter Name Value

Statistical η Asperity areal
density

3.880 × 1011/m2

σ rms roughness 0.115 �m
R Asperity radius of

curvature
9.299 �m

Fractal D Fractal dimension 1.597
G Fractal roughness

parameter
2.86 × 10−10 m

Material properties E′ Elastic modulus 200 GPa
Sy Yield strength 0.2 GPa
ν Poisson’s ratio 0.32

be obtained in an industrial setting. The same material properties
are used for all simulations and are given in Table 1.

An FFT of the surface profile is shown in Fig. 4b. At the higher
frequencies, the computed amplitudes, being much less than an
angstrom are sufficiently small so as to lose some physical mean-
ing. Most of the real surface data are reflected at frequency levels
corresponding to i less than 100. Now the profile’s autocorrela-
tion function produces the surface’s power density function. A
power density function was fit to the surface data to find the frac-
tal parameters D and G using the methods outlined in Majumdar
and Tien [10]. However, based on the range of frequencies con-
sidered when fitting the PDF, the predicted values of D and G
can vary significantly for the same surface. This is especially
true of a real surface, which may not be a true fractal surface.
For this reason, the results of the various models are also com-
pared using a generated fractal surface in a later section. The
methods derived by McCool [8] are used to extract the statis-
tical parameters (i.e., σ, η, R) from the profile by finding the
spectral moments of the surface. The resulting fractal and statis-
tical parameters used in this work are given in Table 1. It is noted
here that the statistical parameters are dependent upon the sam-
pling resolution. For example, if we re-compute the statistical
parameters based on a resolution of 0.4 �m, then the resulting
values for σ, η, R are 0.0815 �m, 1.20 × 1011/m2 and 25.0 �m,
respectively. Comparing with the values in Table 1, we see that
both R and η are quite sensitive to the choice of resolution. Such a
dependency is expected, as it has been shown previously that the
choice of sampling resolution can bias the statistical parameters
[9–11].

To further emphasize how the current model works, the con-
tact area predicted by the model as a function of the frequency
level iteration for the case of F/(AnE′) = 7.94 × 10−5 is shown in
Fig. 5. Segments where the values decrease indicate frequency
levels that cause reduction in the real area of contact relative to
the previous level. It is clear that a few lower frequency ranges
dominate the calculations and the higher frequencies seem to
have very little effect on the predicted contact area. For a wide
range of loads it also appears that these same lower frequency
ranges dictate the results. This is in contrast to in the predictions
of Ciavarella et al. [25], which suggest that the contact area tends
toward zero as higher and higher frequencies are included.

Fig. 5. Decrease in predicted contact area as a function of considered frequency
levels.

The results produced by the current multi-scale model using
Hertzian or JGH analysis (Eqs. (9) and (10)) at the asperi-
ties (both of which are purely elastic models) are shown in
Fig. 6 alongside the classic GW model, which assumes a nor-
mal distribution of asperity heights. The current model predicts
a larger non-dimensional contact area as a function of the non-
dimensional surface load than the GW model. In addition, the
current model using Eqs. (9) and (10) predicts a slightly larger
contact area than the current model using Hertzian contact. The
GW curve reflects a near linear relationship between area and
load, with a slope of 0.969 in the log–log domain. Both appli-
cations of the current multi-scale model show almost perfect
linearity with slopes of 1.00 in the log–log domain. Note that a
slope of unity reflects a direct proportionality between load and
area.

Fig. 7 shows the results for the various elasto-plastic contact
models described above, including the current framework using
the Jackson and Green formulation (identified as “JG”) [7] and

Fig. 6. Comparison of elastic rough surface contact models.
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Fig. 7. Comparison of elasto-plastic surface contact models.

also, the current framework using a combination of Hertz con-
tact [38] for when the asperity is deforming elastically and the
truncation model [15] when the asperity is deforming elasto-
plastically (identified by “Trunc.”). Also shown are results for
the Majumdar and Bhushan (MB) fractal model [14], and the
GW statistical contact model using the JG formulation. Inter-
estingly, both applications of the current model predict surface
contact behavior that locates between the MB fractal model and
the statistical model.

In Fig. 7, the slope of the curve corresponding to the current
framework, applying either the JG or truncation asperity defor-
mation models is nearly unity as was the case in Fig. 6, where
only elastic deformation was considered. So, again we find pro-
portionality between area and load. This proportionality has an
interesting physical interpretation: The average contact pressure
based on the real contact area is given by

p̄cont = F/Ar (33)

which can be written as:

p̄cont = [(F/AnE
′)/(Ar/An)]E′ (34)

The term in brackets gives the ratio of the normalized load to the
normalized real area of contact. When the real area of contact
is proportional to the load, this ratio is a constant, suggesting
that there is a characteristic asperity contact pressure that is
independent of the load. For example, in Fig. 6, the Hertz case
corresponds to a characteristic contact pressure of 0.00255 × E′.
Similar considerations apply when the multi-scale model incor-
porates elastic–plastic contact as in Fig. 7. Therefore, the multi-
scale model suggests that the mean contact pressure is dictated
by the details of the surface topography and the elastic constants
and yield strength, as opposed to the external load. Increasing
the load serves to bring more asperities into contact, but does not
change the load supported per contact area. It is left to a future
study to explore how the specifics of the surface topography
influence the characteristic pressure.

Fig. 8. Comparison of current and statistical models for various horizontal res-
olutions (�x).

Predictions using several horizontal resolutions (�x) are dis-
played in Fig. 8 to illustrate the insensitivity of the current model
to the choice of sampling resolution (�x)—in contrast to the
GW statistical type models. As observed, the predictions of the
current model show only a minute change when the sampling
resolution is increased over two orders of magnitude from the
reference value of 0.2 �m (which was used in Fig. 7) By using
a larger �x, higher frequencies are effectively neglected, but
as shown in Fig. 5 and discussed in Section 2.3, the current
model does not appear to be influenced by the higher frequen-
cies. The results with the current model are in drastic contrast to
the GW statistical type models, which are significantly affected
by �x.

The fractal parameters, G and D are obtained through a fit
of the power density spectrum. Because the fit is not perfect,
the fractal characterizations are an approximation of the surface
profile. As a result, the values of G and D are largely depen-
dent on the frequency range used to calculate them for surfaces
that are not true fractals. In order to apply the current model
to a true fractal (and thereby make a fairer comparison with a
fractal model) a true fractal surface is generated using the equa-
tions given by Majumdar and Bhushan [14] at a resolution of
1.0 �m, using the fractal parameter values given in Table 1. The
current multi-scale model is then applied to the generated frac-
tal surface and compared to the predictions of the MB fractal
model. To compare both of these predictions to those of the GW
model, McCool’s methods were used to extract the GW param-
eters from the fractal surface. The highest resolution available
from the surface data (1.0 �m) was used to derive the surface
parameters from the spectral moments The results are shown in
Fig. 9 for the elasto-plastic fractal model (MB), statistical model
and current model. The fractal results in Figs. 7 and 9 are iden-
tical because the same fractal parameters are used. The results
for the current model are relatively unchanged from the previous
results (Fig. 7), while the statistical model curve has translated
upward significantly and now intersects with the fractal model
curve (although the slopes are quite different).
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Fig. 9. Comparison of elastoplastic contact models derived from generated frac-
tal surface using fractal parameters in Table 1.

4. Conclusions

This work examined an iterative multi-scale framework
for modeling contact between rough surfaces, which uses the
Fourier series coefficients resulting from a FFT of the surfaces to
characterize the surface geometry at multiple scales. This model
attempts to capture multi-scale characteristics not considered in
the Greenwood and Williamson model [1] while providing a
more accurate account of asperity deformation than found in the
Majumdar and Bhushan [14] fractal model. Additionally, the
current model is able to consider multiple scales without being
restricted to fractal surfaces. The multi-scale framework allows
for the introduction of most any elastic, elasto-plastic or fully
plastic asperity deformation model.

The multi-scale model was applied to a sample surface pro-
file. Several conclusions can be made as a result of the calcula-
tions:

(1) Only the lower frequencies impact the real area of contact.
(2) The real area of contact is proportional to the load for both

elastic and elasto-plastic contact.
(3) The mean asperity contact pressure is independent of the

load over a wide range loads.
(4) The results of the multi-scale model are insensitive to the

sampling resolution.

The limitations of the presented model need to also be men-
tioned. Probably the most significant weakness is that the model
assumes that all asperities at a given frequency behave identi-
cally in terms of deformation, load support, etc. Thus there is
no provision for the fact that asperities of a given wavelength
may reside at different heights. Also, if a single asperity contact
model is used, interaction between the laterally spaced asperities
is not considered. This shortcoming, however, is overcome by
using a sinusoidal contact model as demonstrated in the current
work.
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