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ABSTRACT  

 

Applications of camera vision, such as lane departure 

warning systems, are limited by the quality of the frame 

image and the information contained within each frame.  

One common feature extraction technique in image 

processing is the use of the Hough transform, which can 

be used to extract lines from an image.  The detected lane 

marking lines are used in the interpolation of a 2
nd

 order 

polynomial to estimate the shape of the lane marking’s 

curve in the image.  However, blurry frames, additional 

road markings on the ground, and adverse weather 

conditions can ruin detection of these valid lane lines.  

 

To eliminate erroneous lines, a technique has been 

employed which bounds the previously detected 2
nd

 order 

polynomial with two other polynomials that are 

equidistant from the original polynomial.  These bounding 

curves employ similar characteristics as the original 

curve; therefore, the valid lane marking should be 

detected within the bounded area given smooth transitions 

between each frame.  The effects of erroneous lines 

within this bounded area can be reduced by employing a 

Kalman filter on the coefficients of the 2
nd

 order 

polynomial.  The filter also allows for smooth transitions 

between curved and straight roads. The measurement of 

the position within the lane is carried out by determining 

the number of pixels from the center of the image and the 

estimated lane marking. This measurement value can then 

be converted to its real world equivalent and used to 

estimate the position of the vehicle within the lane. 

 

This technique is verified by comparing lateral distance 

measurements from RTK GPS measurements and the 

measurements from a camera.  Results will show that this 

method performs well on straight roads but fails to 

perform well on curves. 

 

INTRODUCTION  

 

The force of two cars colliding head on is much greater 

than that of a car hitting a stationary object. When two 

cars collide in this manner due to a lane departure, this 

additional force is catastrophic on the car and on the 

occupants within.  Lane departures account for nearly 

50% of all fatalities on the road [16].  With systems such 

as the technique presented in this paper in place to reduce 

lane departures, fatalities in vehicular collisions may 

significantly decrease. 

 

Camera vision has already been implemented in lane 

departure warning (LDW) systems in commercial 

vehicles.  These systems detect when the vehicle has left a 

lane and emit a warning for the driver.  One such system, 

by Lee and others [12], incorporates perception-net to 

determine the lateral offset and time to lane crossing 

(TLC), which warns the driver when a lane departure is or 

may soon take place.  A fuzzy evolutionary algorithm was 

used by Kim and Oh [10] to determine the lateral offset 



and TLC using a selected hazard level for lane departure 

warning.  Another LDW system, by Jung and Kelber [8], 

used a linear-parabolic model to create a lane departure 

warning system using lateral offset based on the near field 

and far field.  For the near field close to the camera’s 

position in a forward looking camera, a linear function 

was used to capture the straight appearance of the road 

close to the car.  For the far field, a parabolic model was 

used to model the curves of the road ahead.  In their 

following paper [7], Jung and Kelber used their system 

with the linear-parabolic model to compute the lateral 

offset without camera parameters.  Hsiao and others [6] 

avoided the use of the Hough transform and instead relied 

on peak and edge finding, edge connection, line-segment 

combination, and lane boundary selection for their LDW 

system.  In [5], optical flow was used to achieve lane 

recognition under adverse weather conditions.  Feng [4] 

used an improved Hough transform to obtain the road 

edge in a binary image, followed by establishment of an 

area of interest based on the prediction result of a Kalman 

filter.  In [14], an extended Kalman filter was used to 

model the lane markings to search within a specified area 

in the image so that far lane boundaries are searched with 

a smaller area than closer lane boundaries, thus reducing 

the impact of noise. 

 

Three dimensional road modeling has become a popular 

method to reduce the errors associated with lane detection 

in image space.  The clothoid is an often used model for 

three-dimensional reconstruction due to its linearly 

changing arc length.  Dickmanns and Mysliwetz [3] used 

the clothoid parameters to recognize horizontal and 

vertical road parameters in a recursive manner.  Khosla 

[9] used two contiguous clothoid segments with different 

geometries but with continuous curvature across each 

clothoid, which gives a closed form parametric expression 

for the model.  However, Swartz [13] argues that the 

clothoid model for the road is unsuitable for sensor fusion 

due to the “sloshing” affect of the estimated values 

between the clothoid parameters. 

 

Knowledge of the lane geometry in front of the vehicle 

gives information to the driver or autonomous system, 

such as the distance within the lane, whether or not a turn 

is located ahead, the road structure ahead for mapping, or 

map matching to identify the current location of the 

vehicle.  However, camera systems have limitations due 

to non ideal visual conditions.  Additional road markings 

on the ground, such as that of a crosswalk, turn arrow, or 

merged lane, can introduce rogue lines into the image and 

shift the estimated lines beyond that of the actual lane 

marking.  Phantom lines detected from the Hough 

transform that are not readily apparent in the image itself 

can arise unexpectedly. Dashed lane markings of the 

center road can reduce its detection rate and lead to gaps 

in the measurement data for that lane marking.  Sensor 

fusion with other lane detection systems, such as Light 

Detection and Ranging (LiDAR) [2], can ensure a more 

robust system [1].   

 

 
Figure 1: Overview of algorithm 

 

The algorithm presented in this paper employs several of 

the ideas found in [3] through [14] but avoids the clothoid 

model from [3], [9], and [13].  Two polynomial functions 

are used in the models for the left and right lanes in image 

space after extraction with the Hough transform.  

Bounding polynomials are used to select valid candidate 

lines for the model.  With the polynomial model, the 

distance at a particular point in the road ahead can be used 

to estimate the position within the lane based on the 

equations of the estimated lane.  A summary of the 

algorithm presented in this paper is shown in Fig. 1.   

 

The bounding polynomials reduce the effect of erroneous 

lines at far distances from the current estimated line. Due 

to the necessity of nearby line detections, the detected 

lines from the lane markings must not be far from the last 

estimated lane curve in the image. Assuming smooth 

driving and a relatively high frame rate, the distance 

between the last estimated lane curve and the new 

estimated lane curve should not increase significantly. 

This technique also allows for the detection of road shape 

in the lane ahead, which can be useful for navigation of 

autonomous vehicles, anticipation of future driver actions, 

or verification of the location of the vehicle with maps.   

This technique does not currently extend beyond image 

space and requires no other information other than the 

information from the frame image and the calibration for 

the lateral distance measurement.   

 

LANE LINE EXTRACTION 

 

Information from the road is limited to a grayscale image.  

Each pixel in a grayscale image has a value ranging from 

0 (black) to 255 (white).  Video processing on this image 

results in the extraction of the shape of the lane ahead.  To 

determine the road shape, the lines from the lanes must be 

extracted.  Thresholding is used on the grayscale image to 

extract the features in the image that are the color image 

equivalent of yellow and white, which are common colors 

of road markings for lanes.  This process eliminates 

unwanted features in the image, such as grass, asphalt 



irregularities, and objects on the side of the road.  Then, 

Canny edge detection reveals the edges of the extracted 

features in the image, such as the sides of the lane.  The 

Hough transform can then be used to extract lines from 

images, as seen in Fig. 2.  One advantage to using the 

Hough transform is that the extracted line can be 

discontinuous.  Objects on the side of the road, such as 

dead animals or tree branches, and the occasional break in 

a road marking can still result in a detected line.  Once a 

line has been extracted, its slope and location on the 

image can be used to determine whether it is a left lane 

marking, right lane marking, or not a lane marking at all. 

 

 
Figure 2: Lane lines extracted from the Hough transform  

 

LANE DETERMINATION  

 

Each lane in the image captured from the camera is 

modeled as a 2
nd

 order polynomial.  To determine the 

coefficients of the polynomial, least squares interpolation, 

shown in Eqs. (1)-(4), is used to estimate the shape of the 

lane in the image.   

 

Each line from the Hough transform consists of its two 

endpoints and midpoint, shown in Fig. 3.  With these 

three points, a single line can be used for the interpolation 

of the left or right lane marking. 

 

 
Figure 3: Endpoints and midpoints of the extracted lines 

 

Additional lines for each lane marking create an over-

determined system with multiple points for each lane 

marking, as seen in Fig. 3, and the interpolation gives the 

least squares estimate of all available data points, shown 

in Fig. 4. 

 

 
Figure 4: Least squares interpolated polynomial 

 

 Least squares interpolation consists of: 
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Since Canny edge detection extracts both sides of a single 

lane marking, the least squares polynomial interpolation 

results in the estimated lane at a position directly down 

the center of the lane, as seen in Fig. 5.  This position at 

the center of the lane reduces error in the estimation of the 

lane, since even divergences from the center of the lane 

marking can still result in estimation within the lane 

marking itself. 

 

 
Figure 5: Lane marking diagram of interpolation result 

with two detected edges of the lane 

 

LANE POSITION ESTIMATION  

 

Erroneous lane lines extracted from the Hough transform 

can result in an erroneous model of the lane shape in the 

image.  These lines can be brought about by objects on 



the side of the road or asphalt color discoloration.  To 

reduce the impact of these erroneous lines, a three state 

Kalman filter is used to slow the convergence of the lane 

marking model on the current frame's measured lane.  The 

coefficients of the 2
nd

 order polynomial model make up 

the states of the filter.  Since the erroneous lines are 

generally only present for a limited number of frames, 

sudden swings in the estimated model of the lane marking 

due to these erroneous lines are reduced.  Lines that are 

extracted from the actual lane stay consistent over the 

course of many frames, which allows the coefficients to 

converge on the actual position of the lane. 

 

 
Figure 6: Erroneous left lines from the Hough transform 

and the resulting interpolated polynomial 

 

Tree lines, other road markings, and lightly colored 

asphalt are a few of the sources of the erroneous lines, as 

seen in Fig. 6.  Preferably, these sources of erroneous 

lines would be ignored completely.  Assuming smooth 

lane markings, the estimated lane position for the current 

frame should be close to the previous frame's lane 

position, as shown in Fig. 7.  As such, the lines from the 

Hough transform that are close to the previous frame's 

estimated lane marking are likely to be the lane marking 

of the current frame.  Polynomial curves which act as 

bounds for valid lane lines can ignore erroneous lines.  

These curves, set to a certain distance from both sides of 

the last estimated lane marking, should yield lane lines 

that are close to the previous frame's estimated lane.  This 

method allows the model to track the transition between 

straight roadways and curved roads.   

 

 
Figure 7: Interpolated polynomial with bounds for the 

right lane marking 

 

Each polynomial bounding curve consists of three points 

found by sampling three selected points, xest and yest, on 

the estimated lane curve and by employing Eqs. (6) 

through (9) to determine the three new points on either the 

left bounding curve or right bounding curve for each lane 

marking.  For the bounding polynomial to the right of the 

estimated lane curve, the following equations, Eqs. (6) 

and (7), are used: 
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For the bounding polynomial to the left of the estimated 

lane curve, the equations, Eqs. (8) and (9), are as follows: 
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These equations use the slope at each specified xest and 

yest to determine the angle at which the bounding 

polynomial curve will be perpendicular to the estimated 

lane curve point.  A new point is then found at this angle 

at a distance, r, away from the estimated lane curve.  With 

three new points, polynomial interpolation can once again 

be employed to determine the coefficients of either the 

left or right bounding curves.  The erroneous lines at a far 

distance from the last estimated lane curve are ignored, as 

shown in Fig. 8. 

 

 
Figure 8: Left lane marking estimation with bounding 

polynomials 

 

LATERAL DISTANCE ESTIMATION 

 

Assuming the camera is positioned at the center axis of 

the vehicle, the distance from the center of the vehicle to 

the estimated lane curve can be determined.  This distance 

in pixels can be converted to real distances with the 

conversion factor n.  As seen in Fig. 9, the lane width is 

3.3274 meters.  With the knowledge of the number of 

pixels, 204 pixels, in the image that make up the width of 

the lane, the conversion factor can be determined using 

Eq. (10): 
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where l = actual distance, p = number of pixels, and n = 

conversion factor. 

 

Distance from the center of the vehicle, xcam, to the left 

and right lanes can be achieved with the general form of 

the quadratic formula in Eqs. (11) and (12).   
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where a, b, and c are the coefficients of the estimated 

polynomial model, y is the row in the image at which the 

measurement should take place, n is the conversion factor, 

and xcam is the center of the image. 

 

 

Lane Width =3.3274m 

 
Figure 9: Conversion factor calibration 

 

With this calibration method, the assumption is made that 

every pixel on the image represents the same width in 

actual distances.  Also, the current measurement is 

actually measuring the location of the car with respect to 

the road ahead of it rather than its current location.  Due 

to delay in the camera and computation time, the affect of 

the lateral measurement in front of the camera might be 

reduced. 

 

EXPERIMENTAL RESULTS 

 

Truth data was acquired with differential GPS 

measurements at the National Center for Asphalt 

Technology (NCAT) Test Track of Auburn University 

[1].  Lane markings when present on the track were 

surveyed using differential GPS on the outer lane marking 

and middle lane marking.  These lane markings were 

nonexistent in some areas, faint in others, and diverged 

from their normal path when the road branched to other 

parts of the NCAT track.  Also, the asphalt on the track 

differed at various intervals due to other work being done 

at the NCAT track.  As such, the track was not an ideal 

track for lane detection.  Once the survey of the track was 

complete, the car was driven around the track to 

simultaneously acquire RTK GPS coordinates and frame 

grabs from the camera.  In this test run, a Hyundai Sonata 

was equipped with a forward-looking camera that was 

mounted on a conventional roof rack.  The conversion 

factor, n, can be found in Eq. (10). 

 

Fig. 10 shows the lateral distance measurement from the 

GPS measurements and the camera measurements.  The 

two areas where the two measurements diverge are the 

turns, which are problematic for this algorithm.  

Additionally, several regions are shown where no camera 

measurement was reported.  These areas were either 

regions on the track where no lane was actually present or 

where the lane was not detected by the camera.  No lane 

marking was present on the track in some areas due to 

wear from use or from diverging lines from branching 

roads to other parts of the NCAT facility.  Additionally, 

the dashed middle lane was not detected consistently, so 

an assumption about the width of the lane was necessary 

to determine the lateral distance from the center of the 

lane required by the RTK truth measurements.   
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Figure 10: Lateral distance from center over entire run for 

camera (starred blue) and GPS (solid red) 
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Figure 11: Error for entire run 

 

Fig. 12 shows the lateral distance measured for camera 

and GPS where the frames for a lane that were undetected 

by the camera were ignored.  Fig. 13 shows the error 

between the GPS and camera measurements.  The 

standard deviation of this error between these two 



measurements was 0.3037 meters, and the average error 

was 0.20068 meters. 
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Figure 12: Lateral distance measured for camera (starred 

blue) and GPS (solid red) with ignored lanes 
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Figure 13: Error with undetected lane frames ignored 

 

Since the accuracy of the camera measurements on the 

turns was low, a comparison between the camera and GPS 

measurements on the straight paths is important, shown in 

Fig. 14.  The standard deviation of the error, shown in 

Fig. 15, on the straight road was .0586 meters, and the 

average error was 0.0461 meters. 
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Figure 14: Lateral distance measured for straight roads for 

camera (starred blue) and GPS (solid red) 
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Figure 15: Error for straight roads with ignored frames 

with non-detected lanes 

As seen in Fig. 15, this method performs well on the 

straight paths with solid lines.  On curves, however, the 

method fails to return a measurement accurate enough for 

navigation within the lane.  This failure could be due to 

the bank in the turns, the inaccurate assumption for the 

width of the lane in turns, or a failure to return a proper 

distance measurement of the present location of the lane 

since the camera is making its measurements on the road 

ahead.  Note that the GPS measurements become noisier 

in the turns as well.  Also, the dashed line at the center of 

the road failed to be detected consistently and could not 

be used as a measurement. 

 

CONCLUSIONS AND FUTURE WORK 

 

This paper presented a technique for extraction of lane 

shape in image space which uses bounding polynomials to 

ignore extraneous lines from line extraction of the Hough 

transform from other objects in the image.  Additionally, 

a Kalman filter is employed on the coefficients of the 

polynomial lane model to reduce the effect of erroneous 

lines that are included within the region of the bounding 

polynomials.  Experimental results show that this method 

performs well on straight roads, but in curves, the error is 

significantly higher.  This error can be attributed to 

several factors.  The assumption that the conversion factor 

is the same across all pixels in the image may fail in turns 

and on hills and troughs on the road.  Measurement on the 

road ahead of the vehicle rather than the current location 

of the vehicle could lead to errors in measurement, 

especially on curves.  Inaccurate assumptions of the lane 

width, such as where the lane widened as the road 

branched away from the track, could have also led to 

differences between the camera and GPS measurements.  

Finally, successful detection of the middle lane marking 

could have led to a more reliable lateral measurement. 

 

Despite the knowledge of the road shape ahead of the 

vehicle, most of this information was not used in the 

determination of the lateral distance.  Whether or not the 

road is in a curve can be determined using the curvature 

of the road shape, and the algorithm can be modified 

during curves to reduce the current curved road error.  

Also, 3-D reconstruction, such as that found in [3], [9], 

and [13], of the road in front of the vehicle can be used to 

help establish the location of the vehicle in curves by 

mapping the curve based on the road geometry. 
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