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ABSTRACT  

 

This paper studies a technique for combining vision and 

inertial measurement unit (IMU) data to increase the 

reliability of lane departure warning systems.  In this 

technique, 2
nd

 order polynomials are used to model the 

likelihood area of the location of the lane marking 

position in the image as well as the lane itself.  An IMU is 

used to predict the drift of these polynomials and the 

estimated lane marking when the lane markings can not 

be detected in the image.  Subsequent frames where the 

lane marking is present results in faster convergence of 

the model on the lane marking due to a reduced number 

of detected erroneous lines. 

 

A technique to reduce the affect of untracked lane 

markings has been employed which bounds the 

previously detected 2nd order polynomial with two other 

polynomials within which lies the likelihood region of the 

next frame’s lane marking.  These bounds employ similar 

characteristics as the original line; therefore, the lane 

marking should be detected within the bounded area given 

smooth transitions between each frame. 

  

An inertial measurement unit can provide accelerations 

and rotation rates of a vehicle.  Using an extended 

Kalman filter, information from the IMU can be blended 

with the last known coefficients of the estimated lane 

marking to approximate the lane marking coefficients 

until the lane is detected.  A measurement of the position 

within the lane can be carried out by determining the 

number of pixels from the center of the image and the 

estimated lane marking.  This measurement value can 

then be converted to its real world equivalent and used to 

estimate the position of the vehicle within the lane.  

 

INTRODUCTION  

 

Many navigation systems combine an IMU and GPS in 

order to determine the location of a vehicle.  The IMU 

provides high data rates at the cost of integration drift 

while GPS provides more accurate measurements at 

slower rates.  Similarly, cameras provide passive, accurate 

measurements at lower rates.  At low velocities, cameras 

can track very accurately, but higher speeds create motion 

blur and limitations of camera sampling rates [8].  Inertial 

sensors, however, have large measurement uncertainty at 

slow motion and lower relative uncertainty at high 

velocities [8].  IMU’s and cameras, then, are 

complementary, and each possesses their own respective 

strengths. 

 

A common strategy for combining inertial and visual 

sensors is the structure from motion (SfM) problem, 

which estimates the 3-D position of points in the scene 

with respect to a fixed coordinate frame and the pose of 

the camera [8].  Features within the image are tracked 

from frame to frame, and the change in camera pose and 



world coordinates for each feature is estimated.  These 

features can be either points [28] or lines [24].  Ansar [2] 

presented a general framework for a linear solution to the 

pose estimation problem with points and lines.  For 3-D 

reconstruction, the range to each point must be known, 

since slow moving objects nearby can appear to move at 

the same speed as far away fast moving objects.  The 

most common approach to this problem is the use of 

stereo vision, where the differences in each image can be 

used to determine the distance to points in the image.  For 

a single camera, 3D motion estimation can be determined 

over the course of multiple frames [6].  One limitation of 

an inertial/vision system using this technique is the need 

to track features across multiple frames.  If a feature is not 

present within successive images, tracking fails and the 

system cannot estimate ego motion.  As such, most 

inertial/vision systems have a limit with respect to motion 

at which they can operate.  However, most applications 

involving inertial and vision systems, such as that of a 

mobile robot or robotic arm, do not approach this limit 

under normal conditions. 

 

In this paper, a camera and IMU is integrated to more 

robustly determine location within a lane than vision 

alone.  Many navigation systems desire lane level 

positioning in difficult environments.  Without 

differential GPS, lane level accuracy is difficult to 

achieve, especially in areas where satellites are blocked.  

Also, lane departures account for nearly 50% of all 

fatalities on the road.  The force of two cars colliding 

head on is much greater than that of a car hitting a 

stationary object.  When two cars collide in this manner 

due to a lane departure, this additional force is 

catastrophic on the car and on the occupants within.  

Camera-based detection of road markings is already a 

proven method of lane localization and can be found in 

commercial vehicles today.  However, environments with 

many objects, such as urban environments, or even certain 

lighting conditions can cause problems for camera 

systems when detecting road markings.  An IMU can 

provide information on the movement of the vehicle when 

lane markings are not detected.   

 

One common feature extraction technique in lane 

departure warning systems is the use of the Hough 

transform, which extracts lines from an image.  The 

detected lane marking lines can be used to interpolate a 

2nd order polynomial to estimate the shape of the lane 

marking curve in the image.  However, vision-only lane 

departure warning systems are limited by the quality of 

the frame image and the information contained within 

each frame.  Blurry frames, adverse weather conditions, 

and shadows can ruin detection of lines.  Additional road 

markings on the ground, such as that of a crosswalk, turn 

arrow, or merged lane, can introduce rogue lines into the 

image and shift the estimated lines beyond that of the 

actual lane markings.  Dashed lane markings of the center 

road can reduce its detection rate and lead to gaps in the 

lane marking model for that frame.  Other vehicles on the 

road, such as those found in an urban environment, and 

faint road markings can interfere with tracked lane 

markings.  A Kalman filter whose states are the 

coefficients of the polynomial for the estimated lane 

marking can reduce the impact of erroneous detected lane 

marking lines; however, lane tracking is lost if the lane 

itself is unseen in the image or if an erroneous object 

(such as the edge of a car) is tracked as a lane.  Since the 

2
nd

 order polynomial is tracked from frame to frame rather 

than points or lines, lower resolution images can be 

employed with this system.  Thus, the constant presence 

of lane markings in road images can be exploited in order 

to alleviate the need for points or lines that exist across 

multiple frames.  As such, the speed at which the car 

moves forward is not a limitation of the system.  The 

lateral velocity, however, must not be large enough to 

cause the lane model to leave the bounded area.  More 

information about the vision system can be found in [25]. 

 

 
Figure 1: Overview of system 

 

In this system shown in Fig. 1, the distance measured 

from the camera algorithm is used to update the lateral 

distance detected using the lateral accelerations from the 

IMU.  The estimated distance the car has moved is then 

used to shift the lane model within the image to account 

for this change.  Thus the lane model can be estimated 

even in situations where the lane is not detected or 

detected infrequently, such as that for dashed lane 

markings.  

 

CAMERA LANE MEASUREMENT 

 

The camera takes images of the road ahead and is 

currently mounted on the roof of the vehicle.  The pinhole 

camera model is assumed; therefore, no skew or lens 

distortion is considered present in the images.  Each lane 

marking is modeled using a 2
nd

 order polynomial – the 

coefficients of which are used for measurements of the 

extended Kalman filter. 

 

To determine the coefficients for the left and right lane 

markings, each image is thresholded after having been 



converted to a grayscale image and region of interest 

selected.  This thresholding is used to eliminate the 

undesired features of the image.  The “blobs” that remain 

within the image are indicative of the lighter pixels within 

the image, such as white or yellow lane markings.  

However, other, lighter objects within the image, such as 

road barriers, are present as blobs within the thresholded 

image as well.  The objective is to find the blobs of the 

lane markings and ignore the blobs of the other features in 

the image.  Edge detection converts these blobs into their 

defined edges. 

 

 
Figure 2: Image on highway following edge detection 

 

The Hough transform is a common technique for 

extracting lines within an image.  Using the probabilistic 

Hough transform, the minimum line width and maximum 

gap between line segments can be set to further refine 

which lines are likely to be lane marking lines.  Each of 

the detected lines is classified as left or right lane marking 

lines using their slope.  

 

 
Figure 3: Road model and bounding curves on straight 

road (green – detected estimated road marking) 

 

In typical road driving conditions, the location of the lane 

markings within the image will generally not change 

often.  Due to this, the location of the lane marking in the 

last image should be relatively close to the location of the 

lane marking in the current image.  Polynomial bounding 

curves are used to establish the region within the image 

where the lane marking lines are likely to be located.  

These curves are constructed from samples of points on 

the last lane model using the following equations: 

 

))(sin(tan 1
estestrightbound

dx

dy
rxx    (1) 

))(cos(tan 1
estestrightbound

dx

dy
ryy    (2) 

))(sin(tan 1
estestleftbound

dx

dy
rxx    (3) 

))(cos(tan 1
estestleftbound

dx

dy
ryy    (4) 

 

where xest and yest are the x points and y points of the 

estimated lane model, r is the normal distance from the 

estimated lane model and the bounded line, and dy/dx is 

the slope at the (xest,yest) point on the estimated lane 

model.  These equations provide points on each boundary 

curve, which can then be used to approximate a 2
nd

 order 

polynomial using least squares approximation.  For each 

lane marking model, two of these boundary curves 

“bound” the last estimated lane marking and establish the 

region within the image that valid lane marking lines will 

be located.  Lines which do not lie close to the last 

estimated lane marking are then ignored. 

 

Similarly, the slope of the last estimated lane marking 

near the line in question should be similar to the current 

possible lane marking line.  Each line that is detected 

within the boundary curves is compared in slope to the 

nearby slope of the last estimated lane marking, since a 

2
nd

 order polynomial has changing slope.  This process 

eliminates erroneous lines that fully lay within the 

boundary curves. 

 

Black: Bounding Polynomials

Yellow: Previously Estimated 

Lane Marking

Blue: Desired Current Frame 

Lines

Red: Undesired Current 

Frame Lines 

r

 
Figure 4: Line Selection – Slope and Bounds 

 

Despite these two strategies for eliminating erroneous 

lines as candidates for the estimated lane line, very noisy 

images may still have erroneous lines and cause the 

estimate of the lane marking to drastically move away 

from the line.  In addition, multiple, valid line candidates 

on the lane marking create a situation where all valid lines 

should be incorporated into the solution.  A least squares 

polynomial approximation is conducted on the endpoints 

and midpoints of all candidate lines to reduce the effect of 

erroneous lines, incorporate multiple valid lines, and 

convert the model into coefficient form.  For situations 

where each side of a lane marking is detected, the least 

squares solution of the estimated polynomial will result in 

an estimate that lies within the actual lane marking within 

the image, rather than its edges.  The coefficients that 

arise from the least squares approximation are used in the 

measurement update of the coefficients. 
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where x1,x2,…,xn are x values and y1,y2,…,yn, are y values 

from each point. 

 

Once the estimation for the lane marking model is found, 

an estimate for the distance of the vehicle to the right lane 

marking is calculated.  The following equations use the 

general form of the quadratic equation to determine the 

point on the lane model polynomial with respect to any 

height within the image.   
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where a, b, and c are the coefficients of the estimated 

polynomial model, y is the row in the image at which the 

measurement should take place, n is the conversion factor, 

and xcan is the center of the image. 

 

The bottom row of pixels is chosen as the row to measure 

the distance to either lane, since it has the most resolution 

with respect to the road.  The converted distance is 

subtracted by the initial location of the vehicle (which is 

assumed to be known) in the lane and used in the 

measurement update to update the distance state. 

 

More information on the lane estimation can be found in 

[25]. 

 

KALMAN FILTER STRUCTURE 

 

The states of the filter are as follows: 
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where aL,bL,cL,aR,bR,cR are the coefficients of the 

measurement of the left and right lane models from the 

camera, y is the lateral position, y is the lateral velocity, 

x is the longitudinal velocity,   is the yaw, and by is the 

bias of the lateral acceleration.  Two assumptions are 

made about the IMU states: the yaw rate,  , has no or 

little bias, and the longitudinal acceleration, x , has a bias 

that is updated using another sensor other than the 

camera, such as a speedometer or wheel speed sensor.  

Since the method of extracting features within the image 

uses a model for the lane marking as the means of 

extracting the distance from the right lane with the 

camera, the camera cannot be used to update the state for 

longitudinal velocity with the current camera algorithm.  

The lane model has no means of tracking objects within 

the image that are parallel with the lane markings.  

Another sensor must be used, or the bias is assumed to be 

at a constant value.  The IMU used in the experimental 

results, the XBOW 440, has little bias in its gyroscopes, 

which allows for the assumption of no bias for the yaw 

rate. 

 

Measurements of the estimated lane model coefficients 

from the camera lane model determination are used to 

update the coefficient states.  Bias of the lateral 

acceleration is updated using the lateral position estimate.  

An alternate structure to the above structure ignores the 

longitudinal acceleration and yaw rate from the IMU with 

the disadvantage of having no centripetal acceleration or 

lateral velocity component from forward acceleration due 

to zero yaw. 

 

TIME UPDATE 

 

























 b

by

bx

u y

x









The time update for the Kalman filter updates the lateral 

velocity, lateral position, yaw, longitudinal velocity, and 

coefficient states.  The Runge-kutta method is used to 

update the lateral velocity, lateral position, yaw, and 

longitudinal velocity states.  The following are the 

equations of motion: 
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where u0,u1,u2 are inputs as shown in Eq. (13),   is 

assumed to have no or very little bias, and bx is assumed 

constant or updated with another sensor. 

 

The coefficient update is updated in discrete time and is 

the change in each coefficient for a horizontal shift of a 

2
nd

 order polynomial.   
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The A matrix is defined as  
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where f are the equations of motion in discrete time, x is 

the state vector, and u are the inputs to the system.  The 

state covariance matrix is updated with 
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MEASUREMENT UPDATE 

 

The measurement update receives coefficient, lateral 

distance, and longitudinal velocity measurements if a lane 

is detected.  When both lanes are detected, the H matrix is 

as follows: 
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In the case of a single lane being detected, the other lane 

states are unobservable and the H matrix is modified to 
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in the case where only the left lane is detected or 
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if only the right lane is detected.  If both lanes are not 

detected, no measurement update is conducted. 

 

EXPERIMENTAL RESULTS 

 

Experimental data was obtained from a highway scenario 

in which a single camera (a QuickCam Pro 9000) was 

mounted to the roof of a vehicle.  The video recorded for 

this run has shadows crossing the road, which creates a 

non-ideal situation for the camera due to the increased 

number of candidate lines, as seen in Fig. 5.  Additionally, 

an overpass creates a situation where both lines are not 

detected and the system runs solely from the IMU for 

several frames.  The images’ width and height are 245x70 

pixels after the region of interest was selected prior to 

processing.  The vehicle moves in a forward path within a 

single lane – no curves or lane changes were conducted.   

The right lane marking alternates between a solid lane 



marking and a dashed lane marking (when an exit is 

passed).  The left lane marking remains dashed for the 

extent of the video.  As such, measurement updates for 

the left lane marking are much less frequent than that for 

the right lane marking.  

 

Figure 5: Image frame of video 

 

The IMU used in the experiment was an XBOW 440 

automotive grade MEMS IMU.  The IMU was mounted 

in the center console of the vehicle.  Fig. 6 shows the 

lateral acceleration from the IMU as well as the estimate 

of the bias.  Around 30 seconds in the figure, the lateral 

acceleration “arches”.  This causes the estimate of the 

position and therefore the lateral position change (in 

image space) to shift.   

 

 

0 1 2 3 4 5 6 7

x 10
4

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0
Lateral Acceleration: IMU (blue), Bias(red)

Time(ms)

m
/s

2

 

 

IMU Output

Estimated Bias

 
Figure 6: Lateral Acceleration from the IMU: IMU 

Output (blue), Bias (red) 

 

Fig. 7 shows this lateral position shift.  It is the amount in 

pixels that the time update shifts the left and right models 

of the lane markings.  The arch in Fig. 6 is noticeable in 

Fig. 7 and serves as an example of what can happen if the 

bias is not estimated correctly.  Within this “arch” of Fig. 

7, the lane shifts several pixels until a new measurement 

update forces the shift back to zero. 
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Figure 7: Lateral Position Change in Image Space for 

Coefficients in the Time Update 

 

Fig. 8 shows the relationship between the estimated 

position from the updated IMU and the camera measured 

distance from the states of the estimated lane models – 

generally taken from the most updated lane model- the 

right lane model.  The camera measured distance using 

the estimated lane models show the effect of erroneous 

lines within the image in the spikes of the camera 

measured distance.  These spikes in the graph are 

situations where the model shifts away from the true lane 

marking.  Most of these errors are soon followed by 

correct lane marking models due to the polynomial 

bounds and slope filter.  Note that this distance for the 

camera measured distance was obtained by subtracting 

the distance to the lane by the initial position of the 

vehicle at the start of the run to align the plot with the 

estimated position from the lateral acceleration of the 

IMU.  Similar results are obtained with the left distance 

from the camera.    

 

 

0 1 2 3 4 5 6 7

x 10
4

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6
Estimated Position from IMU and Camera Measured Right Distance

Time(ms)

D
is

ta
n
c
e
(m

)

 

 

Estimated Position

Camera Measured Distance

 
Figure 8: Estimated Position and Camera Measured 

Distance 

 

Due to the use of real highway data, no survey was done 

for truth.  Fig. 9 shows the results of the left and right 

distance measurements, where the right and left distances 

are absolute values of the number of pixels to each 

corresponding lane marking.  Since lanes generally have 

constant width, an estimate of the accuracy of the system 



can be obtained.  From the bottom row of the image, a 

road within the image is typically 200 pixels wide.  As 

seen in Fig. 9, the sum of the left and right distances 

hover around 200 pixels with an average of 197 pixels 

and a standard deviation of 9 pixels.  Erroneous spikes, 

such as that at around 40 seconds, are due to the dashed 

left lane markings where measurements were less 

frequent. 
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Figure 9: Distance Measurements from Camera (Right – 

red, Left – blue, Sum – green) 

 

CONCLUSIONS AND FUTURE WORK 

 

This paper has presented a technique for determining 

lateral position within the lane using a low resolution 

camera and an IMU for a vehicle.  The use of a least 

squares interpolated polynomial for the lane model for 

tracking allows for a lower resolution since landmarks are 

not tracked across multiple images.  In addition, no range 

measurements are needed with the use of the near range 

row of the image for camera distance measurement and a 

known image plane to real world conversion factor.  This 

system provides a more robust system for location within 

the lane than a camera alone since lateral distance can be 

estimated even when one or both lane models are not 

detected in the image.   

 

Despite these advantages, the system presented here has 

its own drawbacks.  Longitudinal velocity cannot be 

updated using the polynomials for lane models since little 

information can be obtained from the lane marking 

models in the forward direction.  As such, the forward 

velocity measurements must come from another sensor.  

Fortunately, speedometers can provide this measurement 

and is already present in vehicles.  The bias in the lateral 

acceleration is very important in the estimate of velocity 

and position and can create problems if not estimated 

correctly.  If the mean of the lateral acceleration is not 

zero, then the position estimate will likely drift away, and 

the polynomial models of the lanes will drift off of the 

image, further preventing the bias from being correctly 

estimated.  Fortunately, this situation is easily detected 

and the lane model can be reset to search for the lane 

within the image.  The current means of determining the 

movement of the lane within the image when no lane is 

detected in the image is limited to a horizontal shift of the 

polynomial based on the lateral position change from the 

lateral acceleration of the IMU.  Certainly, lane markings 

within the image do no move in this manner when the 

vehicle shifts in the lane or changes lanes.  For a straight 

road, the lane marking extends out to the vanishing point 

on the horizon regardless of its position within the image; 

thus, large shifts without a measurement update will 

produce an erroneous lane model in all but the point of 

measurement on the lowest row of the image.  The use of 

the lowest row of the image as the measurement of 

distance is highly dependent on the assumption that no 

skew or lens distortion is present and that each pixel 

corresponds to the conversion factor.  Future work entails 

finding solutions for these problems. 
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