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ABSTRACT

This paper presents a comparison of a lidar and camera
based lane departure warning methods. The two methods are
analyzed based on their ability to determine the position of
the vehicle in the lane under various weather and lighting
scenarios. The position of the vehicle reported by the vision
systems is compared to a precision survey of the lane markings
at the National Center for Asphalt Technology (NCAT) test
track and an RTK position of the vehicle. The criteria used
to assess the performance of the two methods are based on
detection rates, position error, and position variance.

INTRODUCTION

Nearly half of all highway fatalities occur from unintended
lane departure warnings which comprise nearly 20,000 deaths
annually [1], [2]. The most basic form of a lane departure
warning system is one that will determine the lateral position
of the vehicle within the lane. Using this information a system
can be designed to alert the driver when they are expected
leave the lane of travel. These systems often distinguish
between intentional lane departures and unintentional lane
departures on whether a turn signal was used. Additionally,
when these sensors are used in conjunction with a map of the

lane markings and a GPS, greater position accuracy can be
achieved, as well as provide information to make it possible
to use GPS with a reduced number of satellites [3].

Most lane departure warning systems typically use either
a lidar (Light Detection and Ranging) or a camera to detect
the lane markings [4], [5], [6], [7]. A lidar is a laser scanner
that will typically report both a range between the lidar and
the surface the laser is contacting as well as a measure
of reflectivity of that surface. This measurement of surface
reflectivity is know as echowidth. It is this measurement that
will be used to detect the lane markings on the basis that lane
markings should have an increased reflectivity above the road
surface.

Camera-based lane departure and detection systems are well
developed, and units are available on commercial vehicles. In
literature, one LDW system, by Jung and Kelber [8], used
a linear-parabolic model to create a lane departure warning
system using lateral offset based on the near field and far
field. For the near field close to the camera’s position in a
forward looking camera, a linear function was used to capture
the straight appearance of the road close to the car, and for the
far field, a parabolic model was used to model the curves of the
road ahead. In their following paper [9], Jung and Kelber used
their system with the linear-parabolic model to compute the
lateral offset without camera parameters. In [10], optical flow
was used to achieve lane recognition under adverse weather
conditions. Feng [11] used an improved Hough transform
to obtain the road edge in a binary image, followed by
establishment of an area of interest based on the prediction
result of a Kalman filter. In [12], an extended Kalman filter was
used to model the lane markings to search within a specified
area in the image so that far lane boundaries are searched with
a smaller area than closer lane boundaries, thus reducing the
impact of noise. The approach of [13] calculated the heading
from the image based on the vanishing point of the measured
lane markings and the vanishing point of the camera. The
vanishing point of the measured lane markings is the point in
the image where the lane markings meet given a straight road.

The ability of both the camera and lidar to detect lane
markings and report the position of the vehicle in the lane
will be compared over a range of varying scenarios that were
chosen to be the most likely to be incurred while driving.
These scenarios look at performance during driving at noon,
dusk, night, and rain. A precision survey of the lane markings
at the NCAT test track is compared to an RTK GPS position
of the vehicle to provide a highly accurate measurement of
sensor performance.
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OVERVIEW OF HARDWARE

The three key sensors used in this particular research are
a laser scanner, a camera, and a GPS receiver. All aforemen-
tioned sensors were mounted on the roof of the test vehicle,
a 2007 Infiniti G35 Sedan. Specifically the lidar and camera
where mounted on the center of a roof-rack cross bar. They
were both positioned so that they were downward facing with
a pitch of approximately 22 degrees. The GPS antenna was
mounted six inches behind the lidar and camera along the
centerline of the vehicle.

Lidar

Lidars are an active sensor meaning that they actively
transmit and receive a signal (a laser in this case) to perceive
their environment whereas a camera would be a passive sensor,
merely receiving environmental information. The specific lidar
used is an Ibeo Alasca XT, which is an automotive grade multi-
layer lidar. Specifically, this lidar has 4 layers as seen in Figure
1 which have a maximum vertical divergence of 1.6°, 0.8°, -
0.8°, and -1.6°. Additionally, this lidar reports both a distance
as well as a reflectivity measurement to the contacting surface.
This research operated the lidar at a rate of 10Hz which yielded
a horizontal angular resolution of 0.25°. Additionally this lidar
is a multi-echo device, meaning that if the laser passes through
another object and contacts a second object a measurement of
both distance and reflectivity to the first and second object will
be reported. The lidar is capable of reporting these multiple
echoes for up to four objects, allowing it to be more robust to
the affects of precipitation than lidars without this technology.

Figure 1. Ibeo Lidar

Camera

The webcam, a QuickCam Pro 9000 selected for this testing,
is a low cost, consumer grade webcam. The resolution used
for lane detection was very low at 244x108 pixels, and the
frames per second were about 10Hz.

GPS

The specific GPS used in this research was a Novatel
ProPak-V3. This GPS was used in conjunction with the

Alabama Department of Transportation (ALDOT) Continu-
ously Operating Reference Stations (CORS) Network, which
provides RTK correction to obtain centimeter level accuracy
with GPS. The ALDOT CORS Network was also utilized
during the survey of the lane markings so that their precise
position could be known, thus allowing for the computation
of a highly accurate position in the lane.

LIDAR BASED LDW METHOD

An overview of the specific lidar based lane detection
algorithm is provided below. A more in-depth description of
this method can be found in [14]. Most common algorithms
for lane detection are based off of histograms, where the lane
is quantized into various small areas, the reflectivity in that
area is averaged and used to generate a histogram, and lanes
are detected by being above a certain threshold of reflectivity
[15], [16], [17]. The method analyzed here is one based off
matching a dynamic lane model to the data captured by the
lidar.

Before the lane model can be generated, the area in which
the lidar is capable of scanning is bounded. This bound is
defined as an area large enough where if the left tires are
contacting the left lane markings, the right lane marking is
still capable of being scanned. Hence, this bound guarantees
that a lane marking will be scanned if it is present as seen in
Figure 2. By reducing the search area, this bound also allows
for reduced processing time as well as potentially removing
objects that could be mistaken for lane markings. Now that
this bound has been established, the first step of generating
the lane model is scanning the area directly in front of the
vehicle as seen in Figure 2 in green. This step assumes that
the vehicle is not currently over a lane marking and is used
to determine an average reflectivity measurement of the lane.

Figure 2. Lidar Bound

This average reflectivity is used to model the road surface.
The lane markings are then modeled as a 75% increase in
reflectivity over this average reflectivity. This model is shown
in Figure 3. This lane model is then matched to the lidar data
by calculating the minimum mean square error between the
lane model and the lidar scan. During this minimum mean
square error calculation the lane model width varies from
some minimum lane width to some maximum lane width in
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increments of the horizontal resolution of the lidar. Once the
lane model is matched to the lidar data, the area where the
model lane markings and the actual lane markings should
overlap is analyzed. If the reflectivity from where the lane
markings are thought to be located are not at least 30% more
reflective than the average road surface used to generate the
lane model, the conclusion is drawn that lane markings do not
actually exist at this location with great enough certainty to
use this measurement, and it is ignored. Assuming that this
test is passed, a narrowed search band of approximately four
degrees is placed around the location of this lane marking so
that future searches have a further narrowed search. If the test
fails twice, this narrowed search area is dropped in favor of
the original larger search area.

Figure 3. Lane Model

When a lane marking is detected, the lateral position in the
lane is calculated. The position in the lane in this context is a
measurement of the distance from the vehicle to the center of
the lane, where if the vehicle is to the left of this centerline
the distance is negative, and if the vehicle is to the right of this
centerline, the distance is positive. Hence if both the left and
right lane markings have been detected, is it simply a matter
of averaging these two distances to determine the position of
the vehicle in the lane. If only one lane marking is detected,
the position of the vehicle in the lane can still be detected;
however, a lane width must be assumed. This assumed lane
width can be from either a measurement from when both
lane markings were detected or from an ideal lane width.
In this case the unknown measurement between the vehicle
and the lane markings is calculated by subtracting the known
measurement from the lane width. The position in the lane
is then calculated as previously mentioned. Once the position
of the vehicle in the lane has been calculated, the result is
filtered using a single state Kalman filter to simply smooth
the data, thereby mitigating any erroneous jumps in position
due to false detections.

CAMERA-BASED LANE SYSTEM

The camera-based lane detection system detects the lane
markings within the image, creates a measurement for the 2nd

order polynomial model for the lane markings, and determines
the heading and lateral distance to the lane marking. A linear
Kalman filter estimates the coefficients of the polynomial
model to reduce the impact of erroneous lane model mea-
surements. The lane marking detection procedure can be seen
in Figure 4, and much of the algorithm can be found in [7].

Figure 4. Block Diagram of Camera System

Image processing

Following calibration of the camera and image correction in
order to ensure the assumption of no skew and lens distortion
in the pinhole camera model, a histogram-based thresholding
procedure was conducted to eliminate unwanted features from
the image and emphasize desired features. The threshold is
chosen using the mean and standard deviation of the image
where T = threshold, µ = mean, K = chosen noise value, and
σ = standard deviation of image.

T = µ+Kσ (1)

A histogram of the image provides a basis for the determi-
nation of the thresholding needed to extract the lane markings
from the image. Brighter colors, such as white and yellow,
are typically on the higher end of an image’s histogram. As
such, extraction of the lane markings from the image can
be achieved by choosing a threshold which is close to the
upper end of the grayscale range. However, the grayscale value
which constitutes the upper end of the grayscale range can
change due to varying environments. For example, Figure 5
shows the thresholded image for a constant threshold of 210 (a
good threshold for day environments) in a dark environment
and the thresholded image for a dynamically chosen threshold
based off of the histogram of the image. The lane markings
are clearly visible in the dynamically thresholded image.

Constant Threshold (T=210) Dynamically Thresholded Image

Figure 5. Image for Various Thresholds
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After thresholding, Canny edge detection and the Hough
transform are employed to extract lines from the image. The
parameters for the Hough transform were chosen such that
lines were fairly long and breaks in the lines were removed.

Lane model determination

Two additional criteria are needed to reduce the number of
non-lane marking lines extracted from the Hough transform.
Lines from the Hough transform are chosen such that they lie
in close proximity (in the image space sense) to the current
polynomial model as well as having a slope which is close to
the slope at the nearest point on the current polynomial model
curve. Figure 6 shows the lines which pass these two criteria
(blue) and those lines that fail the criteria (red) from shadows
on the road. The chosen lines are then separated into right
and left lane marking using their slopes, and left and right
lane marking point pools are created using the endpoints and
midpoint of the lines in the respective line pools.

Figure 6. Hough Lines (red-ignored, blue-selected)

The left and right lane marking point pools both undergo
a least squares 2nd-order polynomial interpolation for a mea-
surement of the lane model. This measurement is then used
in a simple linear Kalman filter, whose measurement noise
covariance matrix determines the amount by which the esti-
mate of the model is affected by the measurement. Erroneous
measurements of the model, then, are filtered and their effect
reduced.

Heading and Lateral Distance Calculation

With the estimate of the lane markings, the heading of
the vehicle with respect to the lane markings is found by
comparing the vanishing point of the image with the vanishing
point of the lane markings. The heading is calculated using
Equation 2 where OP is the distance in pixels from the image
vanishing point to the vanishing point of the lane marking, θ
is the visual angle of the camera, and OP2 is the distance in
pixels from the image vanishing point to the edge of the image
[13]. Figure 7 shows the corresponding variables required
for the heading calculation. Due to testing being conducted
primarily on straight roads, this heading measurement has little
effect on the distance from lane center calculation, since the
heading is close to 0 for most data runs.

ψ = arctan ( ~OP
tan θ

2

~OP2

) (2)

The distance from lane center measurement is determined
using the vanishing point of the lane markings when the
vehicle is perfectly straight in the road and the locations of

Figure 7. Heading Calculation from Image

the estimated lane markings in the image. The number of
pixels from the vanishing point of the lane markings and the
estimated lane marking determines the lateral distance to the
lane marking using Equation 3 where a, b, and c are the
coefficients of the lane marking, y is the lowest row of pixels
in the image, and n is the conversion factor from pixels to real
units corresponding to the lowest row of pixels in the image.

dr = n(
−b+

√
4ay+b2−4ac

2a )

dl = n(
−b−

√
4ay+b2−4ac

2a )
(3)

This conversion factor assumes that the pinhole camera
model has no skew or lens distortion and remains constant over
the extent of the row of pixels. To determine the distance from
lane center, both lane markings provide the location of the
center of the lane in the image. When only one lane marking
is known, the lane width is assumed to be 3.658 meters, and
the lateral distance is subtracted from half of the lane width to
determine the lateral distance from the center of the lane. Any
alterations due to mounting (heading misalignment / offset
from center of vehicle) can be compensated here as well.

TESTING

The lidar and camera based methods were analyzed under
a number of different scenarios chosen to be representative
of the kinds of scenarios a driver is most likely to encounter
while driving. These include the following scenarios: driving
during noon, dusk, night, and afternoon hours, departing and
returning to the lane, and night in both low beam and high
beam as well as analyzing the effects of oncoming traffic in
either low beam or high beam.

Testing was performed at the National Center of Asphalt
Testing (NCAT) in Opelika, Alabama as seen in Figure 8.
The test track is a two lane 1.8 mile oval with eight degrees
of bank in the turns and is sectioned off with various types
of asphalt which are currently at the end of their lifetime. As
such, the track represents a challenging environment for any
lane detection algorithm due to areas of changing asphalt as
seen in Figure 9, missing or occluded lane markings as seen
in Figure 10, off ramps as seen in Figure 11, and rumble strips
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also seen in Figure 10 while still maintaining a very realistic
representation of highway driving.

Figure 8. NCAT Test Track

Dashed lane markings separate the two lanes with solid lane
markings denoting the inside and outside most lane marking. A
precision survey of each dashed lane marking and the adjacent
solid lane marking were taken for the entirety of the track.
The mid-point of each lane was then calculated by simply
finding the midpoint of the dashed lane markings survey and
the corresponding solid lane markings survey. This survey can
be seen pictorially in Figure 12 where the green lane denotes
the dashed lane survey, the red the solid lane survey, and the
blue the center of the lane. The distance between the centerline
of the lane and the position of the vehicle as determined by
RTK GPS will be compared to the output of the camera and
lidar lane detection algorithms. Where if the vehicle is to the
right of centerline it will be denoted as a positive distance and
if the vehicle is to the left of the centerline, it will be denoted
by a negative distance.

Figure 9. Various Asphalts on Test Track

The test procedure consisted of driving approximately
55mph and logging RTK GPS, lidar and camera data. The
aforementioned speed was selected to meet the soft speed limit
of the track while still maintaining a speed representative of
highway driving. Approximately 9 miles of data was gathered
from each scenario. This data was post-processed with the
turns neglected due to their sharp turns and large bank angles
being unrepresentative of typical highways. This mitigates

Figure 10. Missing Lane Markings

Figure 11. Off Ramp

any errors in our results due to super elevation and the like.
The results are analyzed on the basis of mean absolute error
(MAE), mean square error (MSE), the standard deviation of
the error (σError), and detection rates (%Det). It is worth
noting that both the dashed and solid lane markings are white,
and while the outside lane marking is not always present, the
dashed lane markings are always present.

Afternoon

The afternoon testing comprised testing between the hours
of 12:00pm and 3:00pm. This specific test was analyzed to
provide a baseline of system performance where the effects
of shadows or poor lighting would be minimized. These tests
occurred as speeds of 35, 45, and 55 MPH to assess if a
change in speed had an appreciable affect on performance
as seen in Table I. From these tests it can be inferred that
under normal circumstances the lidar has a mean average error
of approximate 0.1m. It is worth noting that the detection
rates presented here are actually slightly lower than those of
the other potentially non-ideal scenarios. This is most likely
due to this data set actually being the last scenario where
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Figure 12. Lane Survey and Midpoint Locations

data was collected and there being a small accumulation of
dust and bugs on the lidar causing a slightly reduced rate of
detection. Note this data set contains shadows crossing the
road from the trees along the road. Most of these shadows did
not significantly effect the results; however, the low lying sun
created problems similar to the dusk datasets for the afternoon
data runs for the camera.

Table I
VARIOUS SPEEDS AFTERNOON

Scenario MAE MSE σError %Det
Lidar 35 MPH 0.1070 0.0233 0.1508 88

Camera 35 MPH 0.0453 0.0031 0.0399 51
Lidar 45 MPH 0.0991 0.0179 0.1265 92

Camera 45 MPH 0.0595 0.0052 0.0533 46
Lidar 55 MPH 0.1124 0.0240 0.1482 95

Camera 55 MPH 0.0699 0.0066 0.0456 55

Noon Weaving

These tests occurred between 12:00pm and 1:00pm and
consisted of departing and returning to the lane along various
points along the track. The first test was conducted at various
speeds and consisted of driving approximately 35mph in the
turns and accelerating to 55mph in the straights. The results are
shown in Table II. The other tests were conducted at constant
speeds of 40 and 30MPH to see if an appreciable change in
performance occurred at varying speeds.

While the lidar did not show any appreciable change in
detection rates throughout the runs there is a noticeable change
in the mean absolute error in the 30 MPH. This change is due
to the large yaw angles of the vehicle encountered when the
vehicle turns in and out of the lane to avoid other vehicles.
This departure angle is often reduced a higher speeds; hence,
the other test scenarios do not reflect this error.

The accuracy of the camera results for the noon test runs
stayed fairly consistent over the course of the run. Neverthe-
less, the degraded edges of the lane marking, as seen in Figure
13, as well as the completely missing solid lane markings
affects the detection rate of the camera lane detection system.

Since the camera algorithm extracts edges from the image, the
degraded lane marking fails to produce an edge for the lane
marking. In these situations, the camera algorithm typically
detects either the other side of the lane marking that does not
have the degradation or no lane marking at all.

Figure 13. Degraded Lane Marking

Typical problems for camera lane detecting during the noon
test data that would have problems on a typical road but are not
seen in the test results involve tracking of features in the image
that are similar to the lane marking but are not actually the
desired tracked lane markings. For example the off ramp’s lane
marking branches off of the road. Since no lane marking exists
at the off ramp, the feature tracking typically tracks the off
ramp lane marking, which causes erroneous distance to lane
center and heading measurements. In addition, as the road’s
lane markings come back into view, the off ramp’s left lane
marking can provide lines along with the road’s lane marking,
resulting in a lane estimate between the off ramp lane markings
and the road’s lane markings. Figure 14 shows this effect from
the camera image.

Figure 14. Effect of off ramp on camera algorithm

As seen in Figure 14, the black lines correspond to the
polynomial boundary lines for line selection, the thick red line
represents an estimate of the lane marking location that is not
detected for the current frame, a thick green line represents an
estimate of the lane marking location that is detected for the
current frame, a thin red line represents a line from the Hough
transform that is ignored due to the two selection criteria, and a
thin blue line corresponds to a line from the Hough transform
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that passes both selection criteria. Both sides of the road’s
right lane marking is detected as well as the left edge of the
off ramp’s lane marking. These three lines (blue) result in
an estimate of the lane marking that lies between the road’s
lane marking and the off ramp’s lane marking. This effect
is magnified at lower speeds since more frames with the off
ramp present in the image results in further tracking of the
erroneous off ramp.

Throughout the data runs, the right lane marking was the
primary tracked lane marking. The dashed center lane marking
was typically detected in the noon runs as well as the more
ideal data runs, but these detections were only 1-2 frames
and were ignored. Due to the minimum line length parameter
from the Hough transform, the dashed lane markings further
down the road were not detected, and only the dashed lane
markings that were close to the vehicle were detected. A
smaller minimum Hough transform parameter would increase
the detection of the dashed lane marking at the expense of
more noisy lines in the image.

The camera algorithm was tuned to emphasize the rejection
of false positives with the drawback of increased misses. Past
testing in very noisy environments has shown that consistent
erroneous line detections from image to image can cause failed
tracking of the lane marking, which, due to the selection
criteria, results in further failed tracking once the polynomial
boundary lines fall outside of the lane markings. As such,
the emphasis on the rejection of false positives reduces catas-
trophic lane estimate failures at the cost of increased misses.

Table II
NOON WEAVING

Scenario MAE MSE σError %Det
Lidar Var 0.1202 0.0287 0.1686 100

Camera Var 0.0872 0.0123 0.0761 71
Lidar 40 MPH 0.1818 0.1108 0.3076 98

Camera 40 MPH 0.1077 0.0511 0.2246 80
Lidar 30 MPH 0.2081 0.1566 0.3649 100

Camera 30 MPH 0.0717 0.0128 0.1018 82

Dusk

Dusk testing ranged from one hour to thirty minutes before
sunset. Due to the alignment of the track with the cardinal
directions, the vehicle drove west (into the sun) on one straight
and east (away from the sun) on the opposing straight. These
tests where conducted primarily as a way of analyzing if the
either the camera or the lidar noticed any appreciable change in
performance due to either being blinded by the sun or shadows
on the roadway. The first test occurred approximately one hour
before sunset at a speed of 55mph, the second test occurred
45 minutes before sunset at 45mph, and the final test occurred
30 minutes before sunset at 30mph. The results of which can
be seen in Table III.

Throughout the tests the lidar appears to be largely unaf-
fected by either speed or changes in ambient lighting. This
result is most likely due to the fact that the lidar is an active
sensor and therefore should be largely unaffected by shadows
on the roadway. Additionally while a lidar is capable of being

washed out by the sun, an error known as dazzling, this
would most likely occur when a vehicle was cresting a hill
during dusk, such that the sun would be more incident on the
downward facing lidar. However, due to the flatness of the test
track, this situation did not occur.

The detection rate of the camera algorithm for the dusk
data was lower than that for the noon data sets. Driving at
the sun caused the camera to wash out as seen in Figure 15.
For the length of the straight track facing west, the camera
fails to detect a lane marking, as shown by the red lines (no
detection for the frame for the lane marking). The dynamic
threshold algorithm essentially pushes the threshold beyond
the actual threshold for the lane markings due to the impact
of the sun and sun rays on the histogram of the image. As
such, the threshold operation removes the lane marking, and
the algorithm has no chance of detecting the lane marking. As
the vehicle turns away from the sun and drives into the shadow
of the trees, the lane markings are immediately detected.

Figure 15. Failure to detect lane markings at dusk when facing the sun

Table III
TESTING DURING DUSK

Scenario MAE MSE σError %Det
Lidar 1hr 0.1113 0.02 0.1156 100

Camera 1hr 0.1233 0.0515 0.2269 59
Lidar 45min 0.0967 0.0176 0.1245 100

Camera 45min 0.1021 0.0592 0.2433 57
Lidar 30min 0.0889 0.0113 0.1007 100

Camera 30min 0.0657 0.0068 0.0636 55

Rain

Rain testing occurred during daylight hours and was con-
ducted as Auburn experienced remnants of a tropical storm.
The first scenario labeled “Light” was data taken just as
the rain began and was little more than a sprinkle. The
final scenario labeled “Heavy” was taken at the peak of the
downpour where it became difficult for the driver to distinguish
the lane markings. The scenario labeled “Medium” was simply
the data set that occurred between “Light” and “Heavy” as
determined simply as a function of time. The results of which
can be seen in Table IV. All tests where performed at 55MPH
with the windshield wipers engaged.

The performance of the lidar based algorithm is acceptable
in the light rain scenario and continues to produce reasonable
errors even in the medium rain scenario albeit with a sig-
nificantly reduced detection rate. However during the heavy
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downpour, the lidar is rendered virtually useless only detecting
a lane marking one-percent of the time and even then with
significant error.

Table IV
TESTING DURING RAIN

Scenario MAE MSE σError %Det
Lidar Light 0.0962 0.0146 0.1205 92

Camera Light 0.0840 0.0106 0.0733 92
Lidar Medium 0.1046 0.0177 0.1314 65

Camera Medium 0.0885 0.0101 0.0635 91
Lidar Heavy 0.7805 0.7921 0.4682 1

Camera Heavy 0.0795 0.0089 0.0670 53

Night

The night scenarios where conducted to determine the per-
formance of the algorithms in low light situations, specifically
to see if the reduced natural lighting mitigated errors caused
by shadows might affect the camera as well as to see if the
headlight provided sufficient illumination for lane detection in
both high and low beam situations. Additionally the affects
of oncoming traffic in both high beam and low beam were
analyzed. All data was collected at 55mph.

High / Low Beam: The results from driving with the test
vehicle lights in low and high beam settings are presented in
Table V. Note that in addition to stripes in the center lane, the
center lane also contained LED road reflectors. Based on these
results it would appear that the performance of the lidar based
algorithm is unaffected by having the headlights in either the
high or low beam condition or night driving in general. The
camera algorithm at night presents a more ideal scenario for
the camera algorithm since many of the features that could
cause unwanted tracking, such as billboards, guardrails, and
other objects, are easily thresholded due to the darkness in
the image. The headlights of the vehicle illuminate the road
and provide the dynamic threshold operation with a histogram
which can easily determine a valid threshold value to detect
the lane markings.

Table V
HIGH AND LOW BEAM TESTING

Scenario MAE MSE σError %Det
Lidar High Beam 0.1012 0.0168 0.1208 100

Camera High Beam 0.3154 0.1597 0.3503 86
Lidar Low Beam 0.0966 0.0159 0.1215 99

Camera Low Beam 0.1182 0.0185 0.0762 84

Oncoming Traffic in Low / High Beam: For the oncoming
traffic tests a Hyundai Santa Fe was parked in the adjacent
lane facing the vehicle to simulate oncoming traffic. For the
first round of testing the headlights of the vehicle were in the
low beam position. For the second set of testing the headlights
were in the high beam position. For both tests, the headlights
of the test vehicle were in the low beam position. Several laps
where driven at the vehicle so that an average performance of
the algorithms could be established. Figures 16 and 17 show
the results from the low and high beam test respectively. The
closing distance is defined as the distance between the test

vehicle and the static vehicle where approaching the static
vehicle constitutes a positive closing distance, and any distance
past the static vehicle constitutes a negative closing distance. In
an effort to generate legible figures, data from all the runs was
quantized into 10m section of closing distance and averaged.

Notice that the lidar based algorithm appears to determine
the distance of the vehicle in the lane with a similar level of
accuracy as the noon data runs for the majority of the exercise.
However, in Figure 17 there is a noticeable spike in the lidar
based position error just as the lidar is next to the vehicle. This
error is actually not caused by the oncoming headlights of the
vehicle, but rather by the lidar actually scanning the oncoming
vehicle and detecting the vehicle as a lane marking.

The results for the oncoming car data for the camera algo-
rithm were actually surprising given past tests with oncoming
headlights. Headlights in the image can act like the presence of
the sun, where the histogram pushes the calculated threshold
above a threshold which can detect the lane markings. In
this scenario, the oncoming vehicle had headlights which
were dimmer than a typical vehicle, and thus the impact of
the headlights was decreased. Note that the gaps in camera
detection seen at -200m closing distance in both runs is due
to an area of the track where the solid lane markings is not
present as seen in Figure 10. The lidar here reported a position
based off the dashed lane markings.
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Figure 16. Oncoming Vehicle in Low Beam

CONCLUSIONS AND FUTURE WORK

If the single worst data run from the camera and the
lidar was removed and all the results averaged, the camera
out-performs the lidar by 4cm on average; however, it also
detects a lane marking 27% less often on average. It is worth
noting that the width of standard lane marking is 15.25cm
(6 inches); therefore, with measurement differences this small
it becomes an issue of where an algorithm detects the lane
marking, be it an edge or center of the lane marking. However,
based on the results presented it is clear that the lidar based
algorithm performs poorly in moderate to heavy rain, as well
as when directly next to other vehicles. However the lidar
based algorithm appears largely unaffected by changes in
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Figure 17. Oncoming Vehicle in High Beam

lighting or speed. The standard deviations for most of the
runs are similar throughout the test scenarios. The percent
detections for the camera based scenarios of noon, rain, and
night are around 75% detections. On the afternoon runs, the
sun was low in the horizon, and the lane markings could not
be detected by the camera based system as was seen in the
dusk runs.

The biggest drawback to the camera algorithm is the de-
tection rate of the lane markings. Despite the presence of
eroded lane markings and completely eliminated solid lane
markings, the camera algorithm still failed to detect lane
markings in images where lane markings could be detected.
The tuning of the camera algorithm was intended to reduce the
number of false positives at the expense of increased misses.
Several factors are present which can reverse this result. The
Hough transform parameters provide a means for reducing the
minimum line length, which will result in increased lines in
the image, more line pools, and especially in the case of the
dashed lane markings, more detections. However, with smaller
lines, the lines could also be a result of non lane marking
lines. The dynamic threshold is a very important step in the
lane detection algorithm. With a smaller chosen K value (or
the scalar on the standard deviation), the camera algorithm
could more likely detect the lane markings in the presence of
the sun and other bright features since the calculated threshold
is lower. Finally, the Kalman filter in the current iteration is
more conservative than the true dynamics of the vehicle, and
the lane marking estimate can lag behind the true lane marking
in the image when the vehicle is shifting quickly within the
lane.

Webcams also typically have significant distortion, which
can effect the center to lane measurements. Certainly, with
a higher end camera, the results, both in accuracy as well
as detection rate, could improve. Additionally, by moving the
camera to the inside of the vehicle, exposure to the elements
could be prevented. For example, the sloshing of the rain on
the camera during the rain data could be minimized at the cost
of sloshing on the windshield. Also, a simple cover to fully
protect the camera from rain could significantly improve the

camera algorithm’s performance in the rain since the sloshing
effect is minimized, and the rain’s effect would be limited to
raindrops and water on the road.
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