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ABSTRACT  
 
Nearly 50% of all the traffic fatalities are due to 
accidental lane departures. Therefore, there is great 
interest in advanced driver assistance systems to prevent 
unintended lane departures. The purpose of this paper is 
to present a method of lane positioning that involves 
combining a GPS/IMU navigation system with camera 
and Light Detection and Ranging (LiDAR) 
measurements.  A discrete Kalman filter is implemented 
as the navigation filter used to combine all the 
measurements.  The navigation coordinate frame is a 
coordinate frame attached to the road.  The camera and 
LiDAR are assumed to give a measurement of the 
vehicle’s current offset from the center of the current lane.  
This measurement directly corresponds to the y-axis of 
the navigation coordinate frame.  The IMU used has 3 
accelerometer axis and 3 gyros; however, only 2 
accelerometers and 1 gyro were used for the navigation 
filter.  Many vehicles come standard with a similar IMU 
set up for stability control. 
 
Many issues become apparent when working with a 
shifting navigation frame.  Measurements from the GPS 
must be mapped into the road coordinate frame.  This 
involves a transformation from earth centered earth fixed 
(ECEF) coordinates to the road frame’s coordinates.  
Also, the states of the navigation filter need to be updated 
when shifting to the next road coordinate frame.  The 
largest implementation hurdle is obtaining a lane map.  
Current survey techniques are slow and require road 
closure.  There are also issues with how long a road frame 
can be without adding error to the system.  A road frame 
that is too long in a turn will cause error.  The surveyed 
section of road used for the paper is split into road 
coordinate frames with an average length of around 10 m. 
 
 
INTRODUCTION  
 
In order to reduce the number of traffic fatalities that 
occur due to unintentional lane departures, many car 



manufacturers are developing lane departure warning 
(LDW) systems that alert the driver before the vehicle 
departs the lane.  Most of the LDW systems in production 
now are solely based off of camera measurements.  
Camera-based LDW systems are prone to failures due to 
road, weather, and lighting conditions.  The purpose of 
this paper is to provide a method of sensor fusion that can 
be used to combine measurements from a camera, 
LiDAR, GPS receiver, and IMU to continuously measure 
lane position. 
 
LiDAR stands for light detection and ranging.  These 
devices are available on some vehicles equipped with 
active cruise control.  The LiDAR scanner used for data 
collection is an IBEO ALASCA XT scanner.  This 
scanner uses precise mirror movements to scan four 
horizontal scans in one scan cycle.  The ALASCA XT is 
capable of reporting distance and reflectivity data, a 
measurement known as echo width.  The reflectivity data 
reported will be used to distinguish lane markings from 
the road’s surface using the principle that the lane 
markings should be more reflective than the road’s 
surface at the same distance [6].  A more in-depth look at 
how the LiDAR is used to determine lane position can be 
found in [1].   
 
 

 
 
Fig. 1. IBEO LiDAR Scanner with web camera 

 
A GPS (global positioning system) receiver is useful for 
determining position on a global scale; however, a stand-
alone GPS receiver is not precise enough to provide an 
accurate position of a vehicle within a particular lane on 
the road.  Also, GPS can only provide position with 
respect to a global coordinate frame.  For this project, 
position with respect to a lane is desired.  Therefore, the 
only way GPS can be used for lane navigation is to 
construct a map of the lane.  Even when compared to a 
map, stand alone GPS position is heavily biased and is not 
as accurate as vision methods for determining lane offset. 
 

The camera used for data collection is a standard web 
camera.  The camera is mounted directly below the 
LiDAR’s focal point.  The web camera takes a picture 
with every LiDAR scan.  The image is thresholded to 
eliminate unwanted information.  Edge detection and the 
Hough transform were employed to extract lane lines 
from the image.  This image is then searched using 
polynomial bounds to find the position of the lanes and 
the vehicle’s lateral position relative to the lanes.  A more 
in-depth look at how the camera is used to determine lane 
position can be found in [8].   
 
In order to provide a more robust measurement of lane 
position, the camera, LiDAR, and GPS measurements will 
be used to estimate the inertial measurement unit’s (IMU) 
biases.  A discrete Kalman filter is used to update lane 
position using the IMU, camera, LiDAR, and GPS.  The 
IMU used to collect data is a microelectromechanical 
system (MEMS) automotive grade IMU.  It has an update 
rate of 50 Hz.  Therefore, the IMU can update lane 
position between vision and GPS updates.  Also, the IMU 
is able to dead reckon the lane position for a small amount 
of time without any GPS, camera, or LiDAR 
measurements. 
 
 

 
Fig. 2. Navigation Filter Architecture 

 
 
In order to have an accurate baseline to compare results, 
RTK-corrected GPS position and velocity are recorded on 
all data runs.  The GPS receiver used for data collection is 
the Novatel ProPak V3.  The receiver is responsible for 
the RTK-corrected position and velocity solution.  The 
Novatel’s RTK-corrected position is also used in the track 
survey to obtain a lane map.  All the GPS data used for 
the lane position algorithm development is non-
differential (no corrections). 
 
TRACK SURVEY 
 
The proposed method of sensor fusion for lane position 
requires a detailed map of the lane in the which the 
vehicle is traveling.  This is one limiting factor in 
implementation of the proposed method.  Current GPS 



receivers for personal vehicle navigation have a map 
database; however, in order to ensure accuracy, the map 
data base for this algorithm needs to be precise.  GPS with 
RTK corrections can provide accuracy on the centimeter 
level; however, surveying using GPS can be time-
consuming.  Surveying lanes will also require the road to 
be free of traffic.  Future development of lane positioning 
methods could be used to back out lane position relative 
to a known vehicle location [4].  Such systems would 
need to be based off differential GPS measurements and 
precise attitude determination. 
 

 
 
Fig. 3. Top Down View of NCAT Track 
 

All the data used for this paper was collected at the 
NCAT (National Center for Asphalt Technology) test 
track in Opelika, Alabama (Fig. 3).  The track is a two 
lane 1.8 mile oval with flat straights and 8۫ of bank in the 
corners.  The track is used to test wear on interstate 
asphalt.  In order to accomplish this, the track is submitted 
to a fleet of tractor trailer trucks that drive on the track 16 
hours a day, 5 days a week.  The 1.8 miles of asphalt are 
divided into various segments with each segment 
containing asphalt from different locations in the 
Southeast and other locations in the USA.  Some areas of 
the track have easily viewable lane markings.  There are 
areas of the track where the middle (dashed) lane line is 
missing.  The outside lane lines (solid) cover the majority 
of the track; however, there are a few spots where there is 
no outside lane line.  One football field sized section of 
the back straight has no middle or outside lane lines.  
Also, there is one on-ramp, one off-ramp, and one service 
road intersection along the outside lane of the track.  In 
these sections, the outside lane line is missing, and, the 
outside lane line runs off with the off-ramp. 
 
In order to get a detailed map of the NCAT test track, the 
outside lane of the track was surveyed.  The survey was 
conducted with two Novatel GPS receivers.  Both of the 
receivers provide a narrow integer solution with 
corrections from an on-site base station.  One GPS 
receiver was used to survey the middle lane line, and the 
other receiver was used to survey the outside lane line.  
The center lane line on the track is dashed at every 10 
meters, roughly.  The position of the center of each dash 
of the center lane line was surveyed.  The outside lane 
was surveyed perpendicular to the road at every center 
lane line survey.  
 

 
 
Fig. 4. Plot of NCAT Track Survey 

 

To aid in surveying, two survey poles were used as GPS 
antenna mounts.  The surveying poles provide a fixed 
antenna phase height off the ground.  The poles are also 
equipped with a bubble to insure the pole is held upright.  
The GPS receivers used provides measurements of the 
GPS antenna location in earth centered earth fixed 
(ECEF) coordinates.  The time average of the 
measurements was used to find the location.  Time 
constraints limit the amount of time each spot can be 
surveyed.  We averaged 10s worth of data at 10 Hz to 
determine the final position of the survey. Each recorded 
position was also corrected for the antenna height. 
 
It is important to recognize that a GPS solution with RTK 
corrections is not an absolute measurement.  There are 
considerable drifts from day to day.  In order to get a 
more exact lane map, the position of the lanes needs to be 
observed over long periods of time.  We have observed 
drifts in sub-meter magnitudes from day to day when 
working with our RTK set-up.  The relative position 
obtained when surveying the track is very accurate.  If, 
the track is surveyed on one day using the described 
survey method and then surveyed again on another day, 
the track maps will be the same but offset by some 
amount to the north and east.  To overcome this, the track 
map can be offset by the north and east by a small amount 
by measuring drift at a known location close to the lane. 
 
NAVIGATION FILTER 
 
A Kalman Filter [5] is the core of the proposed lane 
tracking estimation algorithm.  Since the inputs to the 
filter are discrete, a Discrete Kalman Filter is used.  Many 
traditional navigation filters use the ECEF or tangential 
plane coordinates for navigation.  The base navigation 
frame for this project is the tangential plane.  The 
orientation of the plane is based off of the track map.  The 
navigation frame is also called the road frame.  The road 
frame is a coordinate frame that is attached to the road.  
The position and velocity states of the filter are expressed 



in the road frame.  The heading state (Ψ) is measured 
from the x-axis of the road frame. 
 
 
 
 

(1)   (2) 
 
 
 
 
The navigation filte is a 3 degree of freedom filter; 
therefore, the vehicle is assumed to neither pitch nor roll.  
Also, the vertical position and velocity of the vehicle is 
ignored.  The first assumption does add error to the 
system; however, this error is small considering most 
roads are not pitched or banked at more than 10۫. 

 

NAVIGATION COORDINATE FRAME 
 
A tangential coordinate frame is a frame of reference that 
is based off of a location given in longitude and latitude.  
For this work, the North East Down (NED) coordinate 
frame is defined as; x-axis pointing North, y-axis pointing 
East, and the z-axis is an axis that is pointed down.  
Heading can be measured as +/- 180۫ form the x-axis.  The 
x- and y-axis of the coordinate frame lie in the plane 
tangent to the WGS84 ellipsoid.  Geodetic longitude and 
latitude are used to describe the point on the ellipsoid at 
which the origin of the NED frame is located. Positions 
and velocities expressed in the ECEF frame can be 
mapped into the NED coordinate frame and vice versa.  In 
order to move from the ECEF frame to the NED frame, 
the longitude and latitude of the center of the NED frame 
must be known.  Also, the position of the center of the 
NED plane in ECEF coordinates must be known.  
Equation (3) shows the rotation matrix used to map 
positions and velocities in the ECEF frame to the NED 
frame. 
 
 

(3) 
 
 
 
 
 
 

 
(4) 

 
(5) 

 
Position measured in the ECEF coordinate frame can be 
mapped to the NED frame using (4) [3].  Po is the position 
of the origin of the NED frame expressed in ECEF 
coordinates (  Po = [ x  y  z ]’ ).  PECEF is the position of 
the point of interest in ECEF coordinates; PNED is the 

position of the point of interest in NED coordinates.  
Velocities in ECEF coordinates (VECEF) can be directly 
rotated into the NED coordinate frame (VNED) because the 
NED frame is not moving relative to the ECEF frame. 
 
The base coordinate frame of the navigation filter is a 
modification of the NED frame.  The data from the track 
survey is used to form a map of the surveyed lane.  This 
map is based off of waypoints saved in ECEF coordinates.  
Each waypoint is located in the middle of the lane.  The 
waypoints were calculated using the midpoint formula on 
each outside and middle lane line pair from the track 
survey.  The navigation coordinate frame (road frame) is 
the same as the NED frame, except the x-axis points to 
the next waypoint the vehicle will pass.  The origin of the 
frame is located at the last waypoint the vehicle passed. 
 

 
Fig. 5. Picture of Road Frame 

 

Figure 5 shows a drawing of the navigation frame.  ΨR is 
the road heading.  The road heading is measured from the 
north-axis of the NED frame to the x-axis of the road 
frame.  The length of the road frame is d.  Once the 
vehicle passes the next waypoint, the road frame is shifted 
to a frame based on the waypoint the vehicle passed.  
Equation (6) is a matrix that maps coordinates in the NED 
frame to the road frame.  It is based off of the angle ΨR. 
 

 
(6) 

 
 
Multiplying the rotation matrix from NED to road and the 
rotation matrix from ECEF to NED will result in a matrix 
that maps ECEF coordinates to road frame coordinates 
(7). 
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(7) 
 

(8) 
 

(9) 
 
 
A total of 219 waypoints were used to construct the road 
frames; hence, there are 219 different road frames that 
make up the 1.8 mile track map.  Each frame has 5 pieces 
of information associated with it: longitude of frame 
origin, latitude of frame origin, position of origin in ECEF 
coordinates, frame heading, and frame length.  All this 
information is needed to map measurements from ECEF 
coordinates.  These values are also needed to determine 
how and when to update road frames.  If each road 
frame’s coordinates are expressed in floating point 
format, all the information needed for 1 million miles 
(280 million road frames) can be stored in less than 8 
gigabytes of digital storage. 
 
IMU MECHANIZATION 
 
The measurements from the IMU can be used to 
propagate the filters states between GPS, camera, and 
LiDAR measurements.  Each state has a discrete time 
update function.  The propagated state is a function of the 
previous state (xk-1) and IMU measurement (uk-1). 
 

(10) 
 

 
 
 
 
 

(11) 
 
 
 
 
 
 
Plugging the IMU outputs and current filter states into 
(11) will result in the filter states that have been 
propagated (dt) seconds into the future.  The state 
covariance matrix (P) can be updated using (12) [9]. 
 

 (12) 
 
A is a Jacobian matrix defined by 
 

(13) 
 
Q is the process noise covariance matrix.  This matrix is 
assumed to be a constant diagonal matrix.  The values of 

the diagonal elements of the process noise covariance 
matrix were hand-tuned to give desired performance. 
 
MEASUREMENT UPDATE TYPES 
 
A typical GPS/INS navigation system has only one type 
of measurement update.  Adding a camera and LiDAR 
adds another type of measurement update.  The camera 
and LiDAR are assumed to give measurements of the 
vehicle’s current position in the lane, and an associated 
standard deviation with that measurement. 
 
GPS 
 
The GPS measurements are recorded in ECEF 
coordinates.  The GPS receiver used to collect data also 
provides an estimate of the standard deviation of the 
receiver’s position and velocity measurement.  In order to 
update the filter, the GPS position must be mapped into 
the road frame using (8).  The y measurement of position 
provided by the GPS is discarded.  The vision methods 
provide a measurement of y to compensate for the GPS’s 
y measurement.  If no vision measurement is available, 
the navigation filter becomes unobservable; therefore, the 
GPS y measurement must be used to maintain 
observability.  When no vision measurement is provided, 
the navigation filter will not provide lane level precision.  
The velocity measurement from the GPS can be mapped 
into the road frame using (9).  The z component of the 
position and velocity in the road frame are also discarded.  
(14) and (15) show how to map the standard deviation of 
the position and velocity in ECEF coordinates to the road 
coordinate frame. 
 

(14) 
 
 

(15) 
 

The Kalman gain is defined as [9] 
 

(16) 
 

R is the current measurement covariance matrix.  The 
diagonal elements of this matrix are filled in using the 
standard deviations from (14) and (15) squared.  H is the 
measurement matrix.  If vision measurements are 
available, H is defined as 
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If vision measurements are not available, H is defined as 
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The state and covariance matrix can be updated using (19) 
and (20); where zk is the measurement vector 

kẑ  is the 

predicted measurement vector using most current states. 
 

(19) 
 

(20) 
 
LIDAR 
 
The LiDAR will detect and track the lane markings 
through the use of bounding, discrimination, and by 
finding a best match solution to an expected value.  Data 
taken from the LiDAR was at half-angle resolution.  If 
multiple echo widths existed for a single half-angle 
measurement, then those echo widths were averaged 
together.   
 
Because echo width data from the LiDAR can appear 
noisy at times due to precipitation or dead insects on the 
LiDAR screen, the on-road data can quickly become 
indistinguishable from erroneous or off-road data.  To 
distinguish between these cases, the algorithm developed 
employees bounding.  It establishes an area in front of the 
car that is approximately two lane widths wide.  This 
width ensures that regardless of the vehicle’s position in 
the lane or during a lane change, a lane marker can be 
found if one exists.   
 
The lane markings are found by generating an ideal scan 
(Figure 6) and taking the minimum RMS error when 
compared to an actual scan.  The ideal scan is generated 
by first averaging the echo widths located in a .6m wide 
area in front of the car.  This averaged area represents the 
average reflectivity of the road’s surface and is referred to 
as a baseline, which is the area between the spikes in 
Figure 6.  The spikes in Figure 6 represent the actual lane 
markings, which are generated by simply multiplying the 
baseline by a factor of 1.75.   

 
Fig. 6 Algorithm Generated Ideal Scan 

 
Now that the basis for algorithm-generated ideal scan has 
been created, the RMS comparison can be performed.  
This is done by placing the leftmost side lobe at the 
leftmost scan boundary that was previously established 
and shifting it by half-angle increments until that side 
lobe has reached the center of the scan at zero degrees.  
With each shift of the left side lobe, the rightmost side 
lobe is placed at the center of the scan and stretched until 
the rightmost side lobe is equal to the rightmost scan 
boundary.  The algorithm-generated ideal scan is 
stretched by simply adding in another baseline 
measurement between the side lobes.   
 
To mitigate erroneous results with each shift, the distance 
between the leftmost side lobe and rightmost side lobe is 
checked to ensure that the width is greater than the 
minimum expected lane width and less than some 
maximum expected lane width, as set forth in [2].  The 
minimum RMS error generated from comparing the 
actual LiDAR scan to the algorithm-generated ideal scan 
is saved.  The location of the innermost side lobes denote 
the lane angle corresponding to the lane marking.  Using 
that information, the distance from the center of the 
vehicle to the lane marking can be computed.  However, 
if lane markings reported by the RMS solution are not at 
least 1.4 times greater than the baseline, it is assumed a 
lane marking does not exist.   
 
Distance results are then run through a low-pass filter to 
smooth out any jumps and a weighted average where the 
weights are based on the inverse of the variance for each 
layer’s measurement.   This simply gives preference to 
more consistent scans.  Once these filtered distances have 
been computed, our offset from center is found. 
 
CAMERA 
 
The camera is also assumed to give the position of the 
vehicle within its current lane.  A technique to eliminate 
erroneous lines has been employed which bounds the 
previously detected 2nd order polynomial with two other 
polynomials that are equidistant from the original 
polynomial.  These bounding curves employ similar 
characteristics as the original curve; therefore, the valid 
lane marking should be detected within the bounded area 
given smooth transitions between each frame.   
 
The effects of erroneous lines within this bounded area 
can be reduced by employing a Kalman filter on the 
coefficients of the 2nd order polynomial.  The filter also 
allows for smooth transitions between curved and straight 
roads. The measurement of the position within the lane is 
carried out by determining the number of pixels from the 
center of the image and the estimated lane marking.  This 
measurement value can then be converted to its real world 
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equivalent and used to estimate the position of the vehicle 
within the lane. 
 
For vision updates, (16) is used to computed the Kalman 
gain.  R is now a 1x1 matrix, which is equal to the 
variance of the current vision measurement.  H is defined 
as 
 

(21) 
 

Equation (19) is used to update the state, and (20) is used 
to update the covariance matrix. 
 
NAVIGATION COORDINATE FRAME UPDATES 
 
Since the navigation frame is based off of current 
position, the longitudinal position of the vehicle in the 
road coordinate frame must be checked after every state 
update.  If the longitudinal position exceeds the length of 
the current road frame, then the vehicle has passed into 
the next road frame.  The measurements of the states are 
expressed in the old road coordinate frame; therefore, the 
states must be mapped into the new road frame.  If the 
vehicle has passed into the next road frame, the first step 
to update the states is to form a rotation matrix based off 
of the change in coordinate frame heading between the 
new and old coordinate frame (22).  ΨR,i+1 is the heading 
of the new road coordinate frame and ΨR,i is the heading 
of the old road coordinate frame. 
 
 
 

(22) 
 
 

 
The heading state can be updated by subtracting the 
change in coordinate frame heading from the current 
estimate of vehicle heading in the lane (23).  Ψi is the 
estimated heading of the vehicle in the road coordinate 
frame.  Ψi+1 is the estimated heading of the vehicle in the 
new road coordinate frame. 

 
(23) 

 
 

The next step consists of updating the position state 
estimates.  Equation (24) shows how to update the 
position states using the rotation matrix (22).   

 
 

 
 

 
(24) 

 
 

 
The position state vector in (24) is a 2x1 vector ([x , y]’).  
di corresponds to the length of the previous road 
coordinate frame.  Equation (25) shows how to map the 
velocity state vector into the new road coordinate frame. 

 
 
 
 

(25) 
 
 
 

After completing the above steps, the filter’s state vector 
will be expressed in terms of the new road frame.  This 
process must be performed every time the vehicle moves 
into a new road coordinate frame.  Comparing the lateral 
position state (x) to di after every time and measurement 
update will ensure the navigation filter is operating in the 
appropriate road coordinate frame. 
 
RTK-CORRECTED GPS POSITION AND 
VELCOITY BASELINE 
 
A base-line is needed to compare the results of the 
navigation filter.  The base-line used for this paper is GPS 
with RTK corrections.  The RTK solution is provided by 
the GPS receiver.  The receiver uses CMR corrections 
broadcasted from an on-site base station.  The corrected 
position and velocity of the vehicle is saved in ECEF 
coordinates at 2Hz. 
 

Fig. 7. Lateral Position of Vehicle Using RTK Solution 
 

Figure 7 shows the lateral lane position of the vehicle for 
147 seconds of data taken at the NCAT test track.  Data 
from this run is used for all of the results.  The vehicle 
starts on the first straightaway facing west and then 
travels around the track counter-clockwise.  In addition, 
the vehicle accelerates from a stop to 50 mph and 
maintains this speed for the remainder of the lap. 
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Fig. 8. Plot of GPS, LiDAR, Camera, and IMU Solution with Track 
Map 

 
The vehicle stops after completing one lap.  The vehicle 
never ventures more than 80 cm from the lane center. 
 
The navigation filter has an output rate that matches the 
IMU’s output rate (50 Hz).  The RTK-corrected GPS 
solution is only available at 2Hz.  In order to quantify the 
navigation filter’s error, the RTK-corrected GPS solution 
is linearly interpolated between GPS measurements.  The 
ECEF coordinates of position is interpolated based on the 
time between the GPS measurements and desired 
measurement.  These values are then mapped into the 
road frame to estimate the lateral position in the lane at 
the desired measurement time. 
 
 
RESULTS 
 
For validation and comparison reasons, the navigation 
filter is initially set up to blend the GPS and IMU 
measurements.  Figure 8 shows the trajectory of the x and 
y states of the navigation filter in the NED coordinate 
frame.  The solution is heavily biased due to the biases in 
the GPS measurement.  Figure 9 shows the lateral 
position error of the GPS and IMU only navigation filter.  
The black lines represent the width of a standard lane   
(12 ft.). 
 
Fig. 9. Lateral Position Error for GPS and IMU only navigation filter 

 

The relatively constant bias in the GPS measurement can 
be seen in Figure 9.  The lateral error remains constant on 
straightway, and then shifts in the 180 ۫ corners.  The 
stand-alone GPS and IMU can not accurately estimate 
lateral offset in a lane [2].  Vision measurements are 
perfect to substitute for the lateral position measurement.  
Vision measurements provide measurements that are 
much less biased, and vision measurements have a small 
standard deviation [8]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 10. Plot of GPS, LiDAR, Camera and IMU Lateral Position 
Estimate Compared to the GPS RTK Solution 
 

Adding vision measurement updates to the navigation 
filter greatly decreases the lateral position estimate error.  
Figure 10 shows the lateral position estimate from the 
GPS, camera, LiDAR, and IMU navigation filter.  To give 
some scale, the y-axis of the plot is spread out 12ft (3.66 
m), which is the average width of a highway lane. 
 
 
 
 
 



 
Fig. 11. Plot of GPS, LiDAR, Camera, and IMU Solution with Track 
Map 

 
The solution never leaves the lane; therefore, the solution 
is accurate enough track a vehicle’s current lane.  The 
solution degrades around 90 seconds due to the large 
section of missing lane lines on the back straightaway. A 
few seconds later, the measurement drifts due to the 
vehicle passing by the off ramp. 
 

The lateral position reported by the interpolated RTK 
solution is noisy in turns.  This is due to the interpolation 
of the GPS solution, and the interpolation of the curve 
itself.  The interpolation of the curve is introduced when 
trying to represent the curve in line segments.  If the curve 
is not split into enough road frames, the solution will vary 
greatly when coordinate frames are changed.  If the curve 
is split into too many road frames, the solution will vary 
slightly, but at a higher frequency because of the high 
frequency of coordinate changing.  Breaking curves into 
straight road frames becomes a tradeoff between how 
much interpolation noise is added and practicality.  Too 
many road frames will result in ambiguity as to what road 
frame the vehicle currently resides. 

Fig 12. Position Error for the GPS, camera, LiDAR, and IMU 
Solution 

 
The interpolated RTK solution is used to solve for the 
error in the navigation filter’s lateral estimate.  Figure 12 
shows a vast improvement in error over the GPS and IMU 
only solution.  The dark lines represent the standard width 
of a lane.   
 
CONCLUSIONS 
 
The algorithm described will provide an accurate lateral 
lane position as long as lane markings are available.  A 
more in depth look at time to lane departure is needed to 
alert the driver before a lane departure [7].  The solution 
drifts away quickly in areas with poor lane markings.  
Future work will include examining ways to cut down on 
estimation drift in the absence of vision measurements.  
Also, wheel encoders could be used to maintain the 
observability of the system during GPS outages. 
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