

Modeling Electrical-Mechanical Systems (DC Motors)

MECH 3140 Lecture #

Class Update

- We will start grading Exam #2 this week
 - It will probably take a couple of weeks as we try and stay on top of other on-line items
- HW #9 is out and contains the last matlab assignment you will have to do
 - There will be a HW #10 which will be problems to prepare for the final exam
- We should be posting the final project this week
 - It will be due the last week of classes and teams will present their power-point slides remotely

Multi-DOF Modeling

- We are starting to looking at modeling multi-DOF systems
- One example will be the DC electric motor.
- This will also be our first example of modeling a combined electrical-mechanical system
 - Note that solenoids and other systems are very analogous

DC Electric Motors

- This is one of the examples where we get to practice modeling Step #0
 - We have to determine which modeling elements to include
 - Here is a picture of the outside and inside of a typical DC motor. Which of our modeling elements do you think we need to use?

"General" Fundamental Operation

- DC motors work by generating opposing magnetic fields that produce a force (or torque) on the shaft.
- In a permanent magnet motor, the opposing field is generated by "pushing" current through a set of coils in the permanent magnetic field
 - The change in "opposition" is created by changing the set of coils that are magnetized (powered) in the armature through the split commutator.

Inputs and Outputs

- Lets start by defining the input and output
 - Input could be voltage or current. We will use voltage (but will see later why many in robotics use a current source or current input)
 - The output of the "system" is the position or speed of the motor shaft
 - We will use angular velocity as the fundamental output

Step #0: Electrical Side

- Lets start with modeling the electrical side
- What components do you think we need?
 - Voltage supply (since this is our input)
 - Resistance
 - Why? There is no resistor.
 - The wire inside the motor certainly has resistance (energy loss) that needs to be modeled
 - Inductance
 - Same reasons as above, it is not possible to instantly generate current through all of the wire inside the motor.
 - Voltage Output
 - This is known as the back emf (electromotive force). A voltage is generated in the coils as the travel through the magnetic field
 - This is how a generator works (it's a motor driven in reverse).

Step #0: Electrical Side

 So putting our components together in an electrical schematic to model we get:

- 1 DOF (I)
- 1st Order

- Notice this schematic is similar to a previous homework problem where Vemf was a disturbance voltage!
 - This is where that problem came from.

Step #0: Mechanical Side

- Now to the mechanical side
- What components do you think we need?
 - Torque on the shaft (this is what cause the motor to spin)
 - Damping
 - Why? The bearings are not perfect and certainly would have some energy loss that is proportional to velocity
 - Friction
 - There probably is some constant friction force the motor must overcome, but we will ignore this
 - We will assume good bearings or that this force is negligible
 - Inertia
 - For sure the armature has inertia that has to be accounted for.
 - Shaft compliance
 - Possibly, but we will ignore it here (assume the armature is rigid)

Step #0: Mechanical Side

- So putting our components together in an mechanical schematic to model we get:
 - -1 DOF (ω)
 - 1st Order

Modeling Step #1 (DOF and Order)

- How many Degrees of Freedom is the system?
 - Its 2 DOF: Current and Angular Velocity
 - These are not directly relatable (if I know one, I don't necessarily know the other)
 - This means I should expect 2 coupled differential equations
- What is the total system order?
 - Its 2nd Order
 - There are two independent storage elements
 - Inductor
 - Armature Inertia

Step #2 Electrical Side

Assigning current loop and the voltage drops:

- Defining the voltage drops:
 - $-V_{emf} = K_b \omega$
 - Back emf is proportional to the motor speed.
 - Kb is a motor constant
 - $-V_R=RI$
 - $-V_L = L\dot{I}$

Step #3 Electrical Side

Using Kirchoff's Voltage Law:

$$\sum V_{Loop} = 0$$
$$-V_S + V_L + V_R + V_{emf} = 0$$

$$L\dot{I} + RI = V_{S} - K_{b}\omega$$

Step #2 & #3: Mechanical Side

- Assigning our coordinate (θ)
- Drawing our FBD

$$-\tau_m = K_I I$$

- This is why robotics use current sources
 - Want to directly input motor torque
- K₁ is a motor constant

$$-K_1=K_b$$
 (in SI units)

Step #4: Mechanical Side

Using Newton's Law to sum moments:

$$\sum M = J\ddot{\theta} = J\dot{\omega}$$

$$J\dot{\omega} = -\tau_b + \tau_m$$

$$J\dot{\omega} = -b\omega + K_I I$$

$$J\dot{\omega} + b\omega = K_I I$$

Final Equations of Motion

- We get 2 EOMs
 - Recall it was 2 DOF
 - 1 EOM per DOF

$$J\dot{\omega} + b\omega = K_I I$$

$$L\dot{I} + RI = V_s - K_b\omega$$

- The equations are coupled
 - The speed differential equation has current
 - The current different equation has speed
- The system is two 1st order coupled differential equations
 - So the system order is 2nd order!

Now What?

- How do we solve or analyze?
 - We need....the eigenvalues (of course)
 - So how do we get them?
 - We can't just set the "right side" to zero
 - This would set outputs to zero!
 - Must use our new tools!
 - Transfer Function
 - State Space

Transfer Function

• Take the Laplace of the two LTI equations and setting initial conditions to zero (since we are solving for the transfer function):

$$J\omega(s)s + b\omega(s) = K_I I(s)$$

$$LI(s)s + RI(s) = V_s(s) - K_b\omega(s)$$

- Now What?
 - We have one input, but two outputs (I, ω)
 - Remember a Transfer Function is between a single input and a single output
 - We can not just set the output we don't want to zero This would change the system!
 - You can set additional inputs to zero

Transfer Function

• Since we have 2 equations, we can solve one for one output and substitute into the other equation

$$J\omega(s)s + b\omega(s) = K_I I(s)$$

$$LI(s)s + RI(s) = V_s(s) - K_b \omega(s)$$

- Which transfer function do we want? $\frac{I(s)}{V_S(s)}$ or $\frac{\omega(s)}{V_S(s)}$
 - For the eigenvalues, it doesn't matter both transfer functions will have the EXACT same denominator (i.e. same characteristic equation, same eigenvalues)
 - Only the numerator will be different
 - Depends on which output we are interested in
 - I if we want the current (maybe since torque is proportional to I).
 - ω if we want the motor speed

Transfer Function: $\omega(s)/V_s(s)$

• First, lets collect terms:

$$\omega(s)(Js+b) = K_I I(s)$$

$$I(s)(Ls + R) = V_s(s) - K_b\omega(s)$$

- Then use your favorite algebraic trip to eliminate I(s).
 - I am going to solve the 2^{nd} equation for I(s) and substitute into the 1^{st} equation:

$$\omega(s)(Js+b) = K_I\left(\frac{V_S(s) - K_b\omega(s)}{Ls + R}\right)$$

Then cleaning up:

$$\omega(s)(Js+b)(Ls+R) + K_I K_b \omega(s) = K_I V_s(s)$$

Then solving for the transfer function:

$$\frac{\omega(s)}{V_s(s)} = \frac{K_I}{LJs^2 + (JR + Lb)s + (K_IK_b + Rb)}$$

Transfer Function: $\omega(s)/V_s(s)$

Notice the denominator is 2nd order!

$$\frac{\omega(s)}{V_s(s)} = \frac{K_I}{LJs^2 + (JR + Lb)s + (K_IK_b + Rb)}$$

The system characteristic equation is:

$$LJs^{2} + (JR + Lb)s + (K_{I}K_{b} + Rb) = 0$$

- So there are two eigenvalues
- You can use your 2nd order tools!
 - Do you think it is over damped or under damped?
- You can also see the DC Gain is:

$$\frac{K_I}{(K_I K_b + Rb)}$$

State Space

- The other method to find the eigenvalues from multi-DOF systems is state space
 - The eigenvalues are the eigenvalues of the A Matrix

$$J\dot{\omega} + b\omega = K_I I$$
$$L\dot{I} + RI = V_S - K_b \omega$$

- Placing the EOMs into state space representation:
 - Note that the equations were already 1st order (so they were almost already essentially in the correct form)

$$\begin{bmatrix} \dot{I} \\ \dot{\omega} \end{bmatrix} = \begin{bmatrix} -R/L & -K_b/L \\ K_I/J & -b/J \end{bmatrix} \begin{bmatrix} I \\ \omega \end{bmatrix} + \begin{bmatrix} 1/L \\ 0 \end{bmatrix} V_s$$

Eigenvalues (State Space)

 Now give the A matrix, we can find the characteristic equation (and eigenvalues)

$$A = \begin{bmatrix} -R/L & -K_b/L \\ K_I/J & -b/J \end{bmatrix}$$

$$eig(A) \Rightarrow \det(sI - A) = 0$$

- Or in matlab: >>eig(A)

$$\det\left\{sI - \begin{bmatrix} -R/L & -K_b/L \\ K_I/J & -b/J \end{bmatrix}\right\} = \det\left\{\begin{bmatrix} s+R/L & K_b/L \\ -K_I/J & s+b/J \end{bmatrix}\right\} = 0$$

$$\left(s + \frac{R}{L}\right)\left(s + \frac{b}{J}\right) + \frac{K_bK_I}{LJ} = 0$$

Eigenvalues (State Space)

$$s^2 + \left(\frac{R}{L} + \frac{b}{J}\right)s + \frac{Rb + K_b K_I}{LJ} = 0$$

Multiplying by the prior equation by LJ we get:

$$LJs^{2} + (JR + Lb)s + (K_{I}K_{b} + Rb) = 0$$

- Note this is exactly the same characteristic equation we saw in the transfer function
- Now use quadratic formula to solve for the two eigenvalues and use our 2nd order tools

Eigenvalues Analysis

- Most motors are heavily overdamped
 - This means their response can be approximated as first order
 - Due to the inductance being negligible (in terms of dynamics, i.e. eigenvalues)
 - Results in the following approximate characteristic equation:

$$Js + (b + \frac{K_b K_I}{R}) = 0$$

– Or the following differential equation:

$$J\dot{\omega} + (b + \frac{K_b K_I}{R})\omega = \frac{K_I}{R} V_S$$

Steady State Motor Speed Curve

- DC Electric motors have a linear torque speed relationship at steady state
 - i.e., for $\dot{I} = \dot{\omega} = 0$
- You get max torque at zero speed
 - Called stall torque
 - Different from an IC engine
- You can only generate the max speed when there is no load
 - Called no load speed
 - The net torque at this speed is zero!

http://lancet.mit.edu/motors/motors3.html/

Motor Speed Curve

- Speed-Torque is shifted as more voltage is applied
 - Optional lecture will discuss how to vary the voltage

https://robotics.stackexchange.com/questions/4492/dc-motor-control-speed-torque-curve

Maxon DC16 Spec Sheet

DC-max 16 S Precious Metal Brushes

DC motor Ø16 mm

Key Data: 2/4.3 W, 4.1 mNm, 11 000 rpm

1_ Nominal voltage	V	6 7890 14.7	12 7560 6.90	24 7470 3.40	
2_ No load speed	rpm				
3_ No load current	mA				
4_ Nominal speed	rpm	4830	4390	4210	
5_ Nominal torque (max. continuous torque)	mNm	4.05	3.92	3.80	
б_ Nominal current (max. continuous curren	t) A	0.577	0.267	0.128	
7_ Stall torque	mNm	10.5	9.44	8.75	
8_ Stall current	A	1.45	0.629	0.289	
9_ Max efficiency	%	81	80	80	
0_ Terminal resistance	Ω	4.10	19.1	83.2	
1_ Terminal inductance	mH	0.140	0.610	2.49	
12_ Torque constant	mNm/A	7.19	15.0	30.3	
3_ Speed constant	rpm/V	1330	637	315	
14_ Speed/torque gradient	rpm/mNm	758	809	864	
15_ Mechanical time constant	ms	8.87	8.92	9.00	
16_ Rotor inertia	gem²	1.12	1.05	0.994	

https://www.maxongroup.com/medias/sys_master/root/8833376059422/19-EN-94.pdf