Mechanical Modeling Steps	Mechanical Elements
1) DOF and System Order	
2) Constitutive coordinates and equations	Mass in translation $m\ddot{x} = \sum F_x$
3) FBD	Inertia in rotation $J\ddot{\theta} = \sum M$
4) Sum Forces and Moments as needed	Translational Damper $F_b = b\dot{x}$
5) Repeat 2 through 4 as needed	Rotational Damper $\tau_h = b\dot{\theta}$
6) Simplify to one equation of motion per	
degree of freedom	Parallel Axis Theorem
7) Solve EOM if needed	$J_n = J_{ca} + ml^2$
Electrical Modeling Steps	Electrical Elements
1) DOF and System Order	Resistors $v_r = IR$
2) Constitutive coordinates and equations	Inductor $v_L = L\dot{I}$
3) KCL and KVL as needed	Capacitor $v_c = \frac{1}{2} \int I dt$
4) Repeat 2 and 3 as needed	
5) Simplify to one equation of motion per	
degree of freedom	
6) Solve EOM if needed	

Linearization

Small Angles $\cos(\theta) \approx 1 \sin(\theta) \approx \theta$	Taylor Series $f(x) \approx f(x_0) + \frac{\delta f}{\delta x} _{x_0}(x - x_0)$
	$f(x,y) = f(x_0) + f(y_0) + \frac{\delta f}{\delta x} _{x_0}(x - x_0) + \frac{\delta f}{\delta y} _{y_0}(y - y_0)$

Solving Differential Equations

Eigenvalue = s Characteristic Equation = 0 General Solution $x(t) = x_h(t) + x_p(t)$ Specific Solution - Given initial conditions solve for unknown homogeneous constant (i.e. C_1)

Real Eigenvalue	
Homogeneous Solution $x_h(t)$	$O = C_1 e^{st}$
Particular Solution Follows form of	- input
$F(t) = C \implies x_p(t) = C * G_{DC}$	
$F(t) = A\sin(\omega t) \implies$	$x_p(t) = A(gain)\sin(\omega t + \phi)$

1st Order Step Response

Frequency Response

Controls

