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Review of Differential 
Equations

Solving Differential Equations 
Analytically & Numerically with Matlab



Start with a Simple Example
• Ball falling in a vacuum
• We can use Newton’s 2nd Law to obtain the 

equation of motion for the ball 

�𝐹𝐹𝑦𝑦 = 𝑚𝑚𝑚𝑚 = 𝑚𝑚𝑦̈𝑦

𝑚𝑚𝑚𝑚 = 𝑚𝑚𝑦̈𝑦
𝑦̈𝑦 = 𝑔𝑔

• But now what?  What does this tell us?
– As engineers we want to know what happens to the ball 

over time
• Its Velocity
• Its Position
• Maybe its velocity at a certain position (height)

– So how do we obtain these things from the “model” 𝑚𝑚𝑚𝑚 =
𝑚𝑚𝑦̈𝑦 ?

• We can use calculus to integrate the acceleration with respect to time!
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Solving for Velocity
• So integrating the acceleration with respect to time

𝑣𝑣 𝑡𝑡 = �𝑔𝑔𝑔𝑔𝑔𝑔

• Since gravity is constant over time:

𝑣𝑣 𝑡𝑡 = �𝑔𝑔𝑔𝑔𝑔𝑔 = 𝑔𝑔𝑔𝑔 + 𝐴𝐴

• What is A?
– Its an initial condition (IC) or boundary condition coefficient

• Need to know the velocity at some point to solve for A
• Notice: 1 integration, 1 IC 
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Solving for Position
• Integrate the velocity with respect to time to get position

𝑣𝑣 𝑡𝑡 = �(𝑔𝑔𝑔𝑔 + 𝐴𝐴)𝑑𝑑𝑑𝑑 =
1
2
𝑔𝑔𝑡𝑡2 + 𝐴𝐴𝐴𝐴 + 𝐵𝐵

• What is B?
– Its another  initial condition (IC) or boundary condition coefficient

• Need to know the position at some point to solve for B
• Notice: 2 integrations, 2 ICs (A & B)

• Of course this is a well known equation that many of you 
have unfortunately memorized (1

2
𝑎𝑎𝑡𝑡2 + 𝑣𝑣0𝑡𝑡 + 𝑥𝑥0)

– Unfortunate because it is so easy to derive
– Unfortunate because it is doubtful that by memorizing the final 

answer you know the assumptions
• Constant acceleration with no other forces (i.e. a ball in a vacuum).
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Lets add some more reality
• I don’t know about you, but I none of the systems 

I work on operate in a vacuum!
• So lets add some realistic loss (such as air drag)

– If you have had fluid mechanics, you know that air drag 
is proportional to velocity squared

– However, for this example I am going to use a 
simplified loss that is simply proportional to velocity

• Still much more realistic than a vacuum!
𝐹𝐹𝐴𝐴𝐴𝐴 = 𝑏𝑏𝑏𝑏

• Again using Newton’s 2nd law on our FBD:

�𝐹𝐹𝑦𝑦 = 𝑚𝑚𝑚𝑚 = 𝑚𝑚𝑦̈𝑦

𝑚𝑚𝑚𝑚 − 𝐹𝐹𝐴𝐴𝐴𝐴 = 𝑚𝑚𝑦̈𝑦
𝑚𝑚𝑚𝑚 − 𝑏𝑏𝑏𝑏 = 𝑚𝑚𝑦̈𝑦
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Lets add some more reality
• Now we have a model of the ball with some resistance force 

acting on it.  
– But again, what we will want things like velocity and position of the 

ball over time.
• So how do we get this?

– We can’t just integrate like we did last time?  Why not?
• Well if we try and integrate acceleration to get velocity we have:

� ÿ =� gdt + �
b
m

vdt

– But what is the integral of velocity with respect to time ( ∫ vdt )
• Its not 𝑣𝑣𝑣𝑣 because velocity is not constant!
• If you say its position (which is true), you have not solved for velocity as a 

function of time because now your velocity result is a function of position (which 
we don’t know)!   And if you say we will integrate velocity to get position then that 
will be a function of the integral of positon!

• So you can’t use Calculus!  This is why we make you take an ENTIRE class to 
solve this type of problem

– ITS CALLED DIFFERENTIAL EQUATIONS!!!
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Looking at our new problem
• Lets rewrite our equation

𝑚𝑚𝑚𝑚 − 𝑏𝑏𝑏𝑏 = 𝑚𝑚𝑦̈𝑦
• Into the form:

𝑚𝑚𝑦̈𝑦 + 𝑏𝑏𝑏𝑏 = 𝑚𝑚𝑚𝑚
• Then rewriting velocity we get:

𝑚𝑚𝑦̈𝑦 + 𝑏𝑏𝑦̇𝑦 = 𝑚𝑚𝑚𝑚
• And now we see that our “model” turns out was a differential 

equation.
– This is why engineers take differential equations – it turns out that 

when you model engineering systems (fluids, thermodynamics, heat 
transfer, dynamics), the governing equations that describe what 
happens are differential equations.
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Looking at our differential equation
𝑚𝑚𝑦̈𝑦 + 𝑏𝑏𝑦̇𝑦 = 𝑚𝑚𝑚𝑚

• Some questions about our differential equation:
– What is its order?

• It looks to be 2nd order.  But in fact this differential equation is fundamentally 1st order.  This is because I can 
re-write this one in terms of velocity (you can’t always do this):

𝑚𝑚𝑣̇𝑣 + 𝑏𝑏𝑏𝑏 = 𝑚𝑚𝑚𝑚

• Some might says its 2nd order in position or 1st order in velocity.  But the fundamental differential equation that 
must be solved is 1st order (velocity).  From there I can solve for position by just integrating the solved velocity.

– Is it linear or non-linear?
• Its linear.  This is why I didn’t use real air drag (that would have made the differential equation non-linear):

𝑚𝑚𝑣̇𝑣 + 𝑏𝑏𝑣𝑣2 = 𝑚𝑚𝑚𝑚
– Is it homogeneous or non-homogeneous (i.e. does it have an input or is it being forced 

or is it just “free”)?
• There is an input (mg), therefore the differential equation is non-homogeneous.

– What is its output (i.e. what would be solving for)?
• The fundamental differential equation’s output is velocity.
• The original differential equation’s output is position. 

– Is it Time Invariant (i.e. does the differential equation change over time)?
• If m, b, and g are constant (which for our ball they should be), then the differential equation is time invariant.
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Solving our differential equation
𝑚𝑚𝑣̇𝑣 + 𝑏𝑏𝑏𝑏 = 𝑚𝑚𝑚𝑚

• Many ways to solve differential equations analytically (i.e. 
with an exact closed-form solution)
– Separation of variables (write 𝑣̇𝑣 = 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
)

• Applicable for 1st order differential equations
• Can be used to solve our problem with the non-linear air drag term!

– Undetermined Coefficients (i.e. “guessing” a solution)
• The method I prefer

– Laplace Transforms
• Converts differential equations from the time domain to the frequency domain
• Allows use of algebra to manipulate the equations
• Generally requires use of Laplace tables to solve the differential equations
• We will actually use Laplace Transforms later for representing differential 

equations
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Guess Solution
𝑚𝑚𝑣̇𝑣 + 𝑏𝑏𝑏𝑏 = 𝑚𝑚𝑚𝑚

• First we will “guess” a solution to the homogenous part of the 
differential equation
– Known as the homogenous solution or the unforced or free solution
– Set the input to zero:

𝑚𝑚𝑣̇𝑣 + 𝑏𝑏𝑏𝑏 = 0

• We could guess many solutions and check to see if they 
satisfy the above equation (remember the solution is velocity 
as a function of time that satisfies the governing equation) 
– Lets try v(t)=10

𝑚𝑚 0 + 10𝑏𝑏 ≠ 0
– Now v(t)=0 will work (but that is call the “trivial” solution – i.e. nothing)

𝑚𝑚 0 + 0𝑏𝑏 = 0
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Guess Solution
𝑚𝑚𝑣̇𝑣 + 𝑏𝑏𝑏𝑏 = 0

• Lets get smarter with our guesses.  We need something that 
its derivative can cancel with itself so that 𝑚𝑚𝑣̇𝑣 can cancel 𝑏𝑏𝑏𝑏

• In other words the solution has to be a form that when we take the 
derivative we get the same thing back.
– So we will guess a solution of the form: 𝑣𝑣 𝑡𝑡 = 𝐴𝐴𝑒𝑒𝑠𝑠𝑠𝑠

𝑣̇𝑣 𝑡𝑡 = 𝐴𝐴𝐴𝐴𝑒𝑒𝑠𝑠𝑠𝑠

• Now lets plug into our differential equation and see if it works 
as a solution:

𝑚𝑚 𝐴𝐴𝐴𝐴𝑒𝑒𝑠𝑠𝑠𝑠 + 𝑏𝑏𝑏𝑏𝑒𝑒𝑠𝑠𝑠𝑠 = 0
𝐴𝐴𝑒𝑒𝑠𝑠𝑠𝑠(𝑚𝑚𝑚𝑚 + 𝑏𝑏) = 0

• So this does work (i.e. the solution 𝑣𝑣 𝑡𝑡 = 𝐴𝐴𝑒𝑒𝑠𝑠𝑠𝑠 satisfies the 
differential equation 𝑚𝑚𝑣̇𝑣 + 𝑏𝑏𝑏𝑏 = 0) if:

𝑚𝑚𝑚𝑚 + 𝑏𝑏 = 0 (i.e. s=− 𝑏𝑏
𝑚𝑚

)              OR   𝐴𝐴 = 0
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Characteristic Equation & Eigenvalues
• Turns out that the equation 𝑚𝑚𝑚𝑚 + 𝑏𝑏 = 0 is so important it gets 

its own name
– Characteristic Equation
– Its solution provides the characteristics of the response of the differential 

equation

• And the solution to the characteristic equation is so important 
it gets its own name
– Eigenvalue(s)!
– You have one non-zero eigenvalue per fundamental order of the differential 

equation
– MECH3140 is all about eigenvalues!
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Particular Solution
• So we now have the homogenous solution:

𝑣𝑣ℎ 𝑡𝑡 = 𝐴𝐴𝑒𝑒−
𝑏𝑏
𝑚𝑚𝑡𝑡

• Now we have to solve for the particular solution or forced 
solution of the differential equation  

• For this we will guess a solution that is the form of the input 
plus all of its derivatives:
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Input Particular Solution Form
𝑐𝑐 𝑎𝑎
𝑐𝑐𝑐𝑐 𝑎𝑎1𝑡𝑡+𝑎𝑎2
𝑐𝑐𝑡𝑡2 𝑎𝑎1𝑡𝑡2 + 𝑎𝑎2𝑡𝑡+𝑎𝑎3

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔𝜔𝜔) 𝑎𝑎1𝑠𝑠𝑠𝑠𝑠𝑠 𝜔𝜔𝜔𝜔 + 𝑎𝑎2𝑐𝑐𝑐𝑐𝑐𝑐 𝜔𝜔𝜔𝜔



Common Types of inputs
• Impulse

– Modeled by the dirac delta function (δ)
• The dirac delta function is infinitely tall and infinitesimally 

narrow, such that the area under it is equal to one

�
−∞

∞
𝛿𝛿𝑑𝑑𝑑𝑑 = 1

– True impulses do not exist
– Usually modeled by a chance in initial condition after the 

impulse (using conservation of energy)

• Constant
– True constants rarely exist or are not of interest to 

us in dynamics
• If the input has been on for all time, then the system would be 

in steady state (equilibrium) and all the interesting transients 
are done

• Even our ball example does not have a true constant input

• Step Input
– This is a constant after some start time (usually t>0)
– The equivalent of turning on the input (i.e. flipping a 

switch)
• For our ball example, this would be letting go of the ball.  Prior 

to dropping the ball someone was holding it with a force 
equation to weight, meaning the total input was zero.  Once 
dropped, then the input became “mg”
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u(t)

t

u(t)

t
𝑢𝑢 𝑡𝑡 = �0 𝑡𝑡 < 0

𝑐𝑐 𝑡𝑡 ≥ 0

𝑢𝑢 𝑡𝑡 = 𝑐𝑐

u(t)

t𝑢𝑢 𝑡𝑡 = 𝛿𝛿(𝑡𝑡)



Common Types of inputs
• Ramp Input

– Grows linearly over time after some start time 
(usually t>0)

• Sinusoidal Input
– You need to be able to measure and understand 

frequency!
– You need to be able to go between Hz 

(cycles/sec) and rad/sec

• Note that inputs can also be combinations of 
multiple inputs (i.e. a sinusoid plus a constant 
or a step plus a ramp)
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u(t)

t
𝑢𝑢 𝑡𝑡 = �0 𝑡𝑡 < 0

𝑐𝑐𝑐𝑐 𝑡𝑡 ≥ 0

𝑢𝑢 𝑡𝑡 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝜔𝜔𝜔𝜔)

u(t)

t



Particular Solution
𝑚𝑚𝑣̇𝑣 + 𝑏𝑏𝑏𝑏 = 𝑚𝑚𝑚𝑚

• Our differential equation has a constant input (mg)
– At least from the time the ball was released (i.e from t=0)

• So we will guess a constant for the particular solution:
𝑣𝑣𝑝𝑝(𝑡𝑡) = 𝑐𝑐

• Plugging that solution into our differential equation we get:
𝑚𝑚 0 + 𝑏𝑏𝑏𝑏 = 𝑚𝑚𝑚𝑚

• Therefore:
𝑣𝑣𝑝𝑝(𝑡𝑡) = 𝑐𝑐 =

𝑚𝑚𝑚𝑚
𝑏𝑏
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Total Solution
𝑚𝑚𝑣̇𝑣 + 𝑏𝑏𝑏𝑏 = 𝑚𝑚𝑚𝑚

• The total solution is simply the sum of the particular and 
homogeneous solutions:

𝑣𝑣 𝑡𝑡 = 𝐴𝐴𝑒𝑒−
𝑏𝑏
𝑚𝑚𝑡𝑡 +

𝑚𝑚𝑚𝑚
𝑏𝑏

• But wait, we have an unknown coefficient (A)!
• Any ideas how we solve for that?

– Its our boundary condition or initial condition coefficient
– Exactly like when we integrate!
– Note we will get one IC coefficient for every order of the differential 

equation we solved!

17



Solving for the IC Coefficient
𝑚𝑚𝑣̇𝑣 + 𝑏𝑏𝑏𝑏 = 𝑚𝑚𝑚𝑚

• Note that you can not solve for the IC coefficient until you have 
solved for BOTH the homogeneous and particular solutions

𝑣𝑣 𝑡𝑡 = 𝐴𝐴𝑒𝑒−
𝑏𝑏
𝑚𝑚𝑡𝑡 +

𝑚𝑚𝑚𝑚
𝑏𝑏

• Lets assume the ball was let go from rest:
𝑣𝑣 0 = 0

• Then
0 = 𝐴𝐴𝑒𝑒0 +

𝑚𝑚𝑚𝑚
𝑏𝑏

• Therefore:
𝐴𝐴 = −

𝑚𝑚𝑚𝑚
𝑏𝑏

• And now we have our final solution:
𝑣𝑣 𝑡𝑡 =

𝑚𝑚𝑚𝑚
𝑏𝑏
−
𝑚𝑚𝑚𝑚
𝑏𝑏
𝑒𝑒−

𝑏𝑏
𝑚𝑚𝑡𝑡
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Solution
• So we started with the following governing equation:

𝑚𝑚𝑣̇𝑣 + 𝑏𝑏𝑏𝑏 = 𝑚𝑚𝑚𝑚
• And were able to find the solution to the velocity of the ball:

𝑣𝑣 𝑡𝑡 =
𝑚𝑚𝑚𝑚
𝑏𝑏
−
𝑚𝑚𝑚𝑚
𝑏𝑏
𝑒𝑒−

𝑏𝑏
𝑚𝑚𝑡𝑡

• Having now solved the fundamental differential equation, we 
could now integrate (or differentiate) the solution with respect 
to time to get the position (or acceleration) of the ball as a 
function of time.
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Plotting the Solution

𝑣𝑣 𝑡𝑡 =
𝑚𝑚𝑚𝑚
𝑏𝑏
−
𝑚𝑚𝑚𝑚
𝑏𝑏
𝑒𝑒−

𝑏𝑏
𝑚𝑚𝑡𝑡

• Lets see what the solution looks like over time
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𝑣𝑣𝑝𝑝(𝑡𝑡)

t

𝑣𝑣ℎ(𝑡𝑡)

t

- =𝑚𝑚𝑚𝑚
𝑏𝑏

𝑚𝑚𝑚𝑚
𝑏𝑏

𝑣𝑣(𝑡𝑡)

t

𝑚𝑚𝑚𝑚
𝑏𝑏



A different system
𝑚𝑚𝑥̈𝑥 + 𝑘𝑘𝑘𝑘 = 0
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• Consider the system above
– What is the order? 

• 2nd Order
– Homogeneous or non-homogeneous

• Homogeneous (there is no input)
– Linear or non-linear

• Linear
– What is the output?

• x (which in this class is usually position)

• What can we use for the homogeneous solution?
– 𝑥𝑥 𝑡𝑡 = 𝐴𝐴𝑒𝑒𝑠𝑠𝑠𝑠

• This will work, but ….



A different system
𝑚𝑚𝑥̈𝑥 + 𝑘𝑘𝑘𝑘 = 0
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• We can also see that we need to the 2nd derivative 
to cancel with itself.

• Therefore, there is another function that we can use 
in this case for the homogeneous solution
– 𝑥𝑥 𝑡𝑡 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝜔𝜔𝜔𝜔)

• Note since an exponential and sinusoid will both satisfy the above 
differential equation, a sinusoid must be representable by an 
exponential (known as Euler’s identity – look it up if you have 
forgotten it).

• Taking derivatives of our “guess” solution to plug in:
𝑥̇𝑥 𝑡𝑡 = 𝐴𝐴𝜔𝜔𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔𝜔𝜔)
𝑥̈𝑥 𝑡𝑡 = −𝐴𝐴𝜔𝜔2𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔)



A different system
𝑚𝑚(−𝐴𝐴𝜔𝜔2𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔)) + 𝑘𝑘𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝜔𝜔𝜔𝜔) = 0

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝜔𝜔𝜔𝜔 𝑚𝑚𝜔𝜔2 + 𝑘𝑘 = 0
• Therefore, the sinusoid fits the solution if:

𝑚𝑚𝜔𝜔2 + 𝑘𝑘 = 0
or

𝜔𝜔 =
𝑘𝑘
𝑚𝑚

• So our solution is:

𝑥𝑥 𝑡𝑡 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
𝑘𝑘
𝑚𝑚
𝑡𝑡
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x(t)
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A different system
• Think about how the solution to the two different differential 

equations differs (that is a lot of “diff” words in one bullet).
– The first problem had a homogeneous solution that was an exponential 

decay
– The second problem had a homogeneous solution that was oscillatory 

(i.e. a sinusoid).
• By solving these two different differential equations, we now 

have some incredible insight (if we pay attention to our 
answers) that we can use going forward without having to 
solve the differential equation!

– We can start to understand what kind of model would be needed (or what the differential 
equation is) for a system we observe by knowing this difference

– We can understand what the response will be for a system that we have modeled before 
ever solving the differential equation

– We can figure out how to BUILD a system to respond/behave in a certain way by knowing 
this difference in solutions to differential equations

• Pretty cool (and powerful) when you think about it!
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Numerical Solutions
• Another way to approximate the solution to a differential 

equations is to use numerical methods
• In this method, we solve for the highest derivative, assume it is 

constant over some small period of time (which is not true 
since the derivative is actually a function of the integral) and 
take the area under the curve to integrate that derivative.

• So for our problem we would re-write it as:
𝑣̇𝑣 =

𝑏𝑏
𝑚𝑚
𝑣𝑣 +

𝑚𝑚𝑚𝑚
𝑚𝑚

– Given an initial velocity, the acceleration (i.e. 𝑣̇𝑣) can be calculated
• Note that when solving the differential equation you still need initial conditions!

– This acceleration can then be numerically integrated using one of several 
methods:

• Euler’s Integration
• Trapezoidal
• Runge-Kutta (i.e. ode23 and ode 45)
• Simpson
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Numerical Solutions
• An illustration of the numerical integration is shown below

– Note that the acceleration is not known for all time since it is a function of 
velocity (i.e. it’s a function of the area under the curve)!

– Since the velocity is the area under the acceleration, the “new” velocity can be 
found over time by summing up the area under the curve

𝑣𝑣𝑘𝑘 = �
𝑖𝑖=1

𝑘𝑘

𝐴𝐴𝑖𝑖

– Using simple Euler Integration of height (𝑣̇𝑣) times width (∆𝑡𝑡) each area (and 
thus velocity at each time step) can be calculated from: 𝐴𝐴𝑖𝑖 = 𝑣̇𝑣𝑖𝑖∆𝑡𝑡 = 𝑏𝑏

𝑚𝑚
𝑣𝑣𝑖𝑖 + 𝑚𝑚𝑚𝑚

𝑚𝑚
∆𝑡𝑡

– The velocity at each time step is simply the sum of the areas:
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𝑣̇𝑣

t,k

A1 A2 A3 An…

∆𝑡𝑡

v(k=1)=A1+v(0)
v(k=2)=A1+A2+v(0)=v(k=1)+A2
v(k=3)=A1+A2+A3+v(0)=v(k=2)+A3

K=1



Numerical Solutions
• Several errors that occur in numerical solutions

– The “missed” area under the curve (as seen in the diagram)
• This can be corrected by using a smaller sample rate (i.e. smaller Δt) or higher order polynomial than just 

rectangles (i.e. trapezoidal, Runge-Kutta, etc.)

– The assumption that 𝑣̇𝑣 is constant over the period Δt
• 𝑣̇𝑣 is a function of velocity (which is the area under the curve) and therefore can not be constant!
• This error is also minimized with small sample rate

• Note that using small sample rates increase the number of times you must 
calculate the area over a given time period

– This increased the length of time to run the numerical integration
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𝑣̇𝑣

t

A1 A2 A3 An…

∆𝑡𝑡



Matlab Code
clear all;close all;
% Initialize all variables
m_ball=5;             % mass in kg
b_ball=3; %resistance in Ns/m
gc=9.81; %gravitation constant in SI
end_time=10; %end time in seconds
del_t=1/1000; %integration sample rate in seconds

LN=end_time/del_t; %number of samples to run the simulation

% Initialize matrix sizes since matlab does not allocate memory ahead of time
v_dot(1:LN)=NaN;
vel(1:LN)=NaN;
time(1:LN)=NaN;
%Initial Conditions
time(1)=0 %start time in sec
vel(1)=0 % initial velocity in m/s

for index=1:LN
v_dot(index)=-(b_ball/m_ball)*vel(index)+(m_ball*gc/m_ball); % calculating the accel
vel(index+1)=vel(index)+v_dot(index)*del_t;        % calculating the area & adding to prev area to get vel
time(index+1)=time(index)+del_t;

end

plot(time,vel); xlabel('Time (sec)');ylabel('Ball Velocity (m/s)');grid; 28



Some Matlab Tips
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• Define all your variables first
– Don’t calculate values that matlab will calculate
– Write your code in terms of all your variables so you can easily 

change them.
– Example: Instead of m=10; g=9.81; weight=98.1;

Use: m=10; g=9.81; weight=m*g;

• Define the size of matrices upfont
– Matlab allocates memory as it “needs” it. 
– This will decrease run time

• Avoid generic variable names like “k”
– You would not believe the number of times students have used k 

for spring and k for the index and can’t figure out why their code 
doesn’t work when they had a spring that was changing from 1 
to 100 (i.e. for k=1:100)



Solving with Laplace Transforms
• Laplace Transforms also provide a method to solve differential 

equations
– This method usually requires look up tables and sometimes difficult 

partial fraction expansion to use the look up tables.

30
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