MECH 5970/6970 (GPS)
Homework #1
Due: 1/30/2023

1. Chapter 1, Problem 1-4

2. Generate two random sequences that are 100 long and randomly comprised of +1 and -1. There are several ways to do this using the normal Gaussian random signal generator (randn) or the uniformly distributed random signal generator (rand):

 \[>2*\text{ceil}((\text{rand}(100,1)-0.5)-1) \]
 \[>2*\text{ceil}(0.1*\text{randn}(100,1))-1 \]

 a) Plot the histogram on each sequence
 b) Plot the spectral analysis on each sequence

 There are multiple methods to make the Power Spectral Density (PSD):

 \[>\text{periodogram}(X) \]
 \[>\text{pwelch}(X,\text{window} _\text{filter}) \]
 \[>\text{plot(abs(fft}(X)) \]

 c) Plot the autocorrelation each sequence with itself (i.e. a sequence delay cross correlation)
 d) Plot the cross autocorrelation between the two sequences

Bonus: Repeat for a sequence that is 1000 long and compare to above.

3. Generate 3 sequences 1000 long:
 A=3+3*randn(1000,1)
 B=5+5*randn(1000,1)
 C=A+B
 DATA=[A B C]

 a) Find the mean (>>\text{mean}) and variance (>>\text{std} or >>\text{var}) for A, B, and C
 b) Find the mean of DATA
 c) Find the Covariance Matrix of DATA (>>\text{cov})

4. Develop the Taylor Series linearized approximation the following equation

 \[r(x, y) = \sqrt{(x-a)^2 + (y-b)^2} \]