AUBURN

UNIVERSITY

GPS Satellite Orbits

MECH 5970/6970
Fundamentals of GPS

- GPS consists of 24+ satellite vehicles (SVs)
- The orbits are:
- 6 orbital planes
- 55 degree inclination angles
- less coverage at poles
- Approximate circular orbits
- 12 sidereal hour orbits
- SV position repeats approximately every 23:56 hours
- 20,162 km from equator
- 26,561 km from center of earth
- Travel at approximately $2.7 \mathrm{~km} / \mathrm{sec}$

GPS Satellite Orbits

- 24+ satellites
(space vehicles or SVs)
- 6 orbital planes
- 55 degree inclination
- (Mostly) circular orbits
- 12 sidereal hour orbits
- $26,561 \mathrm{~km}$ from earth's center
- 20,162 altitude (equatorial)
- $2.7 \mathrm{~km} /$ second

How do we figure out where the satellites in view are right now (i.e., how do we get a good estimate of \boldsymbol{X} ?)

GPS Sidereal Time

Sidereal Time

- 24 sidereal hours: Earth rotates once in inertial space
- 24 hours (solar hours): Earth rotates 1.002738 times in inertial space
- 12 sidereal hour GPS orbit --> GPS satellites follow (roughly) the same ground tracks every day!

$$
\begin{aligned}
\mu_{E} & =3,986,004.418 \frac{\mathrm{~m}^{3}}{\mathrm{~s}^{2}} \\
G & =6.674 \times 10^{-11} \frac{\mathrm{~m}^{3}}{\mathrm{kgs}^{2}}
\end{aligned}
$$

Earth

$$
F=\frac{G M_{E} m_{s v}}{r^{2}}=\frac{\mu_{E} m_{s v}}{r^{2}}
$$

- Using Newton's Laws: $\Sigma F=m \ddot{x}$
-SV:

$$
m_{s v} \ddot{r}_{S}=\frac{-G M_{E} m_{s v}}{r^{2}} \cdot \frac{\vec{r}}{r}=\frac{-G M_{E} m_{s v}}{r^{3}} \vec{r}
$$

- Earth:

$$
M_{E} \ddot{r}_{E}=\frac{G M_{E} m_{s v}}{r^{2}} \cdot \frac{\vec{r}}{r}=\frac{G M_{E} m_{s v}}{r^{3}} \vec{r}
$$

- Taking the difference in the two equations:

$$
M_{E} m_{s v} \ddot{r}_{s}-M_{E} m_{s v} \ddot{r}_{E}=\frac{-G M_{E} m_{s v}^{2}}{r^{3}} \vec{r}-\frac{G M_{E}^{2} m_{s v}}{r^{3}} \vec{r}
$$

- Provides the relative position vector:

$$
\begin{aligned}
& M_{E} m_{s v} \ddot{\vec{r}}=\frac{-G}{r^{3}} \vec{r}\left(M_{E} m_{s v}^{2}+M_{E}^{2} m_{s v}\right) \\
& \ddot{\vec{r}}=\frac{-G}{r^{3}} \vec{r}\left(M_{E}+m_{s v}\right)
\end{aligned}
$$

$$
\ddot{\vec{r}}+\frac{G M_{t o t}}{r^{3}} \vec{r}=0
$$

- $6^{\text {th }}$ order non-linear homogeneous differential equation
- Requires 6 Initial Conditions
- $\vec{r}(o)$ and $\dot{\vec{r}}(o)$
- The solution to the differential equations results in Kepler's 3 Laws of orbits

1) Elliptical Motion
2) Motion is faster when closer to the orbiting body
(i.e. Earth for SVs)
3) $t_{o r b i t}^{2}=k d_{a v g}^{3}$

Position of the SV in orbital plane

Orbits (2 of 5)
\longrightarrow Period of the orbit Orbits are ellipses...

Apogee
$b=a \sqrt{1-e^{2}}$
$e \Rightarrow$ eccentricity of the orbit
$e^{2}=a^{2}-b^{2}$

Definitions of the orbital frame

$$
n=\frac{2 \mu}{T_{p}}=\sqrt{\frac{\mu}{a^{3}}}=\sqrt{\frac{6 M}{a^{3}}} \quad \text { Orbits (3 of 5) }
$$

$$
x=|r| \cos (v)
$$

$$
y=|r| \sin (v)
$$

$$
\begin{aligned}
M & =n\left(t-t_{\text {PERIGEE }}\right) \\
M & =E-e \sin E \\
& \nu E \operatorname{atan} 2\left[\frac{122^{2}}{\operatorname{Lon} E-E}\right]
\end{aligned}
$$

$$
|r|=\frac{a\left(1-e^{2}\right)}{1+e \cos (v)}=a(1-e \cos (E))
$$

$$
v=\tan ^{-1}\left(\frac{\sin (E) \sqrt{1-e^{2}}}{\cos (E)-e}\right)
$$

Position Variables in the Orbital Plane

- Mean angular velocity:
$-n=\frac{2 \pi}{T}=\frac{G M}{a^{3}}$
- where M is the mean anomaly
- The angle from perigee and an SV at constant velocity in a circular orbit with the same focus and period as the real SV (i.e. they cross at perigee and apogee at the same time)

$$
\begin{gathered}
M_{S V}=E_{S V_{\text {circular orbit }}} \\
M=n\left(t-t_{\text {perigee }}\right)=E-e \sin (E)
\end{gathered}
$$

- Must solve for M iteratively until $\Delta E<1 \times 10^{-12}$

$$
E=M+e \sin (E)
$$

- Taking the derivative with respect to time results in:

$$
\begin{gathered}
\dot{M}=\dot{E}(1-\cos (E))=n \\
\dot{r}_{T}=\dot{R}_{3}(\theta) r_{I}+R_{3}(\theta) \dot{r}_{I} \\
\dot{r}_{x}=\frac{-\operatorname{nasin}(E)}{1-e \cos (E)} \quad \dot{r}_{y}=\frac{\operatorname{nacos}(E) \sqrt{1-e^{2}}}{1-e \cos (E)}
\end{gathered}
$$

- Taking the derivative again results in:

$$
\ddot{\vec{r}}=\frac{-G M_{t o t}}{r^{3}} \vec{r}
$$

Rotation Matrices

- We have to move the SV positions from their orbital frame to the Earth Center Earth Frame (ECEF)
- This requires rotating the position from one frame to the other
- This is done through rotation matrices
- NOTE: Order of rotations is critical (i.e. the order changes the answer)
- Ex: roll 90, pitch 90, yaw 90 vs. yaw 90, roll 90, pitch 90
- A couple of good resources:
- http://www.chrobotics.com/library/understanding-euler-angles
- https://phas.ubc.ca/~berciu/TEACHING/PHYS206/LECTURES/FILES/euler.pdf

Rotations from ECEF to Orbit Frame

- From Inertial to Body Frame

Rotate the Position about z-axis

A UBURN

Orbits (4 of 5)

Rotation about x-axis

Orbits (5 of 5)

- To calculate the position in the orbital frame from the inertial (ECEF) frame is done by:
- Spin by Ω deg about z axis
- This rotates the $x-y$ axis around the earth
- Then spin by i degrees about the x axis
- This rotates the $y-z$ axis to the orbit inclination
- Finally spin by ω degrees about the z axis
- This rotates the x-y axis about the earth to place the ellipse "centered" correctly

$$
\vec{r}=R_{3}(\omega) R_{1}(i) R_{3}(\Omega) \vec{r}_{I}
$$

Rotations from ECEF to Orbit Frame

$$
\vec{r}=R_{3}(\omega) R_{1}(i) R_{3}(\Omega) \vec{r}_{I}
$$

Rotation Matrices

- In reality, the SV position is defined in the orbital plane and we must calculate the position in the ECEF Frame
- Using properties of rotation matrix inverses

$$
R^{-1}(\theta)=R(-\theta)=R^{T}(\theta)
$$

- results in: $\quad \vec{r}_{I}=R_{3}(-\Omega) R_{1}(-i) R_{3}(-\omega) \vec{r}$
- Then rotating to the Greenwich Sidereal time:

$$
\vec{r}_{T}=R_{3}(\theta) \vec{r}_{I}
$$

- Note this last rotation is about the same axis as the RAAN angle. GPS definitions combine these two rotations!
- GPS also calculates the position from the ascending node:

$$
\phi=\omega+v
$$

- Therefore we do not have to do the last rotation about the z axis.
- Position is then calculated as:

$$
\begin{aligned}
& x=r \cos (\phi) \\
& y=r \sin (\phi)
\end{aligned}
$$

- Rotating the position from the orbital frame into inertial frame:

$$
\vec{r}_{I}=R_{3}(-\Omega) R_{1}(-i) \vec{r}
$$

GPS SV Position Rotation

- Rotating the position into inertial frame:

$$
\vec{r}_{I}=R_{3}(-\Omega) R_{1}(-i) \vec{r}
$$

- As mentioned previously, GPS uses Longitude of Ascending Node (LAN) which combines the Right Ascension of Ascending Node (RAAN) and the Greenwich Apparent Sidereal Time (GAST) rotations as:

$$
\Omega=\Omega_{L A N}(t)=\Omega_{R A A N}-\theta_{G A S T}(t)
$$

- This makes it easier to go to WGS84 ECEF Frame

GPS Position Rotations

- Calculating the SV position in ECEF:

$$
\begin{aligned}
{\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] } & =R_{3}(-\Omega) R_{1}(i)\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right]\left[\begin{array}{ccc}
c \Omega & -s \Omega & 0 \\
s \Omega & c \Omega & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & c i & -s i \\
0 & s i & c i
\end{array}\right]\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
c \Omega & -s \Omega & 0 \\
s \Omega & c \Omega & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} c i \\
y^{\prime} s i
\end{array}\right]=\left[\begin{array}{c}
x^{\prime} \cos (\Omega)-y^{\prime} \sin (\Omega) \cos (i) \\
x^{\prime} \sin (\Omega)+y^{\prime} \cos (\Omega) \sin (i) \\
y^{\prime} \sin (i)
\end{array}\right]
\end{aligned}
$$

- Where

$$
\begin{gathered}
x^{\prime}=r \cos (v+\omega) \\
y^{\prime}=r \sin (v+\omega) \\
z^{\prime}=0 \\
\Omega=\Omega_{L A N}
\end{gathered}
$$

- Orbits are perturbed
- Rocket firing interventions
- Non-central (uniform) gravitational force field
- Equatorial bulge
- Produced torque on SV
- Harmonic pertubations (twice per orbit)
- Gravity of Sun and Moon
- Solar radiation pressure

$$
\begin{gathered}
\ddot{\vec{r}}=-\frac{G M_{t o t}}{r^{3}} \vec{r}+F_{d i s t}(r, \dot{r}, t) \\
\frac{G M_{t o t}}{r^{3}} \vec{r} \gg F_{d i s t}(r, \dot{r}, t)
\end{gathered}
$$

GPS SV Positions

GPS Ephemeris, cont'd.

$$
\bar{X}^{(k)}=\bar{X}_{\text {Broadcast }}^{(k)}+\underbrace{d \bar{X}^{(k)}}_{\text {Error ~osmall }}
$$

But again, GPS does not broadcast its position but rather ephemerides and ephemeris correction terms (curve fits) to calculate the correct SV position (from Kepler orbital mechanics)

GPS Ephemeris

GPS Ephemeris

- "Ephemeris" = Orbit data
- "Ephemerides" = Individual parameters of orbit

You provide:	\boldsymbol{t}
GPS provides:	$\boldsymbol{t}_{o e}$

...and nominal
ephemerides:
$a, e, M_{0}, \omega_{0}, i_{0}, \Omega_{0}$,
...and pertubation effects:
(1) Non-spherical Earth
(2) Tidal effects
(3) Solar radiation pressure

- Note that "t" is transmit time (i.e. time at SV transmission), so it must be corrected for transit time. This is done by taking the range/c.
- You can use the corrected pseudorange/c
- Will have some small error
- Or you must solve for the SV positions iteratively with your position to calculate exact transit time.
- Additionally you may want to account for the fact that the earth has rotated during the transit time
- Some code (including what I share on the website) does this.
- Blue book and Akos SV calculator do not.

SV Calculation Equation

J. J. SPILKER JR.
Table 8 Elements of ephemeris model equations ${ }^{1}$

Note: You must iterate to solve Kepler's equation for the eccentric anomaly, (i.e., to solve for E given M). There are many interesting ways to do this, but for this exercise, simply iterate on the equation $E=M+e^{*} \sin (E)$. Start with

SV Clock Data Corrections

GPS Satellite Clock

$$
\begin{aligned}
& B^{(k)}=B_{\text {Broadcast }}^{(k)}+d B^{(k)} \\
& B_{\text {Broadcast }}^{(k)}=a f_{0}+a f_{1}(\boldsymbol{T t r}-T o c)+ \\
& a f_{2}(\boldsymbol{T t r}-\operatorname{Toc})^{2}+\Delta T_{r e l}+T_{g d}{ }_{\text {From satelifite }}
\end{aligned}
$$

Don't forget that this term must be used to correct the pseudoranges in the PVT solution

Ephemeris Updates

- Ephemeris are updated every 2 hours
- Issue of Data Ephemeris (IODE) - Change in IODE indicates an update to the ephemeris
- Ephemeris are good for 4 hours
- Will maintain GPS spec for up to 4 hours
- Ephemeris refers to the group of data (each are called ephemerides)
- Must check for time rollover of $t-t_{o e}$ at beginning/end of week

So How Do We Get Broadcast Parameters in Real Life?

- Navigation message: Data stream broadcast from each satellite
- You can only get the data from satellites you are tracking
- Overlaid on GPS code (the "chips")
- GPS C/A code repeats 20 times per bit
- 50 bits/second
- 1500 bits = 1 "frame" --> 1 frame $=30$ seconds
- Frames "repeat" every 30 seconds

NOTE: Takes 30 seconds to receive all the ephemeris to compute the SV potions (but after 30 seconds, the data is good to be used for 4 hours!)

Frames and Sub-Frames (1 of 5)

- TLM begins with an 8 bit synchronization pattern
- 10001011 (0x8B)
- Occurs every 6 seconds
- HOW is the 17 MSB of the 19 bit Time of Week (TOW) count
- 6 seconds of resolution
- GPS Time is 29 bits
- 10 bits for week (1024)
- 19 bits for TOW (1.5 second increments)

Frames and Sub-Frames (2 of 5)

- Subframe $=6$ seconds (300 bits)
- 5 subframes per frame
- Subframes 1-3: "Repeat" every 30 seconds
- Subframes 4-5:
- 25 "pages" for each, repeating after page number 25.
- Pages increment each 30 seconds
- Thus, it takes 25×30 seconds $=12.5$ minutes to guarantee reception of all 25 pages for subframes 4 \& 5 (assuming continuous navigation data signal)

Frames and Sub-Frames (3 of 5)

- Subframe 1: Info. and clock parameters for satellite being tracked:
- Subframe 2: Epemerides for satellite being tracked.
- Subframe 3: More ephemerides for satellite being tracked.
- Subframe 4: Information for GPS system or almanac for 1 satellite (not necessarily the satellite being tracked).
- Subframe 5: More almanacs for 1 satellite (not necessarily the satellite being tracked).

Sub-frame Details

Frames and Sub-Frames (4 of 5)

(from Global Positioning System: Theory and Applications by AIAA)

Sub-frame Details

Frames and Sub-Frames (5 of 5)

... heserved discusseo later
‥ RESERVED. DISCUSSED LATEA
$t=$ TWO NONINFORMATION BEARING
TI THO NONINFORMATKON QEARING BITS USED FOR PARIIY COMPUTATION (SEE PARITY CHECK AL GORITHM)

$C=$ TLN BITS 23 AND 24 WHICH ARE RESERVED
(from Global Positioning System: Theory and Applications by AIAA)

Example Ephemeris

Example: Navigation data for PRN 6

TIME (sec)	SUBFRAME (page)	MESSAGE
0	1	Info, clock for PRN 6
6	2	Ephemeris for PRN 6
12	3	More ephemeris for PRN 6
18	$4(18)$	Ionosphere, week number, etc.
24	$5(18)$	Almanac for PRN 2
30	1	Info, clock for PRN 6
36	2	Ephemeris for PRN 6
42	3	More ephemeris for PRN 6
48	$4(19)$	More GPS info....
54	$5(19)$	Almanac for PRN 3

Reference Guide

- GPS Interface Specifications:
- IS-GPS-200D (revised 2006)
https://www.gps.gov/technical/icwg/IS-GPS-200D.pdf
- Appendix II (pp 65-136) provides details on broadcast data
- Table 20-IV (pp 97-98) provides the SV position calculation details

Ephemeris Data Repositories

- https://www.igs.org/products\#precise orbits
- https://urs.earthdata.nasa.gov/oauth/authorize?client id=gDQnv1IO0j9O2xXdwS8KMQ\&res ponse type=code\&redirect uri=https\%3A\%2F\%2Fcddis.nasa.gov\%2Fproxyauth\&state=aH R0cDovL2NkZGIzLm5hc2EuZ292L2FyY2hpdmUvZ25zcy9wcm9kdWN0cy8
- https://cddis.nasa.gov/Data and Derived Products/GNSS/orbit products.htm|
- https://cddis.nasa.gov/Data and Derived Products/GNSS/broadcast ephemeris data.html
- https://www.ngs.noaa.gov/orbits/

Some of the above contain "precise" ephemeris (i.e. correct ephemeris)

GNSS Planning Tools (and Skyplots)

- Sky plots show the satellite locations with respect to the user in elevation (from the horizon) and azimuth (from north)

https://www.gnssplanning.com
http://gnssmissionplanning.com
https://www.mathworks.com/matlabcentral/fileexchange/25557-sky-plot-3d

