

GPS Satellite Orbits

MECH 5970/6970 Fundamentals of GPS

1

- GPS consists of 24+ satellite vehicles (SVs)
- The orbits are:
 - 6 orbital planes
 - 55 degree inclination angles
 - less coverage at poles
 - Approximate circular orbits
 - 12 sidereal hour orbits
 - SV position repeats approximately every 23:56 hours
 - 20,162 km from equator
 - 26,561 km from center of earth
 - Travel at approximately 2.7 km/sec

GPS Satellite Orbits

- 24+ satellites (space vehicles or SVs)
- 6 orbital planes
- 55 degree inclination
- (Mostly) circular orbits
- 12 sidereal hour orbits
- 26,561 km from earth's center
- 20,162 altitude (equatorial)
- 2.7 km/second

How do we figure out where the satellites in view are right now (i.e., how do we get a good estimate of X?)

GPS Sidereal Time

4

Newton vs. Kepler

• Using Newton's Laws: $\Sigma F = m\ddot{x}$

- SV:
$$m_{sv}\ddot{r}_{s} = \frac{-GM_{E}m_{sv}}{r^{2}} \cdot \frac{\vec{r}}{r} = \frac{-GM_{E}m_{sv}}{r^{3}}\vec{r}$$

– Earth:

$$M_E \ddot{r}_E = \frac{GM_E m_{sv}}{r^2} \cdot \frac{\vec{r}}{r} = \frac{GM_E m_{sv}}{r^3} \vec{r}$$

 Taking the difference in the two equations:

$$M_E m_{sv} \ddot{r}_s - M_E m_{sv} \ddot{r}_E = \frac{-G M_E m_{sv}^2}{r^3} \vec{r} - \frac{G M_E^2 m_{sv}}{r^3} \vec{r}$$

Provides the relative position vector:

$$M_E m_{sv} \ddot{\vec{r}} = \frac{-G}{r^3} \vec{r} (M_E m_{sv}^2 + M_E^2 m_{sv})$$
$$\ddot{\vec{r}} = \frac{-G}{r^3} \vec{r} (M_E + m_{sv})$$

Newton vs. Kepler

$$\ddot{\vec{r}} + \frac{GM_{tot}}{r^3}\vec{r} = 0$$

- 6th order non-linear homogeneous differential equation
 - Requires 6 Initial Conditions
 - $\vec{r}(o)$ and $\dot{\vec{r}}(o)$
- The solution to the differential equations results in Kepler's 3 Laws of orbits
 - 1) Elliptical Motion
 - 2) Motion is faster when closer to the orbiting body
 - (i.e. Earth for SVs)

3) $t_{orbit}^2 = k d_{avg}^3$

Position of the SV in orbital plane

 $e^2 = a^2 - b^2$

Definitions of the orbital frame

• Mean angular velocity:

$$-n = \frac{2\pi}{T} = \frac{GM}{a^3}$$

– where *M* is the mean anomaly

 The angle from perigee and an SV at constant velocity in a circular orbit with the same focus and period as the real SV (i.e. they cross at perigee and apogee at the same time)

$$\begin{split} M_{SV} &= E_{SV_{circular\,orbit}} \\ M &= n \big(t - t_{perigee} \big) = E - esin(E) \\ - \text{Must solve for } M \text{ iteratively until } \Delta E < 1 \times 10^{-12} \\ E &= M + esin(E) \end{split}$$

Taking the derivative with respect to time results in:

$$\dot{M} = \dot{E}(1 - \cos(E)) = n$$
$$\dot{r}_T = \dot{R}_3(\theta)r_I + R_3(\theta)\dot{r}_I$$
$$\dot{r}_x = \frac{-nasin(E)}{1 - ecos(E)} \qquad \dot{r}_y = \frac{nacos(E)\sqrt{1 - e^2}}{1 - ecos(E)}$$

• Taking the derivative again results in:

$$\ddot{\vec{r}} = \frac{-GM_{tot}}{r^3}\vec{r}$$

- We have to move the SV positions from their orbital frame to the Earth Center Earth Frame (ECEF)
- This requires rotating the position from one frame to the other
 - This is done through rotation matrices
 - NOTE: Order of rotations is <u>critical</u> (i.e. the order changes the answer)
 - Ex: roll 90, pitch 90, yaw 90 vs. yaw 90, roll 90, pitch 90
 - A couple of good resources:
 - <u>http://www.chrobotics.com/library/understanding-euler-angles</u>
 - https://phas.ubc.ca/~berciu/TEACHING/PHYS206/LECTURES/FILES/euler.pdf

From Inertial to Body Frame

Rotate the Position about z-axis

14

- To calculate the position in the orbital frame from the inertial (ECEF) frame is done by:
 - Spin by Ω deg about z axis
 - This rotates the x-y axis around the earth
 - Then spin by i degrees about the x axis
 - This rotates the y-z axis to the orbit inclination
 - Finally spin by ω degrees about the z axis
 - This rotates the x-y axis about the earth to place the ellipse "centered" correctly

$$\vec{r} = R_3(\omega) R_1(i) R_3(\Omega) \vec{r}_I$$

 $\vec{r} = R_3(\omega) R_1(i) R_3(\Omega) \vec{r}_I$

- In reality, the SV position is defined in the orbital plane and we must calculate the position in the ECEF Frame
- Using properties of rotation matrix inverses $R^{-1}(\theta) = R(-\theta) = R^{T}(\theta)$
 - results in: $\vec{r}_I = R_3(-\Omega)R_1(-i)R_3(-\omega)\vec{r}$
- Then rotating to the Greenwich Sidereal time: $\vec{r}_T = R_3(\theta)\vec{r}_I$
 - Note this last rotation is about the same axis as the RAAN angle. GPS definitions combine these two rotations!

• GPS also calculates the position from the ascending node:

$$\phi = \omega + v$$

- Therefore we do not have to do the last rotation about the z axis.
- Position is then calculated as:

 $x = rcos(\phi)$ $y = rsin(\phi)$

• Rotating the position from the orbital frame into inertial frame:

$$\vec{r}_I = R_3(-\Omega)R_1(-i)\vec{r}$$

- Rotating the position into inertial frame: $\vec{r}_I = R_3(-\Omega)R_1(-i)\vec{r}$
- As mentioned previously, GPS uses Longitude of Ascending Node (LAN) which combines the Right Ascension of Ascending Node (RAAN) and the Greenwich Apparent Sidereal Time (GAST) rotations as:

$$\Omega = \Omega_{LAN}(t) = \Omega_{RAAN} - \theta_{GAST}(t)$$

- This makes it easier to go to WGS84 ECEF Frame

GPS Position Rotations

• Calculating the SV position in ECEF:

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = R_3(-\Omega)R_1(i) \begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} c\Omega & -s\Omega & 0 \\ s\Omega & c\Omega & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & ci & -si \\ 0 & si & ci \end{bmatrix} \begin{bmatrix} x' \\ y' \\ z' \end{bmatrix}$$

$$= \begin{bmatrix} c\Omega & -s\Omega & 0\\ s\Omega & c\Omega & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x'\\y'ci\\y'si \end{bmatrix} = \begin{bmatrix} x'cos(\Omega) - y'sin(\Omega)cos(i)\\x'sin(\Omega) + y'cos(\Omega)sin(i)\\y'sin(i) \end{bmatrix}$$

- Where

$$x' = rcos(v + \omega)$$

$$y' = rsin(v + \omega)$$

$$z' = 0$$

$$\Omega = \Omega_{LAN}$$

- Orbits are perturbed
 - Rocket firing interventions
 - Non-central (uniform) gravitational force field
 - Equatorial bulge
 - Produced torque on SV
 - Harmonic pertubations (twice per orbit)
 - Gravity of Sun and Moon
 - Solar radiation pressure

$$\ddot{\vec{r}} = -\frac{GM_{tot}}{r^3}\vec{r} + F_{dist}(r,\dot{r},t)$$
$$\frac{GM_{tot}}{r^3}\vec{r} \gg F_{dist}(r,\dot{r},t)$$

GPS SV Positions

GPS Ephemeris, cont'd.

But again, GPS does not broadcast its position but rather ephemerides and ephemeris correction terms (curve fits) to calculate the correct SV position (from Kepler orbital mechanics)

GPS Ephemeris

GPS Ephemeris

- "Ephemeris" = Orbit data
- "Ephemerides" = Individual parameters of orbit

You provide:tGPS provides: t_{oe} ...and nominal
ephemerides: $\sqrt{a}, e, M_0, \omega_0, i_0, \Omega_0$...and pertubation effects: $\sqrt{a}, e, M_0, \omega_0, i_0, \Omega_0$...and pertubation effects: $\Delta n, (IDOT), \dot{\Omega}, \int_{Pertubation}^{Secular} Pertubation(1) Non-spherical Earth<math>C_{ucos}, C_{usin}, C_{rcos}, \int_{Pertubation}^{Harmonic} Pertubation(2) Tidal effects<math>C_{ucos}, C_{usin}, C_{rcos}, \int_{Pertubation}^{Harmonic} Pertubation$

- Note that "t" is transmit time (i.e. time at SV transmission), so it must be corrected for transit time. This is done by taking the range/c.
 - You can use the corrected pseudorange/c
 - Will have some small error
 - Or you must solve for the SV positions iteratively with your position to calculate exact transit time.
- Additionally you <u>may</u> want to account for the fact that the earth has rotated during the transit time
 - Some code (including what I share on the website) does this.
 - Blue book and Akos SV calculator do not.

CDII LED --

						100		NER CON					
138 J. J. SPILKER JR.	ents of ephemeris model equations ¹	WGS-84 ⁵ value of the Earth's universal gravitational parameter WGS-84 ⁵ value of the Earth's rotation rate Semimajor axis Computed mean motion-rad/s	Time from ephemeris reference epoch Corrected mean motion Mean anomaly GPS standard value for π Kepler's equation for the eccentric anomaly E_k (may be solved by iteration), rad	$\frac{-e^2}{\cos E_k} \frac{E_k}{(1-e\cos E_k)} \left\{ \begin{array}{l} \text{True anomaly } v_k \text{ as a} \\ \text{function of the} \\ \text{eccentric anomaly} \end{array} \right\}$	Eccentric anomaly	Argument of latitude Argument of latitude correction Radius correction Inclination correction Corrected argument of latitude	Corrected argument of latitude Corrected radius Corrected inclination	Satellite position in orbital plane	Corrected longitude of ascending node Satellite position in Earth-centered, Earth-fixed coordinates	ssion; i.e., GPS time corrected for transit time (range/speed tual total time difference between the time t and the epoch g or end of week crossovers. That is, if t_i is greater than t_k is less than 302,400 s, add 604,800 s to t_k .			
	Table 8 Eleme	$\mu = 3.986005 \times 10^{14} \text{ m}^{3/5^2}$ $\hat{\Omega}_t = 7.2921151467 \times 10^{-5} \text{ rad/s}$ $A = (\sqrt{A})^2$ $n_0 = \sqrt{\mu/A^3}$	$t_{k} = t - t_{oe}^{*}$ $n = n_{0} + \Delta n$ $M_{k} = M_{o} + nt_{k}$ $\pi = 3.1415926535898$ $M_{k} = E_{k} - e \sin E_{k}$	$\checkmark v_k = \tan^{-1} \left\{ \frac{\sin v_k}{\cos v_k} \right\} = \tan^{-1} \left\{ \frac{\sqrt{1}}{(cc)} \right\}$	$E_k = \cos^{-1}\left\{\frac{e + \cos v_k}{1 + e \cos v_k}\right\}$	$\Phi_k = \nu_k + \omega$	$\begin{split} \delta u_k &= C_w \sin 2\Phi_k + C_w \cos 2\Phi_k \\ \delta r_k &= C_n \sin 2\Phi_k + C_n \cos 2\Phi_k \\ \delta i_k &= C_n \sin 2\Phi_k + C_k \cos^2 2\Phi_k \\ \delta i_k &= C_n \sin 2\Phi_k + C_k \cos^2 2\Phi_k \end{split}$	$u_{k} = \Phi_{k} + \delta u_{k}$ $r_{k} = A(1 - e \cos E_{k}) + \delta r_{k}$ $i_{k} = i_{0} + \delta i_{k} + (\text{IDOT}) \overline{t_{k}}$	$x_{k}' = r_{k} \cos u_{k}$ $y_{k}' = r_{k} \sin u_{k}$	$\Omega_t = \Omega_b + (\hat{\Omega} - \hat{\Omega}_c) t_k - \hat{\Omega}_c t_{oc}$	$x_{k} = x_{k}^{\prime} \cos \Omega_{k} - y_{k}^{\prime} \cos i_{k} \sin \Omega_{k}$ $y_{k} = y_{k}^{\prime} \sin \Omega_{k} + y_{k}^{\prime} \cos i_{k} \cos \Omega_{k}$ $z_{k} = y_{k}^{\prime} \sin i_{k}$	⁴ is GPS system time at time of transmi of light). Furthermore, t_i shall be the ac time t_{∞} and must account for beginnin 302,400 s, subtract 604,800 s from t_i . It	

Note: You must iterate to solve Kepler's equation for the eccentric anomaly, (i.e., to solve for E given M). There are many interesting ways to do this, but for this exercise, simply iterate on the equation $E=M+e^*sin(E)$. Start with E = M on the right side of the equation, solve for E on the left side, then plug that value back into the right side of the

SV Clock Data Corrections

Don't forget that this term must be used to correct the pseudoranges in the PVT solution

- Ephemeris are updated every 2 hours
- Issue of Data Ephemeris (IODE)
 - Change in IODE indicates an update to the ephemeris
- Ephemeris are good for 4 hours

 Will maintain GPS spec for up to 4 hours
- Ephemeris refers to the group of data (each are called ephemerides)
- Must check for time rollover of $t t_{oe}$ at beginning/end of week

So How Do We Get Broadcast Parameters in Real Life?

- Navigation message: Data stream broadcast from each satellite
- You can only get the data from satellites you are tracking
- Overlaid on GPS code (the "chips")
- GPS C/A code repeats 20 times per bit
- 50 bits/second
- 1500 bits = 1 "frame" --> 1 frame = 30 seconds
- Frames "repeat" every 30 seconds

NOTE: Takes 30 seconds to receive all the ephemeris to compute the SV potions (but after 30 seconds, the data is good to be used for 4 hours!)

Frames and Sub-Frames (1 of 5)

(from Global Positioning System: Theory and Applications by AIAA)

- TLM begins with an 8 bit synchronization
 pattern
 - 10001011 (0x8B)
 - Occurs every 6 seconds
- HOW is the 17 MSB of the 19 bit Time of Week (TOW) count
 - 6 seconds of resolution
- GPS Time is 29 bits
 - 10 bits for week (1024)
 - 19 bits for TOW (1.5 second increments)

Frames and Sub-Frames (2 of 5)

- Subframe = 6 seconds (300 bits)
- 5 subframes per frame
- Subframes 1-3: "Repeat" every 30 seconds
- Subframes 4-5:
 - 25 "pages" for each, repeating after page number 25.
 - Pages increment each 30 seconds
 - Thus, it takes 25 x 30 seconds = 12.5 minutes to *guarantee* reception of all 25 pages for subframes 4 & 5 (assuming continuous navigation data signal)

Frames and Sub-Frames (3 of 5)

- **Subframe 1:** Info. and clock parameters *for satellite being tracked:*
- Subframe 2: Epemerides for satellite being tracked.
- Subframe 3: More ephemerides for satellite being tracked.
- **Subframe 4:** Information for GPS system or **almanac** for 1 satellite (not necessarily the satellite being tracked).
- **Subframe 5:** More **almanacs** for 1 satellite (not necessarily the satellite being tracked).

34

Sub-frame Details

300 BITS & SECONDS WORD 8 WORD 9 WORD 10 -WORD 7 WORD 4 -WORD & WORDE MORD WORD 2 VORD 3 SUB-No. ... 173 177 183 No. TGO 42 23 BITS... foc BITS 40 22 MTS TLM 22 8/TS 41 HOW 23 BITS 24 BITS.. 24 BITS ... 1 10 16 BITS (Clock & BITS Satelite Quality) C/A OR # ON L2 - 2 8113 -LIZ P DATA FLAG - 1 BIT 2 M685 ILSE SV ACCURACY - 4 BITS ODC - 10 BITS TOTA SV HEALTH - . BITS 121 WN TO C_{UE} 10 BITS Cuc 18 8175 BITS BITS TLM 22 DITE HOW 22 BITS CR 24 EITS 14 BITS 24 BITS 18 8175 **WITS** 18 BITS FIT INTERVAL FLAG - 1 BIT A. 32 BITS TOTAL Mo - 32 BITS TOTAL . - 32 BITS TOTAL SPARE - & BITS 151 1008 TLM 22 8/TS Cic 18 BITS Cro 18 BITS AITS Cuc 16 BITS 24 8175 IDOT HOW 22 BITS 3 N/A Ints 24 BITS 24 BITS 24 8/15 a BITS La - SE MITS TOTAL 4 - 32 BITS TOTAL M. - 32 BITS TOTAL 271 127B 181 lon 8 BITS å M. 24 BITS THRU √A 24 81TS 00 24 BITS 24 BITS TLM HOW 22 BITS (Almanac) 24 18 BITS BITS 22 8113 18 BITS ------ SV HEALTH DATA ID-28/TS - SV ID-8 8/TS I MSE JLSB 32 BITS TOTAL 811 11 BITS TOTAL 181 241 151 SV HEALTH SV HEALTH SV HEALTH SV HEALTH SV HEALTH EALTH PITS/SV S BITS/SV S BITS/SV BITS/SV OBTS SY BITS/SV TLM 22 BITS HOW 22 BITS SPARE SV SV SV SV 5V .5V .5V SV 5 SV .SV SV SV SV F 22 BITS 18 19 21 122 DATA ID - 2 BITS J L SV (PAGE) - 6 BITS ··· RESERVED - DISCUSSED LATER P = SIX PARITY BITS

C . TLM BITS 23 AND 24 ARE RESERVED

† = TWO NONINFORMATION BEARING BITS USED FOR PARITY COMPUTATION (SEE PARITY CHECK ALGORITHM) t† = PAGES 2, 3, 4, 5, 7, 9, 9, AND 10 OF SUBFRAME 4 HAVE SAME FORMAT AS PAGES 1 THROUGH 24 OF SUBFRAME 5

(from Global Positioning System: Theory and Applications by AIAA)

Frames and Sub-Frames (4 of 5)

Sub-frame Details

NORD 2 WORD 3 WORD 4 -WORD 5-- WORD 6 ----- WORD 7 ------ WORD 8 ------ WORD 9 ---WORD 10 SUB-FRAME PAGE No. No. 163 121 151 181 211 1. 6, 11. TLM 22 BITS HOW 22 BITS 4 . 16 4 21 SPARE 16 BITS. 24 BITS SPARE 24 BITS 24 BITS 24 BITS 24 BITS. BITS 16 BITS 22 BITS tt DATA ID - 2 BITS __ L_ SV (PAGE) ID - 6 BITS 163 121 161 12, 19, 20 22, 23, TLM 22 BITS HOW 22 BITS 8 4 SPARE 22 BITS A BITS 24 BITS 24 BITS ... 24 BITS ... 24 BITS 24 BITS 4 74 DATA ID - 2 BITS -- SV (PAGE) ID - & BITS 1128 1137 181 181 TLM 22 BITS A1 P3 P2 . A1 24 8175 4 18 22 BITS 24 BITS in s LIT. DATA ID - 2 BITS ----L- SV (PAGE) ID - 8 BITS MS8-9 158-5 - A. .32 BITS 181 1211 229 1241 A-SPOOF A-SPOOF A-SPOOF SV CONFI A-SPOO SV HEAL TLM SV COP SV CON 25 & BITS/S 22 ØITS 28 BITS 1,2.3. 5.6.7.8.9 12:13:14 26 1 27 1 26 12 DATA ID - 2 BITS _ SV (PAGE) ID - 8 BITS SPARE - 2 BITS SV HEALTH . SPARE . 4 BITS BITS 183 161 1211 1271 13, 14, 15 & 17 TLM 22 BITS HOW 22 BITS IS BUTS 24 BITS ... 24 BITS ... 24 BITS ... 24 BITS ... SPARE 22 BITS 24 BITS ... 24 8175 DATA ID - 2 BITS _ L SV (PAGE) ID - 6 BITS ···· RESERVED - DISCUSSED LATER THO NONINFORMATION BEARING BITS USED FOR PARITY COMPUTATION (SEE PARITY CHECK ALGORITHM)

tt = PAGES 2, 3, 4, 5, 7, 8, 9, AND 10 OF SUBFRAME 4 HAVE SAME FORMAT AS PAGES 1 THROUGH 24 OF SUBFRAME 5

P = SIX PARITY BITS

C = TLM BITS 23 AND 24 WHICH ARE RESERVED

(from Global Positioning System: Theory and Applications by AIAA)

Frames and Sub-Frames (5 of 5)

Example: Navigation data for PRN 6

<u>TIME (sec)</u>	SUBFRAME (page)	<u>MESSAGE</u>
0	1	Info, clock for PRN 6
6	2	Ephemeris for PRN 6
12	3	More ephemeris for PRN 6
18	4(18)	Ionosphere, week number, etc.
24	5(18)	Almanac for PRN 2
30	1	Info, clock for PRN 6
36	2	Ephemeris for PRN 6
42	3	More ephemeris for PRN 6
48	4(19)	More GPS info
54	5(19)	Almanac for PRN 3

GPS Interface Specifications:
 – IS-GPS-200D (revised 2006)

https://www.gps.gov/technical/icwg/IS-GPS-200D.pdf

- Appendix II (pp 65-136) provides details on broadcast data
 - Table 20-IV (pp 97-98) provides the SV position calculation details

Ephemeris Data Repositories

- <u>https://www.igs.org/products#precise_orbits</u>
- <u>https://urs.earthdata.nasa.gov/oauth/authorize?client_id=gDQnv1IO0j9O2xXdwS8KMQ&res</u> ponse_type=code&redirect_uri=https%3A%2F%2Fcddis.nasa.gov%2Fproxyauth&state=aH R0cDovL2NkZGIzLm5hc2EuZ292L2FyY2hpdmUvZ25zcy9wcm9kdWN0cy8
- <u>https://cddis.nasa.gov/Data_and_Derived_Products/GNSS/orbit_products.html</u>
- <u>https://cddis.nasa.gov/Data_and_Derived_Products/GNSS/broadcast_ephemeris_data.html</u>
- <u>https://www.ngs.noaa.gov/orbits/</u>

Some of the above contain "precise" ephemeris (i.e. correct ephemeris)

GNSS Planning Tools (and Skyplots)

 Sky plots show the satellite locations with respect to the user in elevation (from the horizon) and azimuth (from north)

https://www.gnssplanning.com

http://gnssmissionplanning.com

https://www.mathworks.com/matlabcentral/fileexchange/25557-sky-plot-3d